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ABSTRACT 
Continuous emotion dimension prediction has increased in 
popularity over the last few years, as the shift away from 
discrete classification based tasks has introduced more realism 
in emotion modeling. However, many questions remain 
including how best to combine information from several 
modalities (e.g. audio, video, etc). As part of the AV+EC 2015 
Challenge, we investigate annotation delay compensation and 
propose a range of multimodal systems based on an output-
associative fusion framework. The performance of the proposed 
systems are significantly higher than the challenge baseline, 
with the strongest performing system yielding 66.7% and 53.9% 
relative increases in prediction accuracy over the AV+EC 2015 
test set arousal and valence baselines respectively. Results also 
demonstrate the importance of annotation delay compensation 
for continuous emotion analysis. Of particular interest was the 
output–associative based fusion framework, which performed 
very well in a number of significantly different configurations, 
highlighting that incorporating both affective dimensional 
dependencies and temporal information is a promising research 
direction for predicting emotion dimensions. 

Categories and Subject Descriptors 
G.3 [Mathematics of Computing]: Probability and Statistics – 
Correlation and regression analysis; Robust regression  
I.5.4 [Computing Methodologies]: Pattern Recognition – 
Signal processing; Computer vision; Waveform analysis 

General Terms 
Algorithms, Performance, Design, Human Factors, Verification. 

Keywords 
Emotion Dimension Prediction, Support Vector Regression, 
Relevance Vector Machine, Output-Associative Fusion, 
Annotation Delay Compensation, Multimodal Fusion. 

1. INTRODUCTION 
Using behavioral signal processing techniques to model, 
analyze, detect or predict human emotions is an actively 
emerging area of research [1]. In recent years, there has been a 
shift away from extensive investigation into lab-based 
recognition of prototypical emotion categories (e.g. anger, fear, 
etc) towards continuous prediction of emotional dimensions 
(e.g. arousal and valence) in more naturalistic communication. 
Affective dimensions are considered a more descriptive 
representation of subtle and complex emotions and emotion-
rated states [1, 2]. For continuous emotion prediction, a number 
of physiological and behavioral modalities have been 
investigated, such as: audio [3], video [4], body language [5] 
and EEG [6]. Also, a combination of the modalities can lead to 
further improvements [7, 8].  

The 2015 Audio/Visual Emotion Challenge and Workshop 
(AV+EC 2015) provides an opportunity for advancing 
continuous emotion prediction by combining information gained 
from audio, video and physiological data [9]. AV+EC 2015 
requires participants to continuously predict arousal and valence 
by utilizing multimedia signal processing and machine learning 
techniques. The primary aim of the analysis provided herein is 
to outperform the challenge baseline benchmark, as well as to 
provide novel insights into continuous emotion analysis. 

The investigations presented within this paper compare the 
performance of a range of multimodal prediction systems 
designed to capture relevant audio, video and physiological 
information. The experimental results demonstrate that 
significant gains in affect prediction performance can be found 
by compensating for annotator delays introduced when forming 
the ground truth labels and via the application of an output-
associative regression framework for multimodal fusion.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. Request permissions 
from Permissions@acm.org 
AVEC’15, October 26 2015, Brisbane, Australia 
© 2015 ACM. ISBN 978-1-4503-3743-4/15/10…$15.00 
DOI: http://dx.doi.org/10.1145/2808196.2811640 

41



2. RELATED WORK 
Both Support Vector Regression (SVR) and Long Short Term 
Memory Recurrent Neural Network (LSTM-RNN) have been 
proven to be effective for predicting emotion dimensions [3, 10]. 
The baseline system in the AV+EC 2015 challenge adopted 
these two widely used methods [9], alongside standard feature 
sets extracted from the audio, video and physiological signals 
[11]. Both unimodal and multimodal systems were investigated 
using a linear combination of SVR and LSTM-RNN as decision 
level fusion. The decision level fusion, which employed features 
from all modalities, produced the best system performance [9]. 
However, a range of alternative approaches can be considered 
for achieving a more robust and effective multimodal prediction 
system. Approaches investigated in this paper include; 
compensation of annotation delay, alternative regression 
methods and investigations into fusion methods which model 
emotion dimension dependencies.  

It has been realized, within the affective computing 
community, that delay problems are introduced during the 
manual annotation process used to establish the ground truth in 
many continuously annotated emotion corpora [2, 8, 12, 13]. 
When annotators make decisions based on vocal and visual 
signals, there is an inherent annotation delay between their 
perceptual observations and decision-making [2, 13]. Moreover, 
this delay varies between different raters and can range 
anywhere between 2 - 10 seconds [13]. This delay can 
significantly degrade system performance when predicting 
emotion due to unreliable modeling caused by asynchronous 
ratings. The compensation of annotation delay is commonly 
achieved by shifting the input features relative to the ground 
truth labels during system training and testing [8, 12, 13].  

