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ABSTRACT
Retrieval of a complex multimedia event has long been re-
garded as a challenging task. Multimedia event recounting,
other than event detection, focuses on providing comprehen-
sible evidence which justifies a detection result. Recounting
enables “video skimming”, which not only enhances video
exploration, but also makes human-in-the-loop possible for
improving the detection result. Most existing systems treat
event recounting as a disjoint post-processing step over the
result of event detection. Unlike these systems, this doc-
toral research aims to provide an in-depth understanding
of how recounting, i.e., evidence localization, helps in event
detection in the first place. It can potentially benefit the
overall design of an efficient event detection system with or
without human-in-the-loop. More importantly, we propose
a framework for detecting and recounting everyday events
without any needs of training examples. The system only
takes a text description of an event as input, then performs
evidence localization, event detection and recounting in a
large, unlabelled video corpus. The goal of the system is
to take advantage of event recounting which eventually im-
proves zero-example event detection. We present prelimi-
nary results and work in progress.
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1. INTRODUCTION
The exponential growth of web videos in the past decade

has posed significant needs in developing broad video un-
derstanding techniques for content indexing and searching.
Multimedia event detection is one of the challenging task in-
tended for understanding high-level content in videos, which
is typically characterized by objects, actions, activities, scenes,
and the complex interactions between them [14]. Techniques
for recognizing a complex multimedia event have been devel-
oping for years, and due to its difficulty, still attracting a lot
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of attention among researchers [25]. While event detection
focuses on retrieval of videos that contain relevant event,
event recounting complements event detection by providing
comprehensible evidence that justifies a detection result. For
example, what confides a video clip belonging to the event
of “changing a car tyre”? One may expect appearances of a
car, a zoomed-in shot of a tyre, and a lug wrench. However,
any single appearance of such evidence does not necessarily
justify the video clip. Key evidence such as an action of a
person removing an old tyre with a wrench is crucial to dis-
criminate a true positive. Notwithstanding the difference of
importance, the evidence provides an explanation for a de-
tection result, which can be used to enhance user experience
for video browsing.

Most existing works treat event recounting as a disjoint
post-processing step on top of the event detection result [16,
29]. Widely-used approaches in event detection such as av-
erage and max pooling take all sampled frames of a video
into account [18, 19]. But the content relevant to an event in
a video is usually scattered along the timeline [33]. Collect-
ing information from all the frames would inevitably bring
noise into the video representation. Therefore, we think that
event recounting should benefit event detection in the first
place by localizing key evidence in videos, thus forming a
purified video representation. Although several works have
already explored either ranking the importance of tempo-
ral regions [33], or jointly optimizing both detection and
recounting [3], they need training examples to discover the
discriminative evidence. In contrast, we conduct study un-
der the zero-example scenario, which does not use training
examples. We propose zero-example event detection with
unsupervised evidence localization that helps improve the
detection accuracy.

On the other hand, although there are known studies
which automatically discover discriminative evidence given
training examples, few provide insights on how evidence can
help human make decisions. We stress the benefit of involv-
ing human-in-the-loop especially for zero-example event de-
tection because it is an applicable way to quickly distinguish
the near-miss videos – videos of a different event that are
visually similar to the query event. Figure 1 illustrates ex-
amples of near-miss videos. We find near-miss videos widely
exist in everyday events, but are difficult to be discriminated
by a machine learner. While it is still possible to learn a spe-
cialized classifier to distinguish them, the fine details that
can distinguish a near-miss video are trivial to learn and
are not generalizable across events, not to mention it re-
quires extensive human labeling to identify the near-miss
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Attempting a bike trick

Positive Near-miss

Rock climbing

Winning a race without a vehicle

Figure 1: Examples of near-miss videos in different events.
The near misses from top to bottom are: carrying a motor-
bike across the river, trekking over a rock hill, and doing
setting-up exercise on the field.

videos. This problem becomes more crucial in zero-example
scenario because a zero-example event detection system has
to leverage a general knowledge base to relate textual infor-
mation to visual information. Obviously, it is not feasible to
prepare a knowledge base recognizing fine details that can
distinguish the near-miss videos before hand. However, a
human can identify decades of near-miss videos in a second
as long as the evidence presented is sufficient for a human to
make a decision. This renders the value of studying a better
evidence presentation which eases human’s judgement.

