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ABSTRACT

Predicting the walking path of a pedestrian in crowds is a
pivotal step towards understanding his/her behavior. This
is one of the recently emerging tasks in computer vision
scarcely addressed to date. In this paper, we put forth a
deep spatio-temporal learning-forecasting approach, which is
composed of two modules. First, displacement information
from pedestrians’ walking history is extracted and fed into
a convolutional layer in order to learn the undergoing mo-
tion patterns and produce high-level representations. Second,
unlike the mainstream literature which learns the temporal
or the spatial dynamics among the pedestrians separately,
we propose to embed both components into a single frame-
work via a Long-Short Term Memory based architecture that
takes as input the previously extracted high-level motion
cues and outputs the potential future walking routes of all
pedestrians in one shot. We evaluate our approach on three
large benchmark datasets, and show that it introduces large
margin improvements with respect to recent works in the
literature, both in short and long-term forecasting scenarios.
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1 INTRODUCTION

Understanding the motion dynamics of people in crowds,
especially in dense public spaces, is an essential step to face
many tasks such as crowd traffic management, or smoothly
carrying out preventive security measures. Owing to the rise
of powerful processing facilities,it is now established that
modeling human behavior tendency is not out of reach. In
this respect, several topics have been addressed recently, such
as activity recognition [44], anomaly detection [19], crowd
counting and profiling [24, 39, 41, 42].

Pedestrian path prediction is a relatively new emerging
computer vision task, which refers to forecasting the potential
future walking course of an individual based on his/her prior
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Figure 1: We build a deep spatio-temporal archi-
tecture to jointly learn the spatio-temporal depen-
dencies from all the pedestrians in the scene, which
enables an accurate estimation of the potential the
forthcoming paths. The cyan, magenta and yellow
dots denote the walking histories of three indepen-
dent pedestrians (left), which are opportunely har-
nessed to foresee their respective future walking tra-
jectories (right).

walking history. With respect to other computer vision based
crowd modeling/analysis topics, path forecasting has received
a quite scarce attention lately.

Forecasting the future paths of pedestrians in crowds is
regarded as a multi-facet and complicated task, as it en-
tails handling multiple factors simultaneously. It essentially
requires to understand the complex, and often subtle mo-
tion dynamics that take place in crowded areas, and usually
involves two key factors:

• Spatial dependencies: the path of a person of interest
is usually influenced by the people around him/her,
which is also known as �social interaction�[21]. Apart
from unusual situations, it is socially evident that
humans generally adopt commonsense rules (e.g., a
common way to get through a path that is obstructed
by an object or a pedestrian is to detour to avoid
collision).

• Temporal dependencies: in crowded scenarios, people
often tend to move at fluctuated paces and in appar-
ently casual directions. For this reason, the motion
dependencies of pedestrians exhibit high variability
over time.

The literature reports several efforts to solve the aforemen-
tioned challenges by two steps settings: modeling the spatial
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and temporal dependencies independently. For instance, in
[1], an Long-Short Term Memory (LSTM) model is assigned
per pedestrian. Moreover, a pooling layer is adopted as to
capture the spatial context of each LSTM within a certain
radius. Another architecture, was suggested in [29], where
an LSTM model is assigned per tracklet, and a coherent reg-
ularization [41] is applied in order to model the interaction
between the tracklets.

A common denominator in both above methods is that
they require additional terms (i.e., pooling layer, coherent
regularization) in order to model the interaction among the
already large number of LSTM models due to the crowd.
Such issues were partially addressed in [37], where a Convolu-
tional Neural Network (CNN) is designed to learn the motion
behaviors of all the pedestrians in a scene. Nevertheless, with
respect to LSTM architectures which can inherently deal
with sequential data, the proposed CNN does not explicitly
learn the motion dependencies, especially the temporal one.
In this context, a better model could be the one in which
spatial and temporal dependencies are jointly considered,
which would reflect in higher accuracies. To this end, we
propose a LSTM based deep spatio-temporal approach for
pedestrian path prediction in crowds (see Figure 1). In our
approach, a single model for all pedestrians is learnt, rather
than attributing one model per each pedestrian, and this
enables a simultaneous prediction of walking routes for all
pedestrians. Moreover, our work differs significantly from the
existing studies on path prediction in other features we will
highlight later on in the paper. The main contributions of
our work are:

(i) We introduce a deep spatio-temporal method con-
sidering spatio-temporal dependencies in a one step
seamless way for pedestrian path prediction.