The Relevance Vector Machine (RVM) is a relatively new 
approach to multi-dimensional regression which is gaining in 
popularity in continuous emotion prediction [14, 15]. RVM can 
be considered as a sparse Bayesian method analogous to the 
SVR [16]. A key advantage of RVM over SVR in the context of 
multi-modal learning is the RVM’s Heterogeneous Mapping 
(HM) property, which allows any arbitrary kernel function to be 
used in conjunction with a RVM [17]. HM allows not only the 
mappings of contextual temporal information, but also a 
convenient multimodal fusion technique, which negates the need 
to train and heuristically combine multiple predictors [15].  

Multimodal features are advantageous for continuous 
emotion prediction [1, 8, 9]. Fusing scores from different 
modalities is normally achieved through feature-level fusion or 
decision-level fusion [1, 8, 12]. Feature-level fusion is a 
concatenation of all features and decision-level fusion combines 
the outputs of models trained on different modalities to make a 
final prediction. Common systems for learning decision level 
fusion weights include either Linear Regression (LR) [9, 12], or 
SVR [18]. However, it is worth noting that fusing regressor 
outputs is difficult due to the multicollinearity problem, in which 
significant correlations between the prediction values being 
fused makes it hard to learn a reliable set of fusion weights [19].  

Recently Output-Associative (OA) fusion techniques, which 
seek to utilize the correlations between arousal and valence 
values [1], have been investigated in order to achieve better 
prediction performance [8, 12, 15]. This framework learns the 
contextual dependencies that exist between predicted 
dimensional values, as well as the temporal dependencies that 
exist between an individual prediction output and all other 
outputs within a time frame around that prediction. 

An extension of the OA framework is the OA-RVM 
technique presented in [15]. This technique takes the RVM’s 
HM property to not only learn the contextual and temporal 
dependences that exist between prediction outputs but also the 
relationship between the predicted outputs and the input features 
space, and has been proven to be very effective for emotion 
tracking [15]. There are a range of extensions that can be trialed 
within the OA-RVM framework, including using other 
regression methods (e.g. SVR) as the initial modeling method 
and multimodal fusion. 

Herein, the design and development of our systems for entry 
to the AV+EC 2015 challenge is presented. Our investigations 
focus on; compensation for annotation delay (Section 3.3), RVM 
(Section 3.4), a range of multimodal fusion techniques 
including; feature level fusion (Section 3.5), decision level 
fusion (Section 3.6) and the output-associative based fusion 
techniques; OA fusion (Section 3.7) and OA regression (Section 
3.8). We present a range of system development experiments 
and results (Section 5), a series of additional investigations using 
a variety of audio features (Section 6) as well as our systems and 
results submitted to the AV+EC 2015 challenge (Section 7). 

3. SYSTEM OVERVIEW 
3.1 Introduction 
Investigations in this research are centered on four different 
multimodal continuous emotion prediction systems.  The aim of 
these investigations is to give insights into regression fusion. 
Each system uses different fusion strategies, introduced below. 
Furthermore, within these frameworks, the advantages offered 
by including delay compensation and Relevance Vector 
Machines, are also investigated.   

3.2 Features and Modalities 
The challenge provides a set of standard acoustic features to 
participants: the 102-dimensional Extended Geneva Minimalistic 
Acoustic Parameter Set (EGEMAPS) [20]; two types of video 
descriptors (84-dimensional set of facial based appearance 
features and 316-dimensional set of facial based geometric 
features); two sets of physiological features (54-dimensional set 
of electrocardiogram (ECG) features and 60-dimensional set of 
electro-dermal activity (EDA) features). The reader is referred 
to [9] for a complete description of the challenge feature sets. 
Apart from the provided feature sets, audio features were also 
extracted using VoiceSauce [21] and openSMILE [22]. 
Experiments and results on these feature sets are outlined in 
Section 6. 

Unless stated otherwise, all proposed systems used the 
provided audio, appearance based video, geometric based video 
and ECG features. During system design and development, the 
inclusion of EDA did not aid system performance. Furthermore 
the inclusion of EDA features when generating predictions of 
the challenge test set resulted in abnormally high valance 
predictions. Hence, EDA features are not included in any results 
presented herein. 