This doctoral research aims to have two outputs: First,
an in-depth understanding of event recounting, both for how
evidence localization can directly improve event detection
performance, and for how evidence presentation can help
a human make quick judgements. Second, an overall zero-
example detection framework that can incorporate the ben-
efit of event recounting with or without human-in-the-loop.
The rest of the paper is organized as follows: Related work
and contributions regarding the state of the art is discussed
in the next section. Section 3 presents an overview of the
proposed framework and approaches. Section 4 discusses the
preliminary results and ongoing work.

2. STATE OF THE ART
Multimedia event detection usually needs training exam-

ples. Event detectors are trained by low-level features [7, 24,
30] or semantic features [9, 10, 26] that are directly extracted
from training videos. Zero-example multimedia event de-
tection (0Ex) is an emerging topic yet to be explored. In
contrast to zero-shot learning which focuses on the recogni-
tion of images with unseen labels, 0Ex emphasizes the use
of general and external knowledge for textual-to-visual re-
lation. A decent 0Ex system usually consists of a semantic
concept library as knowledge base, and a good search module
that handles video ranking given a collection of concepts. A
few pilot studies were proposed very recently [4, 31]. These
works built a small concept library, typically hundreds of
concepts, for textual-to-visual relation. More recent work
starts to resort to a larger concept library. Ye et al. [32] col-
lected a dataset with 500 events in which more than 4,000
concepts were hierarchically organized. Singh et al. [27] au-
tomatically discovered salient visual concepts by web search
according to the text query. In event search phase, Habib-

ian et al. [8] indexed concepts with AND/OR constraints.
Chang et al. [2] proposed a rank aggregation framework that
addressed the incomparable scales of scores when merging
concepts from different feature spaces. Jiang et al. stud-
ied pseudo relevance feedback [12] and self-paced reranking
[11] that further improved the performance by reranking.
Jiang et al. [13] also systematically investigated 0Ex prob-
lem. This state-of-the-art work explored the contribution of
multiple features including thousands of concepts, as well as
the performance of several search models.

The primary concern of multimedia event recounting is the
localization of key evidence that can discriminate an event.
A related topic in recent research trends is semantic pooling
[33], which suggests to only pool the evidential parts that
are semantically important to an event query [20, 33]. The
idea is based on the underlying assumption that important
evidence is sparsely scattered in a video’s timeline, thus ag-
gregating all keyframes like average pooling [18, 19] would
collect a bunch of junk information. Yu et al. [33] learned
the concept importance of a small concept set and pooled
the low-level features according to the importance of their
related concepts. Mettes et al. [20] clustered the keyframes
into fragment proposals and learned the importance of each
proposal. Lately, more complex work tends to optimize the
event detection by jointly discovering the evidence, given
that a good recounting should assist detection in the first
place [3, 28], rather than only interpret a detection result
[6]. On the other hand, Bhattacharya et al. [1] conducted
a user study and found that a human can recognize most
events by only looking into very few sample segments of a
video. Inspired by this finding, we develop unsupervised ev-
idence localization which takes query words to locate key
evidence in a video. We perform event detection merely on
the evidence in order to improve the detection performance.

Our contributions relative to the state of the art are two-
fold:

• We propose unsupervised evidence localization under
the framework of zero-example event detection, which
is different from previous work that utilizes training
examples. The evidence localization serves to improve
event detection accuracy in the first place, rather than
only explain the detection result.