(ii) This method takes advantage of convolutional (conv)
layer to better consider spatial information, and
LSTM based model to capture motion dynamics
information.

(iii) We thoroughly evaluate our framework on three
widely used benchmark datasets under two distinct
pedestrian path forecasting scenarios and show that
significant gains can be attained with respect to
recent works.

To the best of our knowledge, this is the first study towards
explicitly incorporating the spatio-temporal cues in a unified
framework in the path prediction context.

The remainder of this paper is organized as follows: Firstly,
relevant works are introduced in 2. Section 3 details the
framework in terms of motion cues extraction, and the pro-
posed learning-forecasting architecture. Section 4 conducts
experimental findings and discussion. Finally, the conclusion
will be presented in Section 5.

2 RELATED WORK

The relevant literature has accumulated several attempts
to tackle the challenges of path prediction. For instance, a
pioneering work presented in [14], suggests exploiting the

Figure 2: The example of motion feature extraction.

semantics of the scene in order to build a trajectory forecast-
ing model, which is based on Markov Decision Processes [8]
jointly with inverse reinforcement learning [20]. Nonetheless,
the proposed framework was assessed in a one person sce-
nario, which raises concerns about its suitability to dense
public spaces. Another work [32] suggests a non-parametric
approach for visual prediction. But the definition of agents
in this work appears to be subjective given that, in heavily
crowded scenes, normally large-scale occlusions take place.
The work in [16] integrates Gaussian Process Regression with
hand-crafted motion features applied specifically for predict-
ing the trajectories of American football players. This leaves
open the question of its applicability to different scenarios.
The contribution in [38] puts forth a Bayesian cascade model
that couples Topic Mixture Model and Gaussian mixtures,
fed with an ensemble of words encoding motion tracklets over
a grid in a given scene. However, given that tracklets are
discontinuous, it is hard to assign the predicted outcomes to
individuals, which does not meet the aim of human path pre-
diction. The framework of [2] considers a Dynamic Bayesian
Network for modeling motion dependencies and transferring
them to a different scene. Nevertheless, the loss that may
occur at knowledge transfer level is prone to compromise the
prediction results.

Recently, Deep Neural Networks (DNNs) [9] have shown
to achieve cutting-edge performance in several vision tasks
related to visual understanding [5, 12, 13, 23, 26], action
recognition [25, 27, 43] and scene segmentation [3, 22, 40].
One remarkable instance is the LSTM model, which was suc-
cessfully tailored to sequential data learning tasks [10, 11, 28].
This inspired an LSTM based path prediction in [1]. The
underlying idea is to assign one LSTM per walking route, and
then top them with a pooling layer to ensure the modeling
of the spatial dependencies. Another LSTM driven method
shares a similar idea [29]. Temporal dependencies are mod-
eled via LSTM while spatial dependencies are handled by
a hand-crafted based coherent regularization . Though the
LSTM can well handle the temporal changes, these two ap-
proaches suffer from two main drawbacks. On the one hand,
they associate an LSTM model to each pedestrian/tracklet
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in the scene, which inflates the computation cost. On the
other hand, adding extra pooling/regularization layers is nec-
essary, provided that LSTM inherently lacks the capacity of
handling spatial information. �Behavior CNN�[37] presents
a designated CNN to learn the motion of all the pedestri-
ans in a scene. Nevertheless, to explicitly learn the motion
dependencies, especially the temporal one remains a issue.

In this work, we propose a LSTM based deep spatio-
temporal path forecasting architecture. We would like to
stress the fact that, (i) by contrast to [1] and [29], our ap-
proach does not require any pooling/regularization terms
as we learn a single architecture for all the pedestrians in a
scene rather than designing one model per person/tracklet,
which implies a much less complexity, and good capability
of spatial context modeling; (ii) unlike [37], our end-to-end
approach can better handle the temporal dependencies. Such
property is inherited from the latent capacity of LSTM in
treating sequential data as detailed further.