3.3 Annotation Delay Compensation  
Due to the delay caused by sensing and judgment between an 
annotator’s perceptual observations and their decision-making, 
the numerical ratings associated with each dimension may not 
be reliable for system training. Similar to [12, 13], to 
compensate for annotation delay temporal shifts were applied 
for each file in the training set in order to realign the features 
with the ground truth. The frame shift was achieved by dropping 
first ܰ  ground truth scores and last ܰ  input feature frames 
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before regression training, and, unless stated is applied to all 
systems reported herein.  

It should be noted that training a regressor with the shifted 
training files produces predictions which are shifted forward in 
time, by ܰ  frames, when compared to the ground-truth labels 
(Figure 1b). However a smoothing filter can be used to re-align 
the predicted outputs. Filtering has been shown to be effective 
for smoothing output predictions, helping to minimize adverse 
effects due to noisy predictions and offer rough estimations for 
undetected frames in facial features [23]. Filtering also 
introduces an output-delay proportional to the filter length; a 
FIR filter length of 2ܰ  1 introduces a delay of ܰ, where N is 
defined as per the previous paragraph. Hence, post-processing 
filters can also be used for resolving the synchronization issue in 
predicted outputs caused by the introduction of delay in the 
training phase (Figure 1c), and unless stated is applied to all 
systems reported herein.  

In this paper, a smoothing filter is used not only to help 
remove high frequency noise present in predictions, but also to 
realign predictions generated by a system trained on frame 
shifted features. As this filter will be applied over longer 
timescales (2-4s), the commonly used mean filter [23], which 
applies equal weights to all samples, could be an unsuitable 
choice of filter. Therefore we apply a binomial filter, which is a 
Gaussian shaped filter that gives greater weight to predictions 
adjacent to the prediction and less weight to the predictions 
further away. Binomial filter coefficients are formed using a 
binomial expansion: 

														൬
1
2
,
1
2
൰
ࡺ

	 (1) 

The effect of both delay only and combined delay and 
smoothing on a set of predicted values can be seen in Figure 1.  

 
Figure 1. Effect of annotation delay compensation on a set of 
predicted arousal ratings. (a) Predictions without delay and 
smoothing are noisy and not well matched with the ground truth 
labels. (b) Applying temporal shifts to the training data 
improves system performance but results in predictions which 
are advanced in time compared to their ground truth. (c) 
Applying a binomial filter to these predictions not only smooths 
the output but resolves the synchronization issue.  

3.4 Relevance Vector Machine 
Relevance Vector Machines (RVM) are gaining popularity in 
continuous emotion prediction and have been shown to offer a 
wide range of advantages over SVR [15-17, 24]. The goal of 

RVM training is to learn the regression function: 

,∗࢞ሺ࢟ ࣓ሻ ൌ ሻ∗࢞ሺࣘࢀ࣓ 	 ࣕ	 (2) 

in which ࢞∗	represents a multi-dimensional feature vector, ࣓ ൌ
ሾ߱ଵ,⋯߱ሿ்	is an estimated set of sparse regression parameters, 
ࣘ ൌ ሾࣘଵሺ࢞∗ሻ,⋯ࣘሺ࢞∗ሻሿ்   is a set of (potentially non-linear) 
transforms performed on ࢞∗  and ࣕ ൌ 	 ሾ߳ଵ, ߳ଶ, … , ߳ேሿ்  is the 
training noise terms. In the Bayesian approach used in RVM’s 
all noise terms are assumed to be distributed 
Gaussian	~	ܰሺ0,  .ଶሻߪ

RVMs learn a sparse representation of ࣓ where the majority 
of the ߱ are zero. This is achieved by giving  a zero-mean 
Gaussian prior which encourages sparsity by declaring smaller 
weights as more probable [16]: 

ሻࢻ|ሺ࣓ ൌෑܰሺ0, ߙ
ିଵሻ



ୀଵ

	 (3) 

હ is the inverse variance hyperparameter and is analogous to 
regularization terms in SVR or ridge regression.  

RVM presents the learnt regression model as the most 
relevant set of extracted feature dimensions, meaning the 
technique explicitly performs both dimensionality reduction and 
feature selection without the need for a held-out validation data 
subset. In the context of the AV+EC 2015 challenge, this is a 
desirable quality as it helps to minimize the chances of 
overfitting during system development. 

The training phase of the RVM Regression Model searches 
for ࢻெ, ெߪ

ଶ , the most probable (MP) values of ࢻ and ߪଶ using 
iterative Bayesian inference procedure. In the testing phase, 
,ெࢻ	 ெߪ

ଶ , are used to both make a prediction and to estimate a 
level of uncertainty associated with that prediction.  