• We provide insights on event recounting aiming to find
a better evidence presentation that eases human’s judge-
ment.

3. PROPOSED APPROACH
Figure 2 illustrates the overall zero-example framework.

The system only takes a text event query as input, then
retrieves and recounts videos in a large, unlabelled video
corpus. The core of the framework is a large concept bank
containing concept detectors of objects, scenes, actions, and
activities. The semantic concepts in the concept bank pro-
vide essential prior knowledge for text-to-visual relation.

In the offline phase, all frames of videos are uniformly
extracted from the video corpus, and are represented by a
concept-based representation in which each dimension rep-
resents the likelihood of presence of a particular concept.
In the online phase, given an event query, e.g. “cleaning
an appliance” with detailed text explanation, the noun and
verb phrases are first extracted as tokens by an NLP parser.
Then these tokens are mapped to an internal query repre-
sentation called semantic query by concept matching. In
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Figure 2: The overall framework for zero-example event detection with unsupervised evidence localization.

this way, the query is converted to the concept-based rep-
resentation as well. Having the semantic query, we seek to
derive a neat semantic query which only retains the most
important relevant concepts. This neat semantic query is
used for evidence localization in all videos, and then pooling
over the evidence, thus forming a neat concept-based video
representation. Finally, event search is performed having
all the concept-based representations of both queries and
videos.

There are two cruxes in this framework that have a large
impact on the event detection performance. The first crux is
the concept matching and selection in semantic query gener-
ation. We have conducted extensive study on how to pick up
concepts in the concept bank for query representation [23,
17]. This includes various similarity measurements, such as
TFIDF, WordNet [22] and Word2Vec [21]. Basically, the
performance of TFIDF and Word2Vec similarities fall in the
same scale. WordNet barely works in zero-shot event detec-
tion. We also find the selection of a few relevant concepts
crucial to event detection performance [17]. The second crux
is the representation of video by evidence. It includes an
objective goal which aims to improve the detection accu-
racy and a subjective goal which aims to promote a better
evidence presentation for human judgments. As this is an
on-going study, we elaborate these two goals in the following
sections.

3.1 Unsupervised evidence localization
Unsupervised evidence localization is intended to improve

the performance of zero-example event detection. The lo-
calization process basically takes the neat semantic query
as input and ranks the frames of a video according to their
similarities to the query. The adjacent keyframes can be ag-
glomerated to a shot if they are of similar importance. Then
video representation is formed by average pooling over the
evidence (keyframes or shots that are of top importance).
Our preliminary study suggests that only three pieces of ev-
idence are sufficient for a video representation that generates
good performance (Table 1). This new representation has a
notable benefit: It is robust to noisy concepts when using

the full semantic query to perform the video search, which
is the final step in Figure 2. In addition, this representation
is not sensitive to the choice of the neat semantic query: We
find the performance is relatively the same if simply choos-
ing the top 2 to 16 concepts in the full semantic query as
the neat semantic query.

We also study various methods for evidence localization.
A typical variation is to cluster the frames of a video before
hand, and rank the clusters by importance rather than rank
the frames. Bisecting K-means is used to track each split
of the clustering for analysis. We include the preliminary
results in the experiment section, but the specific settings
for clustering and pooling are not discussed in this paper.

3.2 Event recounting
Event recounting aims to provide a user with better un-

derstanding that can justify an event detection result. As
discussed in Section 1, considering human-in-the-loop is an
efficient way to address the near-miss problem. The key cri-
terions to be considered here are the importance of evidence
and user experience. Specifically, how fast a user can declare
that a video is relevant by reading the presented evidence?
General speaking, the goal is to display the minimal amount
of evidence in the shortest possible time. To optimize both
criterions, we will consider three aspects of information: (1)
concept-to-event relevancy which prioritizes the importance
of concepts to events, (2) evidence diversity which avoids
redundancy by suggesting evidences of diverse content, and
(3) the shorter the better which recommends only thumb-
nails that are just sufficient and necessary to evidence the
presence of event. We will conduct user studies and design
appropriate optimization algorithms on top of the evidence
localization module that can integrate different criterions for
event recounting.