3 METHODOLOGY

As abovementioned, the walking tendencies of pedestrians in
crowded settings are characterized by spatio-temporal depen-
dencies. Spatial because pedestrians influence each other’s
motion patterns, and temporal given that the potential fu-
ture walking locations of an individual have a strong tie
with his/her previous walking history. To this end, we first
express the walking records of all pedestrians by means of
displacement vectors. Second, we feed the displacement infor-
mation into the LSTM based model, which in turn comprises
two submodules. The first one assimilates the previously
extracted displacement tensors as input and learns the un-
dergoing motion dynamics of the scene, whilst the second
one serves as a prediction stage that infers the forthcoming
walking routes for all the pedestrians at one shot. In what
follows, we provide details outlining each part.

3.1 Motion dynamics description

We proceed by characterizing the motion patterns of pedes-
trians through a set of displacement vectors. Let {xit, yit}(t ∈
{t1, t2, ...tK}) be the coordinates of pedestrian i within a
uniformly sampled time interval from t1 to tK . Hence, the
displacement for pedestrian i at time t is given by {xitK −
xit, y

i
tK − y

i
t}(t ∈ {t1, t2, ...tK}).

Therefore, at time instant t, a three-dimensional tensor
Mt ∈ RH×W×2 is built, where H,W are the height and width
of the scene, respectively. The entry of the first layer in Mt at
position {xit, yit} represents the displacement value along the x
axis at time t, whilst the entry of the second layer at the same
position represents the displacement value along the y axis,
i.e. {Mt(x

i
tK , y

i
tK , 1) = xitK−x

i
t+W ;Mt(x

i
tK , y

i
tK , 2) = yitK−

yit +H}(t ∈ {t1, t2, ...tK}). W and H are added to ensure the
corresponding entries in Mt are positive. Thus, each nonzero
index belongs to a particular pedestrian in the scene at time
t. Yet, the motion dynamics (expressed by the displacement
entries) of the entire crowds in the scene are accommodated
by a single tensor Mt. In this work, we are interested in

predicting the future positions of all pedestrians denoted as
Mt′ , which includes {xit′ , yit′}(t′ ∈ {tK+1, tK+2, ...tK+K′}),
by capitalizing on the prior walking history stored in Mt.
Figure 2 further highlights how the tensor Mt is constructed
for a given pedestrian i.

3.2 Proposed architecture

To fully capture the spatio-temporal motion dependencies of
all the pedestrians in the scene, we carry out the path fore-
casting concern in a sequence-to-sequence learning fashion via
an LSTM based learning-forecasting framework. Figure 3 de-
picts the different blocks outlining our proposed architecture,
which encloses learning and forecasting modules.

We draw the attention to the fact that the tensor Mt,
which encompasses the displacement patterns of all pedestri-
ans at time instance t, may manifest some sparsity, which
hurdles the training of the network. In this respect, some
prior works in the recognition field suggest harnessing high-
level visual percepts extracted from the top-layers of a CNN
architecture [26, 27]. The output representations are able to
preserve the spatial topology of the input. However, directly
applying a regular LSTM on such visual percepts would dras-
tically magnify the number of the parameters of LSTM in
characterizing the input-to-state transformations due to the
size of the visual percepts. In order to address this issue, we
replace the fully-connected LSTM linear product operation
by a convolution operation. Moreover, we leverage high-level
motion representations It(t ∈ {t1, t2, ...tK}) from a single
conv layer fed by Mt, instead of going through a long-chain
CNN structure (such as AlexNet[15] and GoogLeNet [30]).

3.2.1 Convolutional LSTM. LSTM has been demonstrat-
ing an outstanding capacity in performing sequential data
learning tasks [10, 34] with respect to other deep network
structures. Consequently, LSTM has been successfully finding
their way into several computer vision tasks such as video
understanding [26, 28].

