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ABSTRACT

Multi-task learning aims to boost the performance of multiple pre-
diction tasks by appropriately sharing relevant information among
them. However, it always suffers from the negative transfer problem.
And due to the diverse learning difficulties and convergence rates
of different tasks, jointly optimizing multiple tasks is very chal-
lenging. To solve these problems, we present a weighted multi-task
deep convolutional neural network for person attribute analysis.
A novel validation loss trend algorithm is, for the first time pro-
posed to dynamically and adaptively update the weight for learning
each task in the training process. Extensive experiments on CelebA,
Market-1501 attribute and Duke attribute datasets clearly show
that state-of-the-art performance is obtained; and this validates the
effectiveness of our proposed framework.
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1 INTRODUCTION

The techniques of recognizing person attributes have attracted
great research attention over the past several decades. As an um-
brella term, person attributes refer to the attributes of people, such
as facial and clothing attributes [21], and biological traits [9] (e.g.
age and gender). These person attributes can either serve as the
middle-level features for high-level computer vision tasks such as
person re-identification, or be directly used for advanced multime-
dia applications, e.g., clothing recommendation. The techniques
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‘Wearing Hat ?

Smiling ?

Figure 1: The examples of attribute classification. The left
image pair is “hat” attribute, the right image pair is “smil-
ing” attribute. Obviously, it will be easier to classify “hat”
attribute than “smiling”, thus result in different tasks have
various learning difficulties.

of analyzing these person attributes also facilitate a wide range
of real-world applications such as financial monitoring, building
access control, station ticket check system and so forth. For exam-
ple, the techniques can automatically identify or verify individual’s
identity by examining his/her facial and personal traits/attributes
from the physiological and/or visual appearance characteristics,
rather than authenticating persons by the other assistant methods
such as passwords, PINs, tokens and so on. To efficiently boost the
performance and improve the generalization ability of task learners,
the multimedia system of recognizing person attributes jointly train
the learner on predicting each person attribute. This is inspired by
the ability of learning to learn [3, 28] of humans. Particularly, the
multi-task learning can seamlessly and effectively learn, transfer
and share the knowledge across multiple related tasks. However, it
is also an open challenge of learning to leverage the relationships
among different learning tasks.

With the renaissance of convolutional neural networks (CNN),
deep multi-task network has been developed to learn to share the
representations across different categories. The natural strategy
is to build a multi-task network that enables sharing the model
parameters in all layers except the last layer which learns to pre-
dict each individual task. Though this is simple enough, such a
sharing strategy, unfortunately may suffer from the problem of
negative transfer: when two tasks are dissimilar, the inadequate
brute-force transfer may hurt the learner’s performance. One com-
mon practice towards alleviating this problem is to increase the
number of top layers which can exclusively model each individual
task [8, 11, 16, 23]. The intuition behinds this is that the network
can enforce the bottom layers to share low-level information [32],
and learn task-specific sub-networks on top layers. However, the
searching space of configuring multi-task deep architectures is com-
binatorially large, and quite often the designed network is biased
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by the designer’s perception of the relationship among different
tasks as pointed out in [21].

In addition to this problem, the state-of-the-art multi-task learn-
ing works keep the weights fixed for each learning task, rather than
dynamically and adaptively changing them. Different tasks of learn-
ing person attributes inherently have different learning difficulties,
as well as varying convergence rates. For example, learning to iden-
tify the “hat” attribute is much easier than estimating whether one
face is “smiling” in Fig 1.