3.5 Feature Level Fusion 
The first fusion system investigates the advantages of feature 
level concatenation. In this system different modalities are 
combined in the front end and used to train a SVR or RVM. 
During testing, the same set of features were combined before 
generating predictions (Figure 2).  

 
Figure 2: Block diagram showing the feature level fusion 
strategy used to combine information from different modalities 
for the task of continuous emotion prediction 

3.6 Decision Level Fusion 
Decision level fusion techniques have been shown to improve 
the performance in many continuous emotion prediction systems 
[1, 8, 12]. In this method, separate models are trained and tested 
on for each modality and a further regressor is trained to 
produce the overall prediction from the set of predictions from 
various modalities (Figure 3). 

When performing this kind of fusion, multicollinearity 
problems, caused by the high correlations between prediction 
scores of different modalities, may arise [19]. Therefore we use 
either a RVM or a Regularized Linear Regression (RLR) [25] 
system to learn fusion weights.  
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Figure 3: Block diagram showing the decision level fusion 
strategy used to combine information from different modalities 
for the task of continuous emotion prediction 

3.7 Output-Associative Fusion 
Output-Associative (OA) fusion techniques, which take into 
account the contextual and temporal dependencies that exist 
within and between predicted arousal and valence values when 
performing fusion, are gaining popularity in continuous emotion 
prediction [8, 12, 15]. OA-fusion is an extension of decision-
level fusion and is achieved by learning fusion weights on an 
OA-matrix. The OA-matrix is formed by output associative 
vectors from a set of initial predictions, taken from each 
dimension and modality (Figure 4). 

 
Figure 4. Block diagram showing the formation of an ሺܯ 
ܰሻ ൈ ܭ  output associative vector from a set of multimodal 
predictions for use in an OA fusion or OA regression system 

Given a set of arousal predictions ࢟ ൌ 	 ሾyୟଵ,⋯ , yୟሿ், and 
valence predictions ࢟௩ ൌ 	 ሾy୴ଵ,⋯ , y୴ሿ், the ݇-th set of values are 
the set of initial arousal and valence predictions, learnt from one 
modality (Figure 4). The OA-matrix associated with the ܯ-th 
modalities ைܻ

ெ  can be formed as below: 

ைࢅ
ெ ൌ

ۏ
ێ
ێ
ۍ
ሾ࢟ࢇା࢚	ሿ்,
ሾ࢟ࢇା࢚	ሿ்,

⋮
ሾ࢟ࡼࢇା࢚	ሿ்,

ሾ࢟࢜ା࢚	ሿ்

ሾ࢟࢜ା࢚	ሿ்

⋮
ሾ࢟ࡼ࢜ା࢚	ሿ்ے

ۑ
ۑ
ې
	 (4) 

where ܑ࢟ࢇା࢚	 and ܑ࢟࢜ା࢚  are a set of the temporal continuous 
prediction values taken from the range ሾ݅ െ ⋯,ݐ , ݅  ሿݐ . A 
complete OA-matrix can then be formed by combining the OA 
matrices from all modalities: 

ࡻࢅ ൌ ሾࢅை
ଵ , ைࢅ

ଶ , ைࢅ
ଷ , ைࢅ

ସ ሿ (5) 

Fusion between modalities is simply a case of training a 
regressor with the OA-matrix (Figure 5). Again, to minimize 
multicollinearity effects, either a RVM or RLR was used to 
learn the fusion weights. 

 
Figure 5: Block diagram showing the output-associative fusion 
strategy used to combine information from different modalities 
for the task of continuous emotion prediction. Note ࢟෭ࢇ and ࢟෭࢜ 
represent the predicted arousal and valence scores respectively 

3.8 Output-Associative Regression 
The final fusion strategy is a combined feature-level fusion, 
decision-level fusion and OA fusion scheme, herein referred to 
as output-associative regression (OA-Regress.). This system is 
an extension of the OA fusion, in which the OA matrix is 
concatenated with the input feature space to learn the fusion 
weights (Figure 6). Fusion of modalities using this system will 
be performed using the Output-associative Relevance Vector 
Machine (OA-RVM, [15]). 

 
Figure 6: Block diagram showing the output-associative 
regression strategy used to combine information from different 
modalities for the task of continuous emotion prediction. Note 
 represent the predicted arousal and valence scores ࢜࢟ and ࢇ࢟
respectively. 