We invoke the point that an indispensable factor in design-
ing a path prediction pipeline is to jointly handle both the
temporal and spatial motion dependencies in the scene. A
regular LSTM architecture, though can handle the temporal
aspect to some extent, does not suit our purpose as it cannot
cope with the spatial part. This respect lead us to convolu-
tional LSTM (ConvLSTM) [33], which offers the advantage
of tackling both earlier components in a single framework
and for all the pedestrians in the scene. We experimentally
demonstrate that a ConvLSTM outperforms the LSTM, often
by a large margin, in the path forecasting context.

Traditional LSTM operate recurrently over sequences of
one-dimensional vectors through biased linear transforma-
tions, topped by non-linearities to calculate gate and cell
activations. We replace the fully connected transformations
with convolutional operations to comprise the spatial context
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Figure 3: The pipeline of our proposed architecture. The arrows highlight the information flow. Both the
learning and the forecasting modules involve two stacked layers of ConvLSTM units. The high-level motion
representations It(t ∈ {t1, t2, ...tK}) extracted from Mt are fed to learning module. The hidden state and cell
state pass to the next ConvLSTM units. In the forecasting module, ConvLSTM units take the motion maps It′

extracted from the previous predicted motion dynamics’ descriptions Mt′(t
′ ∈ {tK+1, tK+2, ...tK+K′−1}) as input.

Note that the prediction output MtK+1 from the first ConvLSTM unit of the forecasting module is inferred
from the hidden state and cell state of the last ConvLSTM unit of the learning module.’

among the pedestrians. Therefore, ConvLSTM is given by:

it = σ(ωIi ∗ It + ωhi ∗ ht−1 + bi)
ft = σ(ωIf ∗ It + ωhf ∗ ht−1 + bf )
c̃t = tanh(ωc̃I ∗ It + ωc̃h ∗ ht−1 + bc̃)
ct = c̃� it + ct−1 � ft
ot = σ(ωIo ∗ It + ωho ∗ ht−1 + bo)
ht = ot � tanh(ct)

(1)

where It are the high-level motion maps produced by the con-
volutional layer at time step t. it, ft, c̃t, ot denote input, forget,
cell and output gate at time step t, respectively. {ht−1, ht}
and {ct−1, ct} denote the hidden state and memory state at
time step t− 1 and t. σ, tanh are sigmoid and hyperbolic tan-
gent nonlinear activation functions inside each ConvLSTM
cell. ω>, b> are the weights and bias. ∗ denotes convolution
operation and � pertains to Hadamard product.

The advantage of ConvLSTM with respect to the tradi-
tional LSTM is traced back to the prevalence of conv transfor-
mations over linear transformations. Since they can meet the
temporal information with the spatial context, ConvLSTM
is more suitable for vision based crowd analysis/modeling
tasks, notwithstanding the fact that they require tuning up
fewer parameters thus less memory.

3.2.2 Learning - forecasting network. In this subsection,
we describe the proposed architecture, which combines a
ConvLSTM along with a conv layer. We employ encoder -
decoder framework, inspired by [6, 28], to build our �learning
- forecasting�architecture.

The proposed architecture framework shares similar idea
with AutoEncoder [7, 31]. At the learning stage, the aim is to
make use of the high-level representations produced by the
appended conv layer in order to learn the inherent character-
istics of the motion dynamics taking place in the scene (see
Figure 3). The conv aspect of the ConvLSTM network serves
for capturing the spatial interactions among the pedestrians.
The temporal part is handled by the ConvLSTM’s recurrent
nature. Subsequently, the learnt dynamics are encoded in the
form of hidden state as detailed above, which are expressed
at time instance t as:

hlearn
t = ConvLSTMlearn(It, h

learn
t−1 ) (2)

where hlearn
t is the hidden state of learning at time instance

t(t ∈ {t1, t2, ...tK}). It is the high-level motion representation,
which is taken as input of the network. hlearn

t−1 is the output
hidden state of the learning module at time t− 1.
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Figure 4: The example of walking paths experimental results on PWPD dataset. From left to right, proposed
approach, Baseline 1 and Baseline 2. The green, yellow and red dots are the history coordinates, groundtruth
and our predicting outputs, respectively.

