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ABSTRACT

Cross-modal retrieval aims to enable flexible retrieval experience

across different modalities (e.g., texts vs. images). The core of cross-

modal retrieval research is to learn a common subspace where the

items of different modalities can be directly compared to each other.

In this paper, we present a novel Adversarial Cross-Modal Retrieval

(ACMR) method, which seeks an effective common subspace based

on adversarial learning. Adversarial learning is implemented as

an interplay between two processes. The first process, a feature

projector, tries to generate a modality-invariant representation in

the common subspace and to confuse the other process, modality

classifier, which tries to discriminate between different modalities

based on the generated representation. We further impose triplet

constraints on the feature projector in order to minimize the gap

among the representations of all items from different modalities

with same semantic labels, while maximizing the distances among

semantically different images and texts. Through the joint exploita-

tion of the above, the underlying cross-modal semantic structure

of multimedia data is better preserved when this data is projected

into the common subspace. Comprehensive experimental results

on four widely used benchmark datasets show that the proposed

ACMR method is superior in learning effective subspace repre-

sentation and that it significantly outperforms the state-of-the-art

cross-modal retrieval methods.

CCS CONCEPTS

· Information systems → Multimedia and multimodal re-

trieval;

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specific permission and/or a 
fee. Request permissions from permissions@acm.org.
MM’17, October 23ś27, 2017, Mountain View, CA, USA.
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4906-2/17/10. . . $15.00
https://doi.org/10.1145/3123266.3123326

KEYWORDS

cross-modal retrieval; adversarial learning; modality gap

1 INTRODUCTION

In order to maximally benefit from the abundance of multimedia

data and make optimal use of the rapidly developing multimedia

technology, automated mechanisms are needed to establish a sim-

ilarity link from one multimedia item to another one if they are

semantically related, regardless of the type of modalities (e.g. text,

visual or audio) of the items. Modeling of similarity links has tradi-

tionally focused mainly on single-modality scenarios. For instance,

information retrieval has focused on bringing similar textual docu-

ments together, while content-based image, video or audio retrieval

has attempted the same for images, videos and audio items, respec-

tively. In order to provide an answer to the above challenge, research

towards reliable solutions for cross-modal applications [37, 38],

e.g. cross-modal retrieval [32], which operate across modality bound-

aries, has gained significant momentum recently.

Since features of different modalities usually have inconsistent

distribution and representation, amodality gap needs to be bridged,

that is, ways need to be found to assess semantic similarity of

items across modalities. A common approach to bridge the modal-

ity gap is representation learning. The goal there is to find (i.e.,

learn) projections of data items from different modalities into a

common (modality agnostic) feature representation subspace in

which the similarity between them can be assessed directly. A va-

riety of cross-modal retrieval methods [5, 9, 21, 30, 31] have been

proposed recently, which propose different ways of learning the

common representation subspace. For example, early works, like

CCA-based methods [15, 39] and graph-based methods [40, 43],

learn linear projections to generate a common representation by

maximizing the cross-modal pairwise item correlation or item clas-

sification accuracy.

With the rapid development of deep neural network (DNN) mod-

els that have provided scalable nonlinear transformations for ef-

fective feature representations in single-modal scenarios, such as

image classification, DNN has increasingly been deployed in the

cross-modal retrieval context as well, and then in particular to ex-

ploit nonlinear correlations when learning a common subspace
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Figure 1: The general flowchart of the proposed ACMRmethod. It is built around the minimax game involving two processes

(alorithmic modules) as łplayersž: a modality classifier distinguishing the items in terms of their modalities, and a feature

projector generating modality-invariant and discriminative representations and aiming to confuse the modality classifier.

[1, 5, 20, 21, 36]. The existing DNN-based cross-media retrieval

models typically focus solely on preserving the pairwise similarity

of the coupled cross-modal items (e.g., an image and a piece of text)

that share semantic labels and serve as input in the model learning

process. However, for one item of one modality, there may exist

more than one semantically different items of the same modality so

that this focus on pairwise coupled items only is far from sufficient.

Therefore, a common representation learned in this way fails to

fully preserve the underlying cross-modal semantic structure in

data. Preserving this structure would require that the gap among

the representations of all items from different modalities with same

semantic labels is minimized (e.g., linking any text and any image

on the same topic together), while the distances among semantically

different items of the same modality are maximized (e.g., separating

two images or two texts from each other if they are not related).