To solve these two problems, this study aims at investigating
an inbuilt sharing mechanism that is possible of dynamically and
adaptively coordinating the relationships of learning different per-
son attribute tasks. Critically, the weighted loss layer is defined
to model the relationship of learning different person attribute
tasks. The weight of each task should be dynamically tuned in the
training stages. To formally implement this idea, we propose an
adaptively weighted multi-task deep framework to jointly learn
multiple person attributes, and a validation loss trend algorithm
to automatically update the weights of weighted loss layer. The
weights are dynamically changed in the training process accord-
ing to the generalization ability of each task learner, which are
approximately measured by the validation set. A validation loss
trend algorithm is proposed to adaptively update the weights of
this layer. Extensive experiments on benchmark including CelebA
[20], Market-1501 attribute [17, 40] and Duke-attribute datasets
[17, 41] demonstrate that our proposed framework significantly
outperforms the state-of-the-art alternatives.

Contributions. To the best of our knowledge, we for the first time,
propose a novel sharing mechanism of jointly learning multi-tasks
of person attributes. The mechanism is capable of dynamically and
adaptively weighting the “importance” of each task by the corre-
sponding learner’s generalization ability. To efficiently encode and
implement this mechanism, our deep multi-task network utilizes
the weighted loss layer; and we propose a simple yet effective ap-
proach — validation loss trend algorithm, which can validate the
loss trend in the training process and automatically and adaptively
tune the weights of learning each attribute task. Experimentally, we
illustrate the efficacy of proposed framework on multi-task learning
on person attribute analysis.

2 RELATED WORK

2.1

The proposed framework belongs to the category of Multi-task
Learning (MTL) which is one type of transfer learning [22, 32]. The
MTL exploits the shared information among several different tasks
on the same dataset. The recent deep models are especially good for
MTL since the extracted hierarchical features of one task may be
very useful for other tasks [25, 42]. Thus MTL can facilitate solving
many tasks and applications such as pose estimation and action
recognition [43], semantic classification and information retrieval
[19], facial landmark detection [23, 36], and the prediction of person
attributes [1, 6, 21, 24, 26].

The deep multi-task models have been investigated in several
recent works, e.g., the Hyperface [23, 36, 37]. To solve the facial
landmark detection problem, Zhang et al. [36, 37] jointly optimized
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the facial landmark detection with other heterogeneous but sub-
tly correlated tasks such as gender, expression, and appearance
attributes. Their goal is thus to employ the auxiliary tasks of pre-
dicting attributes to help gain the performance for the main task —
facial landmark detection. Our work is different from [36, 37] in that
we aim at learning to predict person attributes, rather than using
auxiliary attributes to help learn the task of facial landmark detec-
tion. Thus our validation trend loss proposed does not necessarily
split the main and auxiliary tasks.

Zhang et al. [34] proposed a deep cascaded multi-task framework
which exploited the inherent correlation between face detection
and alignment to boost up their performance. Jou et al. [12] pro-
posed a multi-task cross-residual network for knowledge transfer.
Abdulnabi et al. [1] proposed a multi-task CNN model to allow
sharing of visual knowledge between tasks to learn facial attributes.
Unfortunately, these networks have to rely on hand-designed ar-
chitectures rather than dynamically and adaptively weighting each
task learner as our work in the training process.

Lu et al. [21] addressed the problem of dynamically designing a
compact and adaptively changed multi-task deep architectures by
grouping similar tasks. In contrast, our work focuses on dynamically
and adaptively optimizing the weight of each learner.

2.2 Person Attribute Analysis

The works of recognizing attributes of persons such as facial and
clothing attributes have received great attention during the past few
years. In visual surveillance scenario, the facial and person attribute
prediction can enable many practical applications such as searching
based on semantically descriptions [14, 27], and interpreting the
face verification or person re-identification results in a human-
comprehensible form [15]. In general, the person attributes can be
utilized as mid-level features for improving other tasks, for example,
person re-identification [4, 17, 39], clothing retrieval [5, 29], and
fashion recommendation [18].

The tasks of facial attribute prediction has achieved a series of
breakthroughs recently by employing the deep models [20, 30, 42].
Facial attributes have also been shown to be helpful in improv-
ing face detection [38], face alignment [31] and face identification
[14]. Rudd et al [26] introduced a mixed objective optimization
network which took account of different distributions of attribute
labels. Facial attributes have been directly used to build the face
identification classifier in [14].