Instead of reconstructing the input of the learning module,
the produced hidden state then serve as the input to the
forecasting part to foresee the potential future walking routes.
The output of the forecasting module at time t′ is defined as
follows:

hfore
t′ = ConvLSTMfore(It′ , h

fore
t′−1) (3)

where h′foret is the output hidden state at time instance
t′(t′ ∈ {tK+1, tK+2, ...tK+K′}) in the forecasting module,

hfore
t′−1 is the hidden state of the forecasting module at time

t′ − 1. It′ is the high-level motion representation produced
from Mt′−1 by the conv layer. It is received as input to our
forecasting module at time t′. In our case, each ConvLSTM
block contains two stacked ConvLSTM layers. In order to
obtain the predicted future motion dynamics M ′t in the same
size as Mt, we append a conv layer which takes over the
hidden state hfore

t′ of the forecasting module as inputs.

3.3 Cost function

The cost function is expressed in terms of the L2 distance be-
tween the predicted motion dynamicsMt′ and the groundtruth
GTt′ :

COST =
1

#GTnonzero
t′

‖ (Mt′ −GTt′ )� 1Mt′ ,GTt′
‖22 (4)

where (t′ ∈ {tK+1, tK+2, ...tK+K′}). 1Mt′ ,GTt′ is an indicator
function, which equals to one if Mt′ have the same non-zero
indexes with GTt′ , otherwise it holds a zero. � represents
the Hadamard product. The error between the prediction
and the groundtruth is averaged by the number of nonzero
entries in GTt′ . We follow back-propagation through time
(BPTT) [9] to train the network.

4 EXPERIMENTS

Three large-scale benchmark datasets are exploited to val-
idate the effectiveness of the proposed framework, namely

Method NMSE

Ours 1.97%
Behavior CNN [37] 2.41%
Baseline 1 [28] 3.50%
Baseline 2 2.78%

Table 1: The quantitative results of walking path
forecasting on PWPD dataset with NMSE criterion.

Pedestrian Walking Path Dataset (PWPD) [36], ETH [21]
and UCY [18] are selected. PWPD comprises over 10000
pedestrians from a one-hour video, where the complete tra-
jectories from the time they enter the scene to the exit time
is uniformly annotated at a 20-frames rate. PWPD makes
a good ground to realistically evaluate our framework as it
manifests a high pedestrian density over large portions of
the video. The ETH dataset contains two scenes each with
750 different pedestrians and is split into two sets (ETH and
Hotel). The UCY dataset contains three scenes with 786
people: UCY, ZARA-01 and ZARA-02. All these datasets
involve very challenging crowd scenarios as suggested in [21].
For instance couples walking together, groups crossing each
other and groups forming and dispersing.

As per comparison, we assess the performance of our frame-
work versus recent leading works. The first one is Social
LSTM [1], which assigns an LSTM model per person and
then appends a pooling layer to treat the spatial context.
The second one is Behavior CNN [37], which learns a CNN
network for the entire scene. In order to underline the merit
over ConvLSTM of the traditional LSTM, we also compare
our work with [28], which we refer to as Baseline 1. Finally,
we also judge the performance of our architecture without
appending the conv layer, which we name Baseline 2.

4.1 Implementation details

The spatial coordinates from the annotations provided by
the datasets are embedded to a dimension of 64× 64. The
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Figure 5: Path forecasting instances from the ETH dataset. From left to right, proposed approach, Baseline
1 and Baseline 2. The yellow and red dots pertain to the groundtruth and the estimated walking locations,
respectively.

motion dynamics description Mt within the time lapse t ∈
{t1, t2, ...tK} and groundtruthGTt′ within t′ ∈ {tK+1, tK+2...tK+K′},
which denote the motion history and the future walking
records, respectively, are constructed in the same manner as
described in subsection 3.1. GTt′ is the same size as Mt, and
shares the same nonzero indexes and entries with Mt. It is to
note that our model can predict the motion dynamics within
different time intervals by setting K and K′.