We propose to address this drawback of the existing DNN-based

cross-media retrieval methods by a new framework that we refer

to as Adversarial Cross-Model Retrieval (ACMR) and that is built

around the concept of adversarial learning [8]. As illustrated in

Figure 1, the core of the framework is the interplay between two

processes, a feature projector and a modality classifier, conducted

as a minimax game. A feature projector performs the main task of

representation learning, namely, generating a modality-invariant

representation for items from different modalities in the common

subspace. It has the objective to confuse a modality classifier that

acts as an adversary. Modality classifier tries to distinguish the

items in terms of their modalities and in this way steers the learn-

ing of the feature projector. By bringing the modality classifier in

the adversary role, it is expected that the modality invariance is

reached more efficiently, but also more effectively, through reaching

a better alignment of distributions of item representations across

modalities. The representation subspace being optimal for cross-

modal retrieval will then result through the convergence of this

process, namely when the modality classifier łfailsž. Furthermore,

the feature projector is learned such that it jointly performs la-

bel prediction and preserves the underlying cross-modal semantic

structure in data. In this way it can ensure that the learned represen-

tation is both discriminative within a modality and invariant across

modalities. The latter is achieved by imposing more constraints on

inter-modal item relations than in previously proposed methods,

which only focus on pairwise item correlation [1, 5, 21].

The proposed ACMR method was evaluated on four (three small-

scale and one relatively large-scale) benchmark datasets and using

many existing methods as references. The experimental results

show that it significantly outperforms the state-of-the-art in cross-

modal retrieval. In Section 2, we position our approach in the con-

text of the related existing work. Then, in Section 3, we describe our

ACMR method in detail and evaluate it experimentally in Section 4.

Section 5 concludes the paper.

2 RELATED WORK

The main contribution of this paper concerns the representation

learning component of a cross-modal retrieval framework. Repre-

sentation learning has been approached in different ways, depend-

ing on the type of information that is used for learning, the type

of the targeted representation and the learning approaches being

deployed. Two general categories of the representation learning

approaches can be distinguished, real-valued and binary representa-

tion learning. The binary approaches, also referred to as cross-modal

hashing are more geared towards retrieval efficiency and aim at

mapping the items of different modalities into a common binary

Hamming space [24, 27, 34, 42]. Since the focus is on efficiency,
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concessions typically need to be made regarding retrieval accuracy

(effectiveness).

The approach proposed in this paper falls in the category of

real-valued approaches. In this category, several subclasses of ap-

proaches can be distinguished: unsupervised [1, 5, 9, 29, 36], pair-

wise [5, 11, 25, 43], ranking-based [33, 39] and supervised [7, 30, 31,

40] ones. With ACMR, we combine for the first time the concepts

of supervised representation learning for cross-modal retrieval and

adversarial learning. Our approach is motivated, on the one hand,

by the deficiencies we see in most of the (un)supervised methods,

and in particular regarding the effectiveness of the learning process

(focusing on individual pairs of samples) and learning objectives

(typically the variants of the correlation loss [5, 7]) they deploy. On

the other hand, our approach is inspired by the ideas proposed

in some ranking-based approaches, especially regarding the de-

ployment of a triplet ranking loss [33, 39] as learning objective,

which has been found effective for achieving the main goal of rep-

resentation learning, namely intra-modal discriminativeness and

inter-modal invariance. Furthermore, our approach was inspired

by the effectiveness of adversarial learning for various applications,

like learning discriminative image features [17], or (un)supervised

domain adaptation to enforce domain-invariant features [2, 6, 41],

and regularizing correlation loss between cross-modal items [10].

3 PROPOSED METHOD

3.1 Problem Formulation

Without losing generality, we focus on cross-modal representa-

tion learning for bimodal data, specifically for images and text.

We assume that there is a collection of n instances of image-text

pairs, denoted as O = {oi }
n
i=1, oi = (vi, ti), where vi ∈ R

dv is

an image feature vector and ti ∈ R
dt is a text feature vector. dv

and dt are the feature dimensions with, usually, dv , dt . In ad-

dition, each instance oi is also assigned a semantic label vector

yi = [yi1,yi2, ...,yic ] ∈ R
c , where c is the total number of se-

mantic categories. If the ith instance belongs to the jth semantic

category, yi j = 1, otherwise yi j = 0. Note that oi can belong to a

single, but also multiple semantic categories. We denote the image

feature matrix, text feature matrix and label matrix for all instances

in O as V = {v1, ..., vn } ∈ R
dv×n , T = {t1, ..., tn } ∈ R

dt×n and

Y = {y1, ..., yn } ∈ R
c×n , respectively.