3 METHODOLOGY

The adaptively weighted multi-task deep convolutional neural net-
work is proposed in this section. The framework is overviewed in
Fig. 2. It is composed of four types of layers, namely, convolutional
layers, fully connected layers, building block layers and weighted loss
layer. The basic network structure includes the convolutional, fully
connected and building block layers. This basic network is shared
and used for all attribute prediction tasks. In this work, ResNet-
50 [7] is employed as the basic network. The weighted loss layer is
newly proposed here and will be described in Sec. 3.3.

We propose a novel training algorithm — a validation loss trend al-
gorithm in Sec. 3.4, to jointly learn the multiple attribute prediction
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Figure 2: Overall of our network. The basic network is ResNet-50 [7]. Note that: (1) the 2, 3, 5 and 2 indicates the corresponding
number of building blocks. (2) number@size indicates the number and the size of filters in convolutional layers.

tasks simultaneously. The validation loss trend algorithm is con-
ducted in the backward pass of the Back-Propagation (BP) algorithm
in training the deep network in an end-to-end way. Specifically,
the forward pass propagates the input vectors forward through the
network, layer by layer, until it reaches the output layers of each
attribute prediction task. Each output value is compared against
the desired output by a loss function as the training error. Rather
than treating each prediction task equally, our validation loss trend
algorithm can dynamically update the weight of each task learner.
In the backward pass, the weighted loss (described in Sec. 3.3) is
propagated to update the parameters of the basic network.

3.1 Problem Setup

Our goal is to learn the predictors that can confidently and effec-
tively predict the existence of attributes of person images. Sup-
pose we have the labelled source training dataset Ds = {I,a,L}
with N training instances and M attributes. I denotes the train-
ing images, a is the attributes and L denotes the labels. If the i-th
image I;, (i = 1,---,N) is annotated to have the j—th attribute
aj(j=1,---,M), we denote L;j = 1; otherwise, L;; = —1. Given a
new test image I'*, the goal is then to learn a function a* = ¥ (I*)
using all available training information and predict the attribute
vector a*. Note that since each image can be labelled with multiple
attributes, we have the predicting functions ¥ = [%]

vj (I*) € {+1,-1}.

and

JEL e M

3.2 Separate Model and Basic Model

We firstly introduce our naive baselines — separate model and basic
model.

Separate model. To enable our task, we can train an independent
binary classifier for each individual attribute as done in [20]. This
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can be modeled as minimizing the expected loss over all the training
instances for the j-th attribute aj; and it leads to the following
formulation as,

N
©; = argming, Z L (lﬁj (Ii;®j) - Lij) (1)
i=1
where ©; in Eq (1) indicates the optimized parameter set of the j-th
attribute prediction network; and L (-) is the loss function penal-
ized the value differences of predicted attributes and ground-truth
attributes. The £ (-) can be square error loss to make a more fair
comparison with [26]. Note that hinge-loss [15, 20] can also be used
for £ (). In our experiments, there is no significant difference of
these two types of loss functions; and our experimental conclusions
are still held.

Basic model. To jointly optimize all the attribute prediction tasks,

we extend the model of Eq (1) as,

M N

0 = argming Z Z L (l//j(Ii; Q) - Lij)

j=1i=1

()

where the same parameter set © are shared across all the prediction
tasks.

3.3 Our Model with Weighted Loss Layer

Eq (1) considers each attribute independent; and in Eq (2) each
attribute prediction task contributes equally to the expected loss.
In contrast, we believe that each attribute prediction task should
neither be a standalone problem as the separate model, nor equally
weighted as the basic model. Intuitively, one person attribute may
be well correlated with another one. For example, it is highly likely
that the attribute “lipstick” should be positively correlated with the
“bushy eyebrows”, and negatively related to the attribute “mustache”,
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Figure 3: Correlation map of random selected attributes on CelebA, Market-1501 attribute and Duke attribute dataset. We can
observe that some attributes are highly positive or negative correlated with other attributes.

since a beautiful lady is more prone to use “lipstick” and has “bushy
eyebrows” without “mustache”.