The OA-RVM technique extends this contextual and 
temporal mapping performed in OA fusion to also incorporating 
the relationship between the input features space when updating 
the prediction values: 

ࢇ࢟ ൌ ሺ࣓ࢇሻࣘࢀሺ࢞∗ሻ  ሺࢇ࣐ሻࢀሺ࢚࢟
ሻࢇ 	 ሺࢇ࣒ሻࢀሺ࢚࢟

ሻ࢜  ࣕ (6) 

࢜࢟ ൌ ሺ࣓࢜ሻࣘࢀሺ࢞∗ሻ  ሺ࣐࢜ሻࢀሺ࢚࢟
ሻࢇ 	 ሺࢇ࣒ሻࢀሺ࢚࢟

ሻ࢜  ࣕ (7) 

where ࢚࢟
  and ࢚࢟

௩  are the temporal independently-learnt set of 
arousal and valence prediction values, continuous on the range 
ሾ݅ െ ⋯,ݐ , ݅    .ሿݐ

OA-RVM therefore uses the past, current and future 
prediction context associated with input feature frames, as well 
as the input features, to update a prediction result. Prediction 
using the non-causal relationship has been shown to be superior 

෬ݕ

ݒ෬ݕ

 ݕු

 ௩ݕු
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to RVM and SVR when performing continuous emotion 
prediction [15]. The work presented within this paper aims to 
reinforce the usefulness of the OA-RVM framework and 
furthermore explore this paradigm in terms of a multimodal 
fusion technique. 

4. EXPIREMENTAL CONDITIONS 
4.1 Database  
The corpus used in the AV+EC 2015 challenge is part of the 
Remote Collaboration and Affective Interaction (RECOLA) 
database [11]. In this database, data was collected during 
spontaneous dyadic interactions where multimodal signals were 
recorded, including audio, video, ECG and EDA. There are 27 
subjects in total, which are evenly divided into training, 
development (devel.) and test partitions (9 speakers for each). 
The total recording comprises 5 minutes for each subject; all 
recordings have been continuously rated for arousal and valence 
in 40ms, resulting in 7501 pairs of affective score per file [9]. 

4.2 Performance Metric 
The performance measure adopted is the concordance 
correlation coefficient (CCC), which combines the Pearson 
correlation coefficient (ߩ) and the mean square error (MSE). 

ܥܥܥ ൌ 	
,࢞ሺݒܥ2 ሻ࢟

௫ଶߪ  ௬ଶߪ  ሺߤ௫ െ ௬ሻଶߤ
	 (8) 

The baseline CCC’s have been provided by the challenge 
organizers for both development set and test set (Table 1). 

Table 1. Challenge Baselines CCC's of the AV+EC 2015 
development and testing partitions, reproduced from [9] 

 Arousal Valence 
Devel. Set 0.476 0.461 
Test. Set 0.444 0.382 

 

4.3 Key Experimental Settings 
In this research, SVR and RVM were initially used as the 
regression methods. Before training, all training features were 
normalized to [0, 1] and the normalization coefficients were 
used to normalize the testing data. For SVR, 1 out of each 20 
frames of training data were selected for training, for reasons of 
computational efficiency with negligible performance drop. A 
linear kernel was used and C was set to 0.005 and 0.05 for 
arousal and valence respectively, based on optimizing the 
performance with delay and smoothing in the development set in 
the range of [10-4,1]. The number of RVM training iterations 
was set to 30 for arousal and 40 for valence, based on the best 
performance on the development data. When performing OA 
fusion and OA-Regress ܭ, OA window size (Figure 4), was set 
to 121 for both arousal and valence and the number of RVM 
training iterations was tailored for each system and ranged 
between 10-100. 

5. SYSTEM DEVELOPMENT  
5.1 Feature Level Fusion Results 
The first system proposed was to concatenate all modalities into 
a single feature matrix to train a model. The back-end regression 
methods were SVR and RVM. As can be seen in Table 2, the 
RVM back-end outperformed the SVR, especially for valence. 
Notably, all non-delay compensated, feature level fusion 
systems outperformed single modality systems in our initial 
development phase, but none were able to match the challenge 
development set baseline.   

Table 2. A comparison of CCC’s of comparing feature level 
fusion in either a SVR or RVM back-end for the AV+EC 2015 
development set.  

System Arousal Valence 
SVR 0.276 0.145 
RVM 0.340 0.361 

5.1.1 Effect of Delay Compensation 
Before training, a delay was introduced to the training data by 
frame dropping. The predictions generated by a system trained 
on shifted inputs features were then realigned using a smoothing 
filter. The pre-processing potentially increases reliability of the 
training labels if the introduced delay is equivalent to the 
annotation delay, whilst the post-processing produces a 
smoother and aligned set of predictions.  