As the image features V and text features T typically have

different statistical properties and follow unknown (complex) dis-

tributions, they cannot be directly compared against each other for

cross-modal retrieval. To make an image and a text directly compa-

rable, we aim at finding a common subspace S the image features

V and text features T can be projected to asSV = fV (V;θV ) and

ST = fT (T ;θT ). Here, fV (v;θV ) and fT (t;θT ) are the mapping

functions and SV ∈ R
m×n and ST ∈ R

m×n are the transformed

features of an image and a text in S, respectively.

Specific to the ACMR method proposed in this paper is that

we aim at learning more effective transformed features SV and

ST in S for different modalities. As argued earlier, we require

from the distributions of SV and ST to be modality-invariant

and semantically discriminative, but also to better preserve the

underlying cross-modal similarity structure in data. We explain in

the following subsections how these requirements are met.

3.2 Adversarial Cross-Modal Retrieval

The general framework of the proposed ACMR method is shown

in Figure 1. For simplicity, we assume that the featuresV and T

have already been extracted from images and text, respectively.

Image and text features first pass through respective transforms fV
and fT , which are conceptually inspired by the existing subspace

learning methods [9, 31, 36] and in our case realized as feed-forward

networks. The fully-connected layers have abundant parameters

to ensure enough capacity of representations considering large

margin of statistical properties between the image and text modality.

Then, in the second step, the minimax game žplayedž between two

processes, the feature projector andmodality classifier, is introduced

to steer the representation learning. We model these processes

and their interaction such to effectively and efficiently meet the

requirements defined above.

3.3 Modality Classifier

We first define a modality classifier D with parameters θD , which

acts as łdiscriminatorž in GAN [8]. The projected features from an

image are assigned the label 01, while the projected features from

a text are assigned the label 10. For the modality classifier, the goal

is to detect the modality of an item as reliably as possible given an

unknown feature projection. For the classifier implementation, we

used a 3-layer feed-forward neural network with parameters θD
(see section 4.1 for implementation details).

In the ACDMmethod, the modality classifier acts as an adversary.

Therefore, we refer to the classification loss this process tries to

minimize as adversarial loss. The adversarial loss Ladv can now

formally be defined as:

Ladv (θD ) = −
1

n

n∑

i=1

(mi · (logD(vi ;θD) + log(1 − D(ti ;θD))). (1)

Essentially, Ladv denotes the cross-entropy loss of modality classi-

fication of all instances oi , i = 1, ...,n used per iteration for training.

Furthermore,mi is the ground-truth modality label of each instance,

expressed as one-hot vector, while D(.;θD ) is the generated modal-

ity probability per item (image or text) of the instance oi .

3.4 Feature Projector

The correlation loss, like in most of the existing work, targets solely

that the correlation of the individual pairs of semantically cou-

pled cross-modal items is preserved in the new representation

subspace. As already discussed earlier in the paper, this is not suffi-

cient because semantic matching may involve more than two items.

Besides, correlation loss also fails to differentiate between seman-

tically different items of the same modality. This leads to feature

representations that are not discriminative enough and will limit

the performance of cross-modal retrieval.

In view of the above, we propose to model the feature projector,

which embodies the process of modality-invariant embedding of

texts and images into a common subspace, as a combination of

two steps: label prediction and structure preservation. The label

prediction process enables the projected feature representations for

each modality in the common subspace to be discriminative given

the semantic labels. The structure preservation process ensures

that the feature representations belonging to the same semantic
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(a) Illustration of the joint effect of label prediction
and structure preservation.

Image Sample

Text Sample

(b) General idea of our proposed ACMR to achieve an improved, modality-
invariant subspace embedding with cross-modal semantic structure preservation.

Figure 2: Illustration of the basic idea underlying the pro-

posed ACMR method. Images texts are represented by

squares and circles, respectively. Semantically related cross-

modal items are indicated by the same color.

label is invariant across modalities. The joint effect of these two

processes is illustrated in Figure. 2(a). There, each circle represents

an image and each rectangle a textual item. Furthermore, the cir-

cles and rectangles of the same color belong to the same semantic

category. The process leading to this effect is illustrated in Figure

2(b). In the remainder of this section, we describe in detail the la-

bel prediction and structure preservation modules, underlying the

subspace embedding process.