To further illustrate this point, we randomly select 10 different fa-
cial attributes from CelebA dataset to compute their correlations by
using the ground-truth attribute annotations. The visualized results
in Fig. 3 clearly validates our argument. For example, the correla-
tion between “lipstick” and “makeup” is 0.88, and “mouth_open” is
positively correlated with “smiling” by 0.76. Furthermore, different
tasks of learning person attributes inherently have different learn-
ing difficulties, as well as varying convergence rates. For example,
learning to identify the “hat” attribute is much easier than estimat-
ing whether one face is “smiling”. Thus, rather than enforcing our
network to learn all tasks with equal force, we adaptively weight
the tasks learned as follows,

N
Z</1]’ l//J(Il) Q) - Lij)>

i=1

M
= argming

®)

Jj=1
where (-) indicates the operation of the inner product; 4; is the
scalar value to weight the importance of the task of learning j—th
attributes. The values of A; can be used to construct the weighted
loss layer as illustrated in Fig. 2.

In the testing stage, we can binarize the prediction results of the

testing image Iy, for the j—th attribute aj (j = 1,-- -, M) and predict
the attribute annotation L, j as,
. 1 vi(lg) >t
Lyj = / 4
-1 Y <t

where 7 is the threshold parameter.

3.4 Validation Loss Trend Algorithm

3.4.1 Problem of tuning Aj in Eq (3). From the formulations of
Eq (3), it is quite clear that the hyper-parameter A;(j = 1,--- , M)
is the key of our network — once the weight of each task is set, the
parameter set © can be updated accordingly and the estimation of
attribute annotation Ly, j becomes straightforward. However, tuning
the weight parameter 4;(j = 1 ,M) in Eq (3) is very difficult.
Traditional methods such as cross validation is not applicable here
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Algorithm 1 Network Training Procedure. ¢ is the current training
iteration, A is the weights of all the tasks, val_loss_list is a data
structure to save the validation loss.

Require: k: the weight updating period.
Initialize: ¢ = 0, A = 1, val_loss_list = [].
while ¢ < max_iter do
train_loss,val_loss < net.feedward()
val_loss_list.append(val_loss)
if ¢%k = 0 then
A = update_weights()
end if
weighted_loss « train_loss * A
net.backward(weighted_loss)
c=c+1
end while

Algorithm 2 Update weights of tasks: update_weights()

Require: k is the weight updating period, c is the current training
iteration, val loss_list is a data structure to save validation loss.
Initialize: A = 1
if ¢ >= 2 x k then
pre_mean «— mean(val_loss_list[c — 2+ k : c — k])
cur_mean <« mean(val_loss_list[c — k : c])
trend « abs(cur_mean — pre_man)/cur_mean
norm_trend < trend/mean(trend)
norm_loss « cur_mean/mean(cur_mean)
A« norm_trend = norm_loss
A« A/mean(A)
end if

return A

due to the huge search space and prohibitive cost of training net-
works. For example, the 40 attributes on CelebA dataset means
that if using cross validation, we have to compute 40 different A;
(=1,---,40).

3.4.2  Validation loss trend algorithm. To automatically com-
pute the parameters A;, we propose an efficient and yet effective
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approach to validate the loss trend in the training process in or-
der to automatically and adaptively coordinate the importance of
learning each attribute task. The intuition behind our validation
loss trend algorithm is that in learning multiple tasks simultane-
ously, the “important” tasks should be given high weight (i.e. 4;) to
increase the scale of loss of the corresponding tasks.