Initial investigations focused on searching for the best delay 
for arousal and valence, which were achieved using a number of 
delay values in pre-processing and post-processing. In the 
experiment, 16 delay values within 0 to 6 seconds with 0.4-
second increments were used. However, unlike previous studies 
[13], rather than only using facial features, multimodal features 
were used to estimate the best delay values for arousal and 
valence. SVR was used as the regression method. 

A substantial improvement in CCC was seen with the 
introduction of delay compensation, increasing from 0.276 to 
0.691 for arousal and from 0.145 to around 0.5 for valence 
(Figure 7). Also it shows that valence rating responds more 
rapidly than arousal, which is consistent with previous studies, 
e.g. [13]. Based on these results, we selected a 4-second delay 
for arousal and a 2-second delay for valence as the optimal delay 
value. Unless specifically stated, these delay values were used in 
all subsequent systems. 

 
Figure 7. Delay compensation using frame shift and smoothing. 
The best delay for arousal was 4s and the best delay value for 
valence was 2s. 

Compensating for delay in our feature level fusion systems 
produced a substantial increase in system performance (Table 
3). Both the SVR and RVM feature level fusion system easily 
outperformed the challenge development set baseline.  

Table 3. CCC’s found for the AV+EC 2015 development set 
when combining delay compensation with either a SVR or RVM 
feature level fusion system.  

Front-End System Arousal Valence 
SVR 0.691 0.496 
RVM 0.683 0.508 

Delay (Seconds)
0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Arousal
Valence
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5.2 Decision Level Fusion Results 
In Section 5.1, all systems were trained using concatenated 
features from all modalities. The second proposed system, 
decision level fusion (Section 3.6), treated the modalities 
separately and fused each set of predictions. This fusion method 
was implemented using either a SVR or RVM as the feature 
level regression method, and either a RLR or RVM to learn the 
fusion weights.  

The performance of the SVR decision level fusion systems 
is comparable with the SVR feature level fusion system (Table 
4). However, there was a decrease in the performance of the 
decision level fusion RVM systems in comparison to the RVM 
feature level fusion systems (Table 4). This inconsistency could 
be due to the small amount of training data (4 instances) used to 
train the fusion regression systems.  

Table 4. CCC’s found for the AV+EC 2015 development set 
found when performing decision level fusion using either a RVM 
or RLR to learn the fusion weights. 

Front-End 
Systems 

Arousal Valence 
RLR RVM RLR RVM 

SVR 0.684 0.667 0.524 0.436 
RVM 0.274 0.648 0.495 0.458 

5.3 OA-Fusion Results 
OA-fusion techniques seek to utilize the correlations between 
arousal and valence values [1]. Significant correlations can be 
seen when correlating the AV+EC 2015 gold standard arousal 
and valence scores in both the training, r = 0.421, p < 0.001, and 
development partitions r = 0.556, p < 0.001. Given the strength 
of these correlations, it can be expected that systems which 
utilize either OA fusion or OA regression will outperform the 
feature level and decision level fusion systems. 

When performing OA fusion on the same four system 
configurations as in Section 5.2, there is an increase in system 
performance (Table 5). Again, all OA fusion systems tested 
outperformed the challenge development set baseline. These 
results indicate that consistent significant improvements can be 
obtained when OA fusion is used, in comparison to decision 
level fusion systems. 

Table 5. CCC’s found for the AV+EC 2015 development set 
found when performing OA fusion using either a RVM or RLR to 
learn the fusion weights. 

Front-End 
Systems 

Arousal Valence 
RLR RVM RLR RVM 

SVR 0.736 0.718 0.615 0.509 
RVM 0.447 0.710 0.578 0.535 

5.4 OA-Regression Results 
In the fourth system, OA-fusion was extended to OA-regression. 
These systems combined feature-level fusion and OA fusion in 
order to further improve the performance (Section 3.8). Note 
that all OA-Regression systems used an OA-RVM framework  
[15], which was extended to fuse a set of predictions learnt from 
each modality.  

OA-Regression provided a further increase in system 
performance when compared to the other fusion methods (Table 
6). Interestingly, when compared to the OA-fusion the results 
appear very consistent across the different front-end system 
configurations. These results confirm the usefulness of OA-
RVM for performing continuous emotion predictions [15].  