3.4.1 Label Prediction. In order to ensure that the intra-modal

discrimination in data is preserved after feature projection, a classi-

fier is deployed to predict the semantic labels of the items projected

in the common subspace. For this purpose, a feed-forward network

activated by softmax was added on top of each subspace embedding

neural network. This classifier takes the projected features of the

instances oi of coupled images and texts as training data and gen-

erates as output a probability distribution of semantic categories

per item. We use these probability distributions p̂ to formulate the

intra-modal discrimination loss as follows:

Limd (θimd ) = −
1

n

n∑

i=1

(yi · (log p̂i (vi) + log p̂i(ti))). (2)

Similar to the inter-modal adversarial loss in Eq. 1,Limd denotes

the cross-entropy loss of semantic category classification of all the

instances oi , i = 1, ...,n. Here, θimd denotes the parameters of the

classifier, n is the number of instances within each mini-batch,

yi is the groundtruth of each instance, while p̂i is the generated

probability distribution per item (image or text) of the instance oi .

3.4.2 Structure Preservation. In order to ensure the preservation

of inter-modal invariance, we aim at minimizing the gap among

the representations of all semantically similar items from different

modalities, while maximizing the distance between semantically

different items of the same modality. Inspired by the ranking-based

cross-media retrieval approaches [33, 39], we enforce triplet con-

straints onto the embedding process via a triplet loss term we for-

mulated for this purpose.

Instead of applying a computationally expensive scheme that

samples triplets in the whole instance space, we performed triplet

sampling from labeled instances in each mini-batch. Firstly, all

samples from different modalities, but with the same label, were

built as coupled samples from the perspective of both images and

text samples. In other words, we built couples of the form {(vi, t
+

i )}i ,

where image is selected as anchor while the text with same label

is assigned as a positive match, and also the couples of the form

{(ti, v
+

i )}i with a text item as an anchor and an image as a positive

match.

Secondly, all distances between the mapped representations

fV (V;θV ) and fT (T ;θT ) per coupled item pair were computed

and sorted using the ℓ2 norm:

ℓ2(v, t) = ∥fV (v;θV ) − fT (t;θT )∥2 . (3)

Then, we also select negative samples from unmatched image-text

pairs having different semantic labels to build the sets of triplet

samples per semantic label li : {(vi, t
+

i , t
−
j )}i and {(ti, v

+

i , v
−
j )}i . In

this way of sampling, we can ensure that non-empty triplet sam-

ple sets will be constructed independently of how samples in the

original dataset were organized into the mini-batches.

Finally, we compute the inter-modal invariance loss across image

and text modalities using the following expressions that take as

input the sample sets {(vi, t
+

j , t
−
k
)}i and {(ti, v

+

j , v
−
k
)}i , respectively:

Limi,V (θV )=
∑

i, j,k

(ℓ2(vi, t
+

j )+λ ·max(0, µ − ℓ2(vi, t
−
k )), (4)

Limi,T (θT )=
∑

i, j,k

(ℓ2(ti, v
+

j )+λ ·max(0, µ − ℓ2(ti, v
−
k )). (5)

Then the overall inter-modal invariance loss can now bemodeled

as a combination of Limi,V (θV ,θT ) and Limi,T (θV ,θT ):

Limi (θV ,θT ) = Limi,V (θV ) + Limi,T (θT ). (6)

In addition, the regularization term below is introduced to pre-

vent the learned parameters from overfitting, where F denotes the

Frobenius norm andW l
v ,W

l
t represent the layer-wise parameters

of DNNs.

Lr eд =

L∑

l=1

(| |W l
v | |F + | |W

l
t | |F ). (7)

3.4.3 Feature projector. Based on the above, the loss function

of the feature projector, referred to as embedding loss, is formulated

as the combination of the intra-modal discrimination loss and the

inter-modal invariance loss with regularization:

Lemb (θV ,θT ,θimd ) = α · Limi + β · Limd + Lr eд , (8)
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where the hyper-parameters α and β control the contributions of

the two terms.

3.5 Adversarial Learning: Optimization

The process of learning the optimal feature representation is con-

ducted by jointly minimizing the adversarial and embedding losses,

as obtained in Eq. 1 and Eq. 8, respectively. Since the optimization

goals of these two objective functions are opposite, the process runs

as a minimax game [8] of the two concurrent sub-processes:

(θ̂V , θ̂T , θ̂imd )= argmin
θV,θT,θimd

(Lemb (θV ,θT ,θimd )−Ladv (θ̂D )), (9)

θ̂D = argmax
θD

(Lemb (θ̂V , θ̂T , θ̂imd ) − Ladv (θD )). (10)

This minimax game can be implemented using a stochastic gra-

dient descent optimization algorithms, like Adam [13]. As proposed

in [6], minimax optimization can be performed efficiently by in-

corporating Gradient Reversal Layer (GRL), which is transparent

when forward-propagating, but which multiplies its value by -1

when back-propagating. If Gradient Reversal layer is added before

the first layer of the modality classifier, the minimax optimization

can be performed simultaneously, as shown in the Algorithm 1.