Nonetheless, it is also nontrivial to directly measure the impor-
tance of one task. One common practice is to manually define the
main and auxiliary tasks as has been done in [36, 37]; and the main
task is the important one and should always be optimized in a
high priority; those auxiliary tasks are in low priority and should
be stopped if these tasks hurt the performance of the main task
learner. In general, on person attribute analysis, we can not have
the pre-specified important degree of each task.

As an alternative, the generalization ability is served as an ob-
jective measurement of the “importance” of one task. Specifically,
when multiple tasks have been learned, the trained model of one
task with lower generation ability should be set higher weight than
those models of the other tasks. The generalization ability of one
learned model can be measured by the validation set, which is kept
unknown in the training process.

We thus formulate the validation loss trend algorithm to jointly
learn multiple tasks in Alg. 1. The main advantage of our algorithm
is to adaptively learn the weights of all the tasks by the weighted loss
layer. Suppose c be the current iteration of updating the network
parameters © and A is initialized as an all ones vector.

As illustrated in Fig. 2, in each batch, we sample the images from
training and validation set respectively. For example, each batch
has 10 training images and 10 validation images'. Only the training
images can be used to update the network parameters ©.

The validation loss is computed in each training iteration by
the 10 validation images; the weight vector A is updated every k
iterations by the update_weights() (in Alg. 2). The updated weights
are then utilized to compute the loss of training data and update
the network parameters © in the backward pass.

The way of updating A (i.e. update_weights()) is explained in
Alg 2. Since 10 validation images are used to compute the valida-
tion loss, we compute the “general” trend of validation loss over
k iterations. We compute the mean validation loss with both cur-
rent and previous k iterations, as cur_mean and pre_mean (in Alg
2) respectively. The trend of validation loss of tasks is computed
as trend « abs(cur_mean — pre_man)/cur_mean. The trend is a
M dimension vector. The weight vector A thus should be decided
by these two key factors — normalized trend (norm_trend) and
normalized validation loss (norm_loss).

4 EXPERIMENTS
4.1 Datasets and Settings

We present an extensive evaluation of our approach on multi-task
person attribute prediction. We use CelebA [20] dataset for facial at-
tribute tasks; and Market1501-attribute [17, 40] and Duke-attribute
dataset [17, 41] for pedestrian attribute tasks.

CelebA is a facial attribute dataset of approximately 200k images of
10k identities [20]. Each image is annotated with 5 landmarks(two

10f course, the portion of training and validation images as well as batch size could be
varied in different learning tasks.
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eyes, the nose tips, the mouth corners) and binary labels of 40 at-
tributes. In this paper, to make a fair comparison with the other
facial attribute methods, we use the standard split: the first 160k
images are used for training, 20k images for validation and remain-
ing 20k for testing. CelebA provides the pre-cropped face images
by 5 landmarks, we use cropped training images to train attribute
prediction models and test models same as other methods [26].
Market-1501 attribute dataset [17] is an extension of Market-
1501 dataset [40] with person attribute annotations. The dataset
contains 32, 688 images of 1501 identities. Among them 751 and
750 identities are used as the training and testing set respectively.
It contains 12 different types of annotated attributes, including 10
binary attribute (such as gender, hair length, and sleeve length) and
2 multi-class attributes, i.e. colors of upper and lower body clothing.
Duke attribute dataset [17] contains 1812 identities captured un-
der 8 cameras. Training and testing set both have 702 identities with
16522 training images and 17661 testing gallery images respectively.
It is annotated with 8 binary pedestrian attributes such as wearing
a hat, and wearing boots, and 2 multi-class attributes.
Evaluation metrics. The person attribution prediction can be
taken as the problems of classifying many attributes. The stan-
dard classification accuracy of each attribute as well as the mean
accuracy over all attributes are utilized to evaluate our performance.
These metrics have also been used by previous work [17, 21].
Parameter settings. We use the open source deep learning frame-
work Caffe [10] to implement the weighted loss layer and train our
multi-task network. For all the experiments, we only use a single
end-to-end model for all the testing. The 7 of Eq (4) is set as 0.
Square error loss is used in Eq (3) as well as the corresponding com-
petitors in order to make a fair comparison with [26]. The weight
changing interval k is set as 200 in Alg.1. We use the stochastic
gradient descent algorithm. Dropout is used for fully connected
layers and the ratio is set to 0.5. (1) On CelebA dataset, to train the
facial attribute model, the base learning rate is set as 0.0001, and
gradually decreased by 1/10 at 70k, 100k, 120k. The input image
is resized to 224 X 224 X 3, the mini-batch size is set as 20. (2) On
the Market-1501 and Duke attribute datasets, we use slightly less
training iterations due to the relatively small number of training
instances: the base learning rate is still set as 0.0001, and gradually
decreased by 1/10 at 10k, 15k.