Table 6. Comparison of CCC’s for the AV+EC 2015 
development set found using different OA-Regression systems 
using a OA-RVM set-up to learn the fusion weights 

Front-Ends System Arousal Valence 
1-RVM (Feature Fusion) 0.743 0.600 
4-SVR’s  0.766 0.655 
4-RVM’s  0.742 0.608 
4-SVR’s + 4-RVM’s 0.753 0.588 

6. AUDIO-ONLY PREDICTION 
Acoustic features played a crucial role in arousal predictions 
throughout all our experiments; results (not shown) found that 
systems trained with acoustic features only were comparable 
with those using multimodal features. This motivated further 
investigation into other audio features for arousal prediction. 
Links between acoustic features and arousal prediction are also 
well reported in the literature [1, 3]. In this section, two 
alternative sets of acoustic features were chosen for testing in a 
series of prediction systems.  

The first was a set of 45 frame-based features was extracted 
using open-source software VoiceSauce [21], due to their 
effectiveness in previous paralinguistic research [26]. These 
features included: F0, F1-F3, formant amplitudes, harmonic 
amplitudes, cepstral peak prominence, and harmonic-to-noise 
ratios. Each feature output was then realigned by down sampling 
(1 out of 4 frames) to match the arousal ground truths. Note that 
all features were extracted using 20ms frames with a 10ms 
overlap. A feature-level fusion arousal-only RVM system was 
used, with the number of training iterations set to 100. 

Frame-based audio features proved effective for arousal 
prediction (Table 7). The 13 VoiceSauce features (VSF) were 
able to match the challenge audio-only development set CCC of 
0.287 [9]. By combining VSF with a set of Shifted Delta 
Cepstrum (SDC) features extracted, using N-P-D-K setting of 
16-3-3-5, from a set of frame-level features including 4 MFCCs, 
4 energy features, 4 Spectral Centroid Frequency and 4 Spectral 
Centroid Amplitude features, we find a frame-level audio system 
that outperforms the challenge development set baseline (Table 
7). The inclusion of SDC’s highlights the importance of 
including temporal contextual information. 

Table 7. CCC’s found for the AV+EC 2015 development set 
using frame-based audio for arousal predictions using RVM 

Audio Features Arousal Prediction 
13 VSF 0.294 
96 SDC 0.470 

13 VSF + 96 SDC  0.494 

Additionally, the EGEMAPS audio feature set was compared 
with the Computational Paralinguistics Challenge 2013 
(ComParE 2013) audio feature set. The ComParE feature set 
contains 65 Low Level Descriptor features and their first-order 
deviation [27], and previously performed strongly on predicting 
arousal on the RECOLA database [11]. Statistics of the features 
(e.g. mean, standard deviation, etc) were then extracted using 
the same window size (3s) and overlap rate (40ms) as the 
baseline features set. Both of these feature sets were tested 
separately and fused in an OA-RVM Regressor (Table 8). Not 
surprisingly, given previous results [11], ComParE features 
performed well when predicting arousal. Interestingly, fusion of 
both systems performed adequately on valence prediction, 
despite the fact that valence is typically better associated with 
video features [1, 7].  
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Table 8. Comparison of audio feature sets on the AV+EC 2015 
development set using OA-RVM regressor 

Audio Features  Arousal Valence 
EGEMAPS 0.689 0.317 
ComParE 2013 0.791 0.272 
ComParE 2013 + EGEMAPS 0.776 0.386 

7. AV+EC 2015 CHALLENGE RESULTS 
During system development significant gains in system 
performance were found by combining annotation delay 
compensation and output-associative based fusion. Therefore 
our five official entries to the AV+EC 2015 challenge combine 
both delay compensation and OA-based multimodal fusion. 

The first system, 4-SVRs + OAfus, is an OA-fusion system 
(Section 3.7). In this system the feature level predictions for 
each modality are performed using a SVR. The 8 sets of 
predictions are fused in an OAmatrix (Figure 4) and used to 
train separate RLR’s per dimension. 

The second system, 1-RVM + OAreg, is an OA-Regress 
system (Section 3.8). The separate modalities are fused at the 
feature level and used to train an OA-RVM [15] per dimension. 

The third system, 1-RVM + OAreg inc. ComParE, is an 
extension of the second system. In this system the separate 
modalities are fused at the feature level along with the ComParE 
2013 features and used to train an OA-RVM [15] per dimension. 

The fourth system, 4-SVR’s, 4-RVM’s + OAreg, is also an 
OA-Regress system (Section 3.8). In this system feature level 
predictions from each modality are performed using both a SVR 
and a RVM. The resulting 16 sets of predictions are fused in an 
OAmatrix (Figure 4) before being concatenated with the four 
sets of features and used to train an RVM per dimension. 