Algorithm 1 Pseudocode of optimizing our ACMR.

Initialization: Image features for current batch:V = {v1, ..., vn};

Text features for current batch, T = {t1, ..., tn};

Correseponding labels for current batch, Y = {y1, ..., yn};

hyperparameters: k , λ, α , β ;

m samples in minibatch for each modality;

update until convergence:

1: for k steps do

2: update parameters θV , θT and θimd by descending their

stochastic gradients:

3: θV ← θV − µ · ∇θV
1
m (Lemb − Ladv )

4: θT ← θT − µ · ∇θT
1
m (Lemb − Ladv )

5: θimd ← θimd − µ · ∇θimd

1
m (Lemb − Ladv )

6: end for

7: update parameters of modality classifier by ascending its sto-

chastic gradeints through Gradient Reversal Layer:

8: θD ← θD + µ · λ · ∇θD
1
m (Lemb − Ladv )

9: return learned representations in common subspace: fV (V)

and fT (T )

4 EXPERIMENTS

We conduct experiments on four widely-used cross-modal datasets:

Wikipedia dataset [4], NUS-WIDE-10k dataset [3], Pascal Sentence

dataset [23], and MSCOCO dataset [16]. For the first three datasets,

each image-text pair is linked by a single class label and the text

modality consists of discrete tags. In the last dataset, MSCOCO, each

image-text pair is associated to multiple class labels and the text

modality consists of sentences. In the experiments reported below,

we first compare our proposed ACMR method with the state-of-the-

art methods to verify its effectiveness. Then we conduct additional

evaluations in order to investigate the performance of ACMR in

more detail.

4.1 Experimental Setup

4.1.1 Datasets and Features. Here we briefly introduce the four

datasets mentioned above. For a fair comparison, we exactly follow

the dataset partition and feature extraction strategies from [22, 32].

The statistics of the four datasets are summarized in Table 1.

Table 1: General statistics of the four datasets used in our

experiments, where ł*/*ž in the łInstancesž column stands

for the number of training/test image-text pairs.

Dataset Instances Labels Image feature Text feature

Wikipedia 1,300/1,566 10
128d SIFT

4,096d VGG

10d LDA

3,000d BoW

Pascal Sentence 800/200 20 4,096d VGG 1,000d BoW

NUS-WIDE-10K 8,000/1,000 350 4,096d VGG 1,000d BoW

MSCOCO 66,226/16,557 500 4,096d VGG 3,000d BoW

Since the image feature extracted from a deep Convolutional

Neural Network (CNN) has been widely used for image represen-

tation, we also adopt this deep feature to represent images in all

datasets for our experiments. Specifically, the adopted deep feature

is a 4,096d vector extracted by the fc7 layer of VGGNet [26]. For

representing text instances, we use a well-known bag-of-words

(BoW) vector with the TF-IDF weighting scheme and with the di-

mension in each dataset indicated in Table 1. In addition, in order

to enable a fair comparison to several earlier cross-modal retrieval

approaches evaluated on the Wikipedia dataset, we also adopt the

publicly available 128d SIFT feature for images and 10d LDA feature

for text representation.

4.1.2 ImplementationDetails. Wedeploy three-layer feed-forward

neural networks activated by tanh function to nonlinearly project

the raw image and text features into a common subspace, i.e.,

(V → 2000 → 200 for image modality and T → 500 → 200

for text modality). For the modality classifier, we stick to the three

fully connected layers (f → 50→ 2). Furthermore, Softmax activa-

tion was added after the last layer of the semantic classifier (Section

3.3.1) and modality classifier.

Regarding the parameters of the Algorithm 1, the batch size is set

to 64 and k is empirically set to be 5. After fixing the value of λ at

0.05, we tuned the model parameters α and β using grid search (in

both cases from 0.01 to 100, 10 times per step). The analysis of α and

β is displayed in Figure 6(a). The best reported results of ACMR are

obtained for the optimal values of α and β per dataset. In addition,

for a fair comparison with the state-of-the-art methods, we not only

refer to the published results in the corresponding papers but also re-

evaluate some of those methods with the provided implementation

codes in order to achieve a comprehensive assessment.