4. EXPERIMENTS AND DISCUSSIONS
The experiments are conducted on the TRECVID Multi-

media Event Detection (MED) datasets. We use the event
kits that contain 20 event queries from E021 to E040. The
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Figure 3: Visual examples of three evidential pooling meth-
ods for the event “attempting a bike trick”. Two videos
are listed: The one on the top is a true positive; bottom
a false positive. Three pieces of evidence are presented for
each video and for each method. Note that for clustering
method, as the size of a cluster is varied, we present at most
three frames for a cluster.

test set, named MED14Test, includes around 25,000 test-
ing videos with no textual metadata. The performance is
evaluated by the standard metric Mean Average Precision
(MAP).

For preliminary experiments, we build a concept bank con-
taining a total of 2,048 semantic concepts with varied gran-
ularity. They are sourced from off-the-shelf datasets with
concept types covering most common objects, scenes, and
actions. The four datasets are ImageNet 1000 concepts [5],
SIN 346 concepts [34], Places 205 concepts [35] and Re-
search Collection 497 concepts [23]. Except ImageNet, all
the datasets are individually fine-tuned with AlexNet DCNN
structure [15] on their own data. The concept responses are
extracted for each frame uniformly sampled from a test video
at the pace of two seconds one frame. The responses among
different datasets are concatenated, forming a 2,048 dimen-
sional feature vector. The individual performance of each
dataset on MED14Test was reported in [17].

4.1 Obtained Results
Other than the results we previously reported [23, 17], the

new results are mostly from the portion of the system dis-
cussed in Section 3.1. Table 1 summarizes the performance
of various evidence localization settings. The best method is
the video representation with only three evidential clusters,
which improves average pooling by 88%. Surprisingly, the
much simpler and time-efficient method using three eviden-
tial keyframes/shots without clustering can already achieve
the MAP of 0.094. Meanwhile, we use the same number of
random selected clusters as counterpart. The performance
difference between evidential clusters and random selected
clusters justifies the benefit of evidence localization. Figure
3 shows insights of three typical methods, which somewhat
explains the result in Table 1. The key information for a hu-
man to justify a video is easily spotted in evidential clusters,
while random clusters usually lie in segments not helpful to
make a judgement. Evidential frames, on the other hand,
may need more focus for a judge to make a decision than
evidential clusters. It also has more tendencies to neglect
key evidence due to imperfection of evidence localization.

The state of the art for automatic zero-example event de-

Video Representation Method MAP

3 evidential clusters 0.0979
3 evidential keyframes/shots 0.0936
10 evidential clusters 0.0900
10 evidential keyframes/shots 0.0879
Average pooling 0.0522
10 random clusters 0.0488
Max pooling 0.0485
3 random clusters 0.0461

Table 1: Performance summarization of different video rep-
resentation methods on MED14Test.

tection has the MAP of 0.115 [13]. But different from our
preliminary experiment settings, they used almost twice as
many concepts, including event-level concept detectors such
as Sports-1M. Sports-1M was proved to have significant con-
tribution to the performance. However, due to the lacking of
frame-level concept responses, we haven’t yet included any
event-level detectors into our concept pool for preliminary
comparisons.

4.2 Work in Progress
Currently, we primarily focus on the research described in

Section 3.2, that is to promote a better evidence presentation
for involving human in the loop. This will include extensive
user studies. We have already found that, although clus-
tering does not significantly improve the detection perfor-
mance, presenting the evidence in clusters can reduce both
human’s judgement time and judgement error. This is be-
cause clustering can help organize duplicate evidence, thus
increasing the evidence diversity. We are still trying more
ways of evidence presentation and comparing human’s ex-
perience between the different ways.
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