The fifth system, 5/4-SVR’s, 5/4-RVM’s + OAreg, is an 
extension of the fourth system. In this system arousal feature 
level predictions are learnt for each modality and the ComParE 
2013 features using both a SVR (C= 0.05) and a RVM, resulting 
in 10 sets of predictions. Valence feature level predictions for 
each modality are learnt using both a SVR (C=0.01) and a 
RVM, resulting in 8 sets of predictions. The 18 predictions sets 
are fused in an OAmatrix (Figure 4) combined with the four 
challenge features sets and used to train an RVM per dimension. 

All systems show a substantial increase in CCC over the 
challenge development set baseline (Table 9). Interestingly, the 
systems which used the challenge feature sets, provided 
consistent results despite being used in different configurations 
i.e. all three systems used different combinations of feature level 
and fusion level prediction methods. This consistency highlights 
the importance of OA modeling to our systems.  

The highest development CCC’s were produced with the 1-
RVM + OAreg inc. ComParE system. The stronger 
performances of both systems which include the ComParE 2013 
is not surprising  given the strong performance of the feature set 
in predicting arousal scores on the development set  (Table 8). 
Table 9. Comparison of AV+EC 2015 development set CCC’s 
for systems chosen for challenge entry 

System Arousal Valence
Baseline [9] 0.476 0.461 
4 SVRs + OAfus 0.736 0.615 
1-RVM + OAreg 0.743 0.600 
1-RVM + OAreg inc. ComParE 0.845 0.642 
4-SVR’s, 4-RVM’s + OAreg 0.753 0.588 
5/4-SVR’s, 5/4-RVM’s + OAreg  0.809 0.615 

When performing prediction on the AV+EC 2015 test set, 
all systems were trained with both the training and development 
partitions, all other settings were set as previous experiment. All 
systems performed significantly better than the challenge 
baseline on the test set (Table 10).  

The best arousal (0.740) and valence (0.588) test set CCC’s 
were found using the 4-SVR’s, 4-RVM’s + OAreg system. This 
result represents a 66.7% and a 53.9% relative improvement for 
arousal and valence predictions respectively over the AV+EC 
2015 baseline. The strong and consistent performance of all our 
systems highlights the advantages afforded through exploiting 
the contextual and temporal dependencies that exist within and 
between the predicted values from the different modalities. 

Table 10. Comparison of AV+EC 2015 test set CCC’s 
generated using a range of systems which incorporate both 
annotation delay compensation and OA fusion framework 

System Arousal Valence
Baseline [9] 0.444 0.382 
4 SVRs + OAfus 0.711 0.558 
1-RVM + OAreg 0.739 0.535 
1-RVM + OAreg inc. ComParE 0.733 0.569 
4-SVR’s, 4-RVM’s + OAreg 0.740 0.588 
5/4-SVR’s, 5/4-RVM’s + OAreg 0.719 0.569 

8. CONCLUSIONS 
Combining information from a range of different behavioral and 
physiological modalities has been shown to improve accuracy 
when performing continuous emotion prediction [1, 2, 7, 8]. Our 
systems submitted under AV+EC 2015 test conditions 
outperformed both the challenge development and testing 
baselines. We speculate that the stronger performance of our 
systems is due to both annotator delay compensation and 
multimodal output-associative based fusion.  

The combination of pre-processing frame shifting and post-
processing filtering for delay compensation provided significant 
improvements for both arousal and valence prediction. The 
optimal delay compensation, estimated using multimodal 
features, was found to be 4s for arousal and 2s for valence. 
Results show that an output-associative (OA) fusion framework, 
which exploits emotion dimension dependencies and temporal 
information of predictions, further improved our system 
performance. An OA regression system, which combined 
feature-level fusion, decision level fusion and OA fusion, gave 
the best performance on the AV+EC 2015 test set. Additional 
investigations into frame-based audio features for arousal-only 
prediction showed a strong correlation between audio modality 
and arousal, which is consistent with previous studies [3].  

Future work will explore delay compensation further. It is 
possible, given evaluators make annotations based on only audio 
and video signals, performance increases can be found by 
searching for the best delay for each modality and treating them 
separately at the pre-processing and post-processing stages. We 
will continue our exploration of arousal prediction using frame-
level audio features. We will also investigate whether delay 
compensation can be included within the OA matrix to further 
improve the usefulness of this fusion framework.  
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