4.1.3 Evaluation Metric. The evaluation of the results of all

experiments is done in terms of the mean average precision (mAP),

which is a classical performance evaluation criterion in the research

on cross-modal retrieval [5, 21]. Specifically, and similarly to [5],
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Methods
Shallow feature Deep feature

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

CCA 0.255 0.185 0.220 0.267 0.222 0.245

Multimodal DBN 0.149 0.150 0.150 0.204 0.183 0.194

Bimodal-AE 0.236 0.208 0.222 0.314 0.290 0.302

CCA-3V 0.275 0.224 0.249 0.437 0.383 0.410

LCFS 0.279 0.214 0.246 0.455 0.398 0.427

Corr-AE 0.280 0.242 0.261 0.402 0.395 0.398

JRL 0.344 0.277 0.311 0.453 0.400 0.426

JFSSL 0.306 0.228 0.267 0.428 0.396 0.412

CMDN - - - 0.488 0.427 0.458

ACMR (Proposed) 0.366 0.277 0.322 0.619 0.489 0.546

Table 2: Comparison of the cross-modal retrieval perfor-

mance on the Wikipedia dataset. Here, ł-" denotes that no

experimental results with same settings are available.

we computed the mAP on the ranked lists of the retrieved results

for two different tasks: retrieving text samples using an image

query (Img2Txt) and retrieving images using a text query (Txt2Img).

Besides, we also display the precision-scope curves (like in [31, 35])

for the proposed ACMR method and all reference methods, where

the scope is specified by the number of the top-ranked texts/images

presented to the users, varying from 1 to 1000.

4.2 Comparison with Existing Methods

We first compare our ACMR approach with 9 state-of-the-art meth-

ods on Wikipedia dataset, which has been widely adopted as a

benchmark dataset in the literature. The compared methods are: 1)

CCA [9], CCA-3V [7], LCFS [31], JRL [40] and JFSSL [30], which are

traditional cross-modal retrieval methods, and 2) Multimodal-DBN

[28], Bimodal-AE [20], Corr-AE [5], and CMDN [21], which are

DNN based.

Table 2 shows the mAP of our ACMR and the compared methods

on the Wikipedia dataset using shallow and deep features. From

Table 2, we can draw the follow observations:

(1) Our ACMR significantly outperforms both the traditional

and the DNN-based cross-modal retrieval methods. In par-

ticular, ACMR outperforms the best competitor, CMDN, by

20.6% and 19.2% in average using shallow and deep features,

respectively. While CMDN also models inter-modal invari-

ance and intra-modal discrimination jointly in a multi-task

learning framework, this performance improvement clearly

shows the advantage of relying on adversarial learning for

this purpose.

(2) Our ACMR is superior to CCA, Bimodal-AE, Corr-AE, CMDL

and CMDN that use the correlation loss based on coupled

samples to model the inter-modal item similarity. This shows

the advantage of using the proposed triplet constraints to

leverage the cues of both similar and dissimilar item pairs in

learning the representation subspace.

(3) Our ACMR outperforms LCFS, CDLFM, LGCFL, JRL, JFSSL

that also leverage class-label information to model the intra-

modal discrimination loss. We believe that this is due to the
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Figure 3: Precision-scope curves on the Wiki dataset for the

Img2Txt and Txt2Img experiments withK ranges from 50 to

1000.

fact that ACMR uses the embedding loss that jointly models

the inter-modal invariance and intra-modal discrimination.

The retrieval results on the Pascal Sentence dataset and the NUS-

WIDE-10k dataset are shown in Table 3. We can see that ACMR

consistently achieves the best performance compared to its coun-

terparts. The performance improvement on the Pascal Sentences

dataset of our method is not as convincing as for the NUSWIDE-

10k dataset, which is due to its small scale that prevented us to

optimally train a well-performing deep model. However, for the

NUSWIDE-10k dataset, our ACMR outperforms the counterparts

by 10.6% and 4.47% in image and text query retrieval tasks, respec-

tively, and 7.34% on average. The results also indicate the benefit

of using triplet constraints in the multi-label case (NUS-WIDE-10k

dataset), since the previous methods tested there solely adopted

the pairwise similarity to preserve the inter-modal similarity. The

improvement on Pascal Sentences dataset of our method is limited

because that dataset is small-scale (only 800 img-txt pairs from

20 categories). Although we utilized some strategies to alleviate

overfitting problems (like regularization term, dropout, and early

stop), It is still insufficient to train an outperforming deep model.