Running costs. Our face model get converged with 130k iterations
and it takes 14 hours on CelebA with one NVIDIA TITAN X GPU.
Our pedestrian model get converged with 20k iterations and it takes
2 hours on Market-1501 and Duke with one NVIDIA TITAN X GPU.
For training all the model, the batch size is 20, and it takes around
11 GB GPU memory.

4.2 Competitors

We list the competitors on each dataset. Note that please refer to
the supplementary material for the full comparison results on each
attribute.

Competitors on CelebA dataset. We firstly compare our frame-
work with two baseline models (i.e. Separate models and Basic
model) to validate the effectiveness of our multi-task framework;
secondly, our results are also compared against those of the current
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Figure 4: Performance comparison with state-of-the-art methods on CelebA dataset. Error = 1 — Accuracy.
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Figure 5: Comparison of with and without adaptively
weighted loss in the training stages. The model using
weighted loss clearly converges better.

state-of-the-arts in order to evaluate the performance of our vali-
dation loss trend algorithm. Specifically, (1) Separate Models [33]
trains each network model for each attribute. It results in totally 40
models trained. (2) Basic model, as explained in Eq(2), is used to train
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Methods [ Accuracy (%)
FaceTracer [13] 81
PANDA-w [35] 79
PANDA-I [35] 85

LNets+ANet [20] 87
MT-RBM-PCA [6] 87
Off-the-Shelf CNN [42] 86.6
Walk-and-Learn [30] 88
Moon [26] 90.94
Adaptive Sharing [21] 91.26
Separate Models 89.63
Basic Model 90.42
Our Model 91.80

Table 1: Comparison of mean accuracy on CelebA.

one single deep network model for all attributes; and this indicates
all attributes use equal weight. (3) FaceTracer [13] is the best non-
neural-network based algorithm so far; it extracts the HOG [2] and
color histograms in several important functional face regions and
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methods on Market-1501 attribute dataset. “L.slv”, “L.low”,
“S.clth”, “B.pack”, “H.bag”, “C.up”, “C.low”denote length of
sleeve, length of lower-body clothing, style of clothing, back-
pack, handbag, color of upper-body clothing and color of
lower-body clothing, resp. Error = 1 — Accuracy.

then trains SVM for each attribute classification. (4) PANDA-w [35]
and PANDA-I [35] are two variants of PANDA model [35]. As in [20],
we also compare these two methods on facial attribute prediction. (5)
LNets+ANet [20] combines two deep networks (including two face
localization networks and one attribute extraction network), and
uses SVM classifier to learn facial attributes. (6) MT-RBM-PCA [6]
adopts a new multi-task restricted Boltzmann machine that mod-
els the distributions of multiple attributes and classifies them. (7)
Off-the-Shelf CNN [42] uses off-the-shelf architectures trained for
face recognition to build facial descriptors, then trains classifiers
for attribute learning. (8) Walk and Learn [30] learns good represen-
tations for facial attributes by exploiting videos and contextual data
as the person walks. (9) Moon [26] is a mixed objective optimization
multi-task network to learn all facial attributes and advances face
attribute recognition by learning multiple attribute labels simulta-
neously. (10) Adaptive Sharing [21] learns a deep MTL framework
which can dynamically group similar tasks together. Note that only
the mean accuracy results of (4), (6), (7) and (10) are reported here.