The motion representations It It are extracted via eight
5 × 5 kernel with a stride of 1 and zero-padding. In our
experiments, each ConvLSTM module has two stacked Con-
vLSTM layers with 128 hidden states. The input-to-state and
state-to-state kernel of ConvLSTM size is 3× 3, with a stride
of 1 and zero-padding. We adopt a single conv layer with a
1× 1 kernel size which transforms hfore

t′ into final prediction
output Mt′ , whilst ensuring Mt′ is the same size as Mt. The
parameters of the ConvLSTM applied for our architecture
and Baseline 2, except the biases, were initialized from a
uniform distribution µ(−0.08, 0.08). The biases of the forget
gates are initialised to 1; for the other gates we set the biases
to 0. The hidden state dimension of 128 is also fixed with
both Baselines 1 and 2. The parameters of Baseline 1 are
initiated by the same settings as in [28].

The training is done by minimizing the cost defined in
equation 4 using BPTT and rmsprop with a learning rate
initialized at 5× 10−5 and a decay rate of 0.85.

Our implementation is based on Torch 7 [4] and extended
rnn library [17]. The experiments were carried out on a Nvidia
GeForce GTX 1080, supplied with a 8G memory.

Method ETH HOTELZARA1 ZARA2 UCY

Ours 0.31 0.13 0.18 0.20 0.20
Behavior CNN
[37]

0.35 0.18 0.20 0.23 0.23

Social LSTM [1] 0.50 0.11 0.22 0.25 0.27
Baseline 1 [28] 0.58 0.15 0.40 0.52 0.50
Baseline 2 0.35 0.16 0.22 0.22 0.23

Table 2: The quantitative results on average MSE
criterion of walking path forecasting on ETH and
UCY datasets.

4.2 Pedestrian path forecasting

We first assess the effectiveness of our framework as compared
to the earlier two baselines as well as the work presented in
[37] on PWPD dataset. In order to allow a fair comparison, we
follow the experimental setting opted for in [37], by setting
both K and K′ to 5. Thus, the entire PWPD dataset is
uniformly divided into 4990 video clips, with a sampling rate
of 20 frames (0.8 seconds). In other words, the proposed
network predicts the forthcoming 4 seconds, based on a
walking history of the prior 4 seconds. We set 80% of the
dataset for training, 10% for validation and the rest 10%
for test. The normalized mean square error (NMSE) [37] is
adopted as metric.

Table 1 reports the quantitative path prediction results on
PWPD. On the one hand, our framework outperforms, by
far, Baseline 2, thanks to the appended conv layer that plays
a solid contribution in capturing the undergoing motion pat-
terns across the scene. On the other hand, Behavior CNN [37]
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Figure 6: The examples of our destination estimation results. From left to right, proposed approach, Baseline
1 and Baseline 2. The green, yellow and red dots are the history coordinates, groundtruth and our predicting
outputs, respectively.

Method Top 1 Top 2 Top 3

Ours 61% 77% 89%
Behavior CNN [37] 53% 72% 84%
Baseline 1 [28] 49% 66% 75%
Baseline 2 55% 74% 84%

Table 3: The quantitative results of Destination Esti-
mation of Pedestrians on PWPD datset with Top-N
accuracy.

which represents the so far best score in the state-of-the-art
on this dataset, is exceeded by our work. This is a significant
gain provided the density of pedestrians characterizing this
dataset, which to the best of our knowledge, manifests the
most dense crowd setting among all the available benchmarks.
As per Baseline 1 [28], the worst NMSE of 3.5% was obtained.
It is traced back to the fact that, regular LSTM does not
take spatial dependencies into account. However, the results
favor our approach in which spatio-temporal cues are tied
into a single framework. In fact, even our Baseline 2 still out-
does Baseline 1. Figure 4 displays path forecasting examples.
It is evident that our approach exhibits better prediction
outcomes in both linear and non-linear trajectories.

In the second part of the experiments, we extend the values
of K and K′ to 8 and 12, respectively, on ETH and UCY
datasets as in [1] and [37]. The evaluation criterion follows a
leave-one-out cross-validation strategy, and average MSE as