In addition to the evaluation in terms of the mAP score, we also

draw precision-scope curves for additional comparison. Figure 3

shows the curves of ACMR and of CCA, LCFS, JRL, Multimodal-

DBN, Bimodal-AE, Corr-AE, and CMDN using the shallow image

feature. The precision-scope evaluation is consistent with the mAP

scores for both the image and text query tasks, where our ACMR

outperforms its counterparts significantly.

The MSCOCO dataset has recently been used for image-to-

sentence (Img2Txt) and sentence-to-Image (Txt2Img) retrieval. We

use it to compare our ACMR method with several recently pro-

posed methods for the above two tasks, including the traditional

method CCA [14] and the DNN-based approaches, such as DVSA

[12], m-RNN [19], m-CNN [18] and DSPE [33]. For the evaluation

on the MSCOCO dataset, we quote the mAP results obtained by

the baselines [12, 14, 18, 19] as referred to [33]. We also follow the

evaluation protocol according to these reference methods to ensure

fair comparison. The retrieval results of ACMR and the reference

methods are listed in Table 4. It is interesting to note that the best

performing reference method, DSPE, also uses triplet constraints to

preserve the inter-modal data structure in the common subspace.

This further strengthens our belief that the choice for the triplet
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Methods
Pascal Sentences NUSWIDE-10k

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

CCA 0.363 0.219 0.291 0.189 0.188 0.189

Multimodal DBN 0.477 0.424 0.451 0.201 0.259 0.230

Bimodal-AE 0.456 0.470 0.458 0.327 0.369 0.348

LCFS 0.442 0.357 0.400 0.383 0.346 0.365

Corr-AE 0.489 0.444 0.467 0.366 0.417 0.392

JRL 0.504 0.489 0.496 0.426 0.376 0.401

CMDN 0.534 0.534 0.534 0.492 0.515 0.504

ACMR (Proposed) 0.535 0.543 0.539 0.544 0.538 0.541

Table 3: Cross-modal retrieval comparison in terms of mAP

on Pascal Sentences and NUSWIDE-10k dataset.

constraints to replace the pairwise correlation loss is the right one.

It is reasonable to state that the performance increase by ACMR

compared to DSPE is again due to the deployed adversarial learning

framework, which boosts learning of a more effective subspace

representation, but also due to the integration of triplet constraints

for inter-modality invariance and the intra-modal discrimination.

Methods Img2Txt Txt2Img Avg.

CCA (FV HGLMM) [14] 0.791 0.765 0.778

CCA (FV GMM+HGLM) [14] 0.809 0.766 0.788

DVSA [12] 0.805 0.748 0.777

m-RNN [19] 0.835 0.770 0.803

m-CNN [18] 0.841 0.828 0.835

DSPE [33] 0.892 0.869 0.881

ACMR (Proposed) 0.932 0.871 0.902

Table 4: Cross-modal retrieval comparison in terms of mAP

on MSCOCO dataset.

4.3 Further Analysis on ACMR

4.3.1 Visualization of the Learned Adversarial Representation. In

order to investigate the effectiveness of the learned cross-modal rep-

resentation of our ACMR, we visualized the distribution of the trans-

formed representations from our trained model on the Wikipedia

dataset using t-SNE tool (1000 sample points for each modality). A

comparison between Figure 4(a) and Figure 4(b) reveals that adver-

sarial learning has the ability to minimize the modality gap and

align distributions of different modalities, i.e., the distributions of

text and image modality in Figure 4(b) are better mixed together

and less distinguishable from each other. Moreover, our dedicated

effort to model intra-modal discriminativeness has shown to fur-

ther boost the performance. As shown in Figure 4(b) and Figure

4(c), the proposed model not only ensures the alignment of distri-

butions from two modalities, but also efficiently separates sample

points into several semantically discriminative clusters, keeping

the samples from different modalities in each cluster well aligned.

4.3.2 Effect of Adversarial Learning. In our ACMR method, we

deploy the adversary principle when jointly optimizing the embed-

ding loss and adversarial loss in the objective function. To further

explore the effect of adversarial learning in ACMR, we sampled the

values of the embedding loss and the adversarial loss from epoch 1

to 200 and displayed them in Figure 5. The figure shows that during

the entire training procedure, the embedding loss decreases almost

monotonously and converges smoothly, while the adversarial loss

first vibrates (around the initial 10 epochs) and then stabilizes. No-

tably, the mAP score persistently increases when the adversarial

loss is vibrating and holds when the effect of the adversary is fully

exploited. The results in Figure 5 are in accordance with the expec-

tation that the modality classifier in our ACMR framework serves

as a directional guide for the process of subspace embedding, in-

corporated in the feature projector. If the value of adversarial loss

would explode, modality classifier would fail to direct the process

of subspace embedding. Contrary to this, if the adversarial loss

were optimized down to zero, modality classifier would win the

minimax game, which would mean that the embedding layers fail

to generate modality-invariant subspace representations, making

cross-modal retrieval impossible.