Competitors on two pedestrian attribute datasets. Several base-
lines are compared against our method on these two datasets to
evaluate the effectiveness of our contributions. (1) Separate Models,
we still train each CNN model for each attribute. (2) Basic model , we
still train one CNN model for all the attributes with the weights of
all attributes set to 1 as in Eq (2). (3) APR [17] is an attribute-person
recognition network which learns a discriminative embedding for
person re-ID and attribute predictions. (4) Ped_attrb_net is short
for pedestrian attribute recognition network, which is a baseline
method used in [17] to evaluate the performance of pedestrian
attribute recognition.

4.3 Results on CelebA Dataset

We evaluate the facial attribute prediction tasks with the standard
settings of CelebA dataset. The results are showed in Fig 4. We
highlight the following observations.

(1) The results of our model beat all the state-of-the-art meth-
ods. Comparing with all the other baselines, we highlight that ours
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Figure 7: Performance comparison with state-of-the-art
methods on Duke attribute dataset. Error = 1 — Accuracy.

Methods ‘ Market-1501 (%) ‘ Duke (%)
Ped_attrb_net [17] 86.19 82.39
APR [17] 88.16 86.42
Separate Models 86.68 85.45
Basic Model [35] 86.84 85.91
Our Model 88.49 87.53

Table 2: Comparison of mean recognition accuracy on
Market-1501 and Duke attribute datasets.

achieves the best performance with the mean accuracy 91.80% over
40 facial attributes. In particular, our model can beat most state-of-
the-art results on 39 attributes from all 40 facial attributes with the
only exception — Walk and Learn, which is pre-trained on external
data and we can beat on 29 attributes. This validates the efficacy
of our adaptively weighted multi-task network. We also list the
mean accuracy of different methods in Tab. 1. Among all these
methods, Adaptive Sharing and Moon are two second best methods
with the mean average accuracy 91.26% and 90.94% respectively on
CelebA dataset. In contrast, our model achieves 91.80% accuracy,
outperforming the Adaptive Sharing and Moon methods by clear
margins 0.54% and 0.86%. It is also worth noticing that such an
improvement of our method over Adaptive Sharing and Moon is
statistically significant to show the effectiveness of our framework,
since the prediction accuracies on most attributes are very high.
For instance, as can be seen in Fig. 4, the accuracies of 17 attributes
of Moon and our method are higher than 95%.

(2) The efficacy of weighted multi-task network. The results
are compared in Fig. 4 and Tab. 1. As we can see from the figure
and table, our model can obtain the mean accuracy of 91.80%; and
it shows 2.17% and 1.38% improvements over the other two multi-
task baselines — separate models and basic model respectively. This
is due to the fact that our adaptively weighted loss layer can ef-
ficiently model the correlations of different attributes; and more
critically, our validation loss trend algorithm can dynamically and
automatically enforce heavy weights on the learning attribute tasks
of relatively low performance on training and validation sets.

(3) Our results are also better than those works in [23, 30].
Additionally, we also report mean accuracy results of CelebA from
the recent works — Walk-and-Learn [30] in Tab. 1. We note that our
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model can beat this method by clear margins (i.e. 3.8%) due to the
effectiveness of validation loss trend algorithm. Furthermore, on
gender attribute prediction, our framework can hit 98.5% accuracy;
in contrast, the accuracy of HyperFace [23] is 97.0%. That indicates
that our results can get 1.5% improvement over that of HyperFace
[23], again thanks to our adaptively weighted layer and validation
loss trend algorithm.