4.3.3 Effect of combining Label Prediction and Structure Preser-

vation. The feature projection module of our ACMR framework is

realized as a combination of two processes, label prediction and

structure preservation. In order to investigate in more detail the

effect of this combination, we developed and assessed two vari-

ations of ACMR: ACMR with Limi only, and ACMR with Limd

only. The optimization procedure in both cases is similar to ACMR.

Table 5 shows the performance of ACMR and its two variations

on the Wikipedia dataset and the Pascal Sentence dataset. We see

that both the intra-modal discriminativeness and inter-modal in-

variance terms contribute to the final retrieval rate, indicating that

optimizing the Limi term and the Limd simultaneously in our em-

bedding loss model performs better than optimizing only one of

them. We also see that the intra-modal discriminativeness term

contributes more to the overall performance than the inter-modal

invariance term, since in practice the consistent relation across

different modalities is difficult to explore.

Methods
Wikipedia Pascal Sentences

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

ACMR (with Limi only) 0.352 0.430 0.391 0.289 0.274 0.282

ACMR (with Limd only) 0.425 0.413 0.419 0.533 0.453 0.493

Full ACMR 0.509 0.431 0.470 0.535 0.486 0.511

Table 5: Performance of cross-modal retrieval using the pro-

posed ACMR method, ACMR method with Limi only, and

ACMR method with Limd only.

4.3.4 Effect of Model Parameters. In previous experiments, we

empirically set the model parameters α and β in the objective func-

tion of the feature projector (i.e., Eq. 8). As α and β control the

contributions of modeling intra-modal discriminativeness and inter-

modal invariance, respectively, here we take the Wikipedia dataset

with deep features as a test bed, and analyze the effect of these

parameters on the learned cross-modal representation during train-

ing. In addition, we also assess the parameter k that influences the

minimax game as described in Algorithm. 1. Specially, we set the

range of α , β as {0.01, 0.1, 0, 1, 10, 100} and of k as {1, 2, 3, 4, 5, 6}.
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(a) Inter-modal invariance preserved without adversary (b) Inter-modal invariance preserved with adversary (c) Inter-modal invariance and intra-modal discriminative-
ness preserved with adversary

Figure 4: t-SNE visualization for the test data in the Wikipedia Dataset. The red color represents the visual features and the

blue color represents the text features.
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Figure 5: Development of the embedding loss and adversar-

ial loss during the training process, as computed for ACMR

on the Wikipedia dataset.

Note that α = 0 and β = 0 represent the ACMR with Limi only and

ACMR with Limd only, respectively. The evaluation is conducted

by changing one parameter (e.g., α ) while fixing the other (e.g., β).

Figure 6(a) shows the performance of ACMR for different values of

α and β . We can observe that ACMR performs well when α and β

are in the range of [0.01, 0.1]. Furthermore, themAP scores obtained

by ACMR with Limi only and ACMR with Limd only indicate that

Limd has more contribution to the overall performance compared

to Limi , which is in accordance with the previous observation as

shown in Table 5. Figure 6(b) shows the performance of ACMR for

different values of k .The figure indicates that, in practice, a dedi-

cated effort to find a proper value of k (e.g., k = 4 or 5) helps the

overall optimization process.

5 CONCLUSION

In this paper, we proposed a new approach (ACMR) to learn repre-

sentations which are both discriminative and modality-invariant
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Figure 6: Cross-modal retrieval performance of ACMR with

different values of model parameters: (a) α and β ; (b) k on

Wikipedia dataset.

for cross-modal retrieval. ACMR is based on an adversarial learning

approach that engages two processes in a minimax game: a feature

projector that generates modality-invariant and discriminative rep-

resentations and a modality classifier that tries to detect the modal-

ity of an item given an unknown feature representation. We also

introduced triplet constraints to ensure that cross-modal semantic

data structure is well preserved when projected into common sub-

space. Comprehensive experimental results on four cross-modal

datasets and extensive analysis have demonstrated the effectiveness

of our algorithmic and methodological design choices, leading to

superior cross-modal retrieval performance compared to state-of-

the-art methods. An interesting open issue for future research is to

further adjust our proposed ACMR framework to better deal with

high cost of training of its DNN architecture.
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