Qualitatively results. The last row of Fig. 8 gives some examples
of the attributes on CelebA dataset. Each column is corresponding to
one type of attribute. In Fig. 5, we visualize the changes of validation
loss versus the number of iterations of our method and the basic
model. As we can read from the figure, both methods have almost
similar validation loss in the first 80, 000 iterations. As the number
of iterations is beyond 80, 000, our validation loss is decreased even
further, and yet the loss of basic model is kept steady. This reveals
that our validation loss trend algorithm can better optimize the
attribute prediction tasks of lowest generalization ability.

4.4 Results on Pedestrian Attribute Datasets

We evaluate the pedestrian attribute prediction tasks on Market-
1501 attribute and Duke attribute datasets.

(1) The results of our model beat all the state-of-the-art meth-
ods on both two datasets. For Market-1501 dataset, our frame-
work achieves the mean accuracy of 88.49% over 12 pedestrian
attributes, outperforming the current best method (APR [17]) by
0.33% absolute percentage points. In particular, our model can beat
all the state- of-the-art results on 7 attributes among all the 12 facial
attributes. For Duke attribute dataset, we achieve mean accuracy of
87.53% over 10 pedestrian attributes, which is 1.11% absolute per-
centage points higher than the best result reported so far (86.42%)
by APR in [17] which, unlike ours, requires additional annotation
information of person identification to assistant the learning pedes-
trian attributes. This further validates the efficacy of our adaptively
weighted multi-task network. We also list the mean accuracy of
different methods in Tab. 2.

(2) The efficacy of weighted multi-task network. Still as com-
pared in Fig. 6, Fig. 7 and Tab. 2, we can draw the same conclusion
as in CelebA dataset: our network is significantly better than the
other two multi-task baselines. Particularly, on market-1501 dataset,
our model shows 1.81% and 1.65% improvements over two multi-
task baselines — Separate models and Basic model respectively. As
expected, the same experimental results are observed on Duke
attribute dataset: our results improve by 2.08% and 1.62% over Sep-
arate models and Basic model. Since the same basic networks are
utilized in all methods, the performance gain is largely due to the
efficacy of our validation loss trend algorithm and the loss layer.
Qualitative examples. The first two rows of Fig. 8 give some
examples of the pedestrian attributes. Each column is corresponding
to one type of pedestrian attribute. Fig. 9 compares the attribute
prediction results of Separate models, Basic model and our model.
The first row is ground truth attribute annotations of each image.
As is shown in the table, the Separate models and Basic model
made some incorrect predictions. For example, in the second image,
the Basic model is missing the “Backpack” attribute, possibly due
to the similar color of the backpack and clothes. In contrast, our
model is more confidence in predicting the existence of “Backpack”
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Figure 8: Person attributes. Image pairs in red/blue boxes in-
dicate the positive/negative examples of representative at-
tributes respectively.

Yo

Backpack, | Smiling, Hat | Backpack, Female
Ground Truth Male Pointy Nose Shorts
Hat, Backpack, Male,
Separate models | Hat, Male Male P oint; Nose e gz}t‘cons e
Basic Model | Hat, Male Male Smiling, Hat | Female, Shorts
Hat, Male, Backpack, | Smiling, Hat |Backpack, Female
Our Model Bag Male Pointy Nose Shorts

Figure 9: Examples of person attributes prediction result of
separate models, basic model and our weighted model, re-
spectively.

attribute since our framework had learned the correlations among
these attributes.

5 CONCLUSIONS

In this paper, we propose a novel Adaptively Weighted Multi-task
Deep Convolutional Neural Network to learn person attributes.
Different from previous multi-task approaches, our method uti-
lizes validation loss as an indicator to adaptively tune weights for
each attribute task. The proposed framework utilizes the correla-
tion of all the attributes to help learn all the attributes tasks. We
demonstrate our approach on the CelebA, Market-1501 attribute
and Duke attribute datasets, showing substantial improvement over
the state-of-the-art methods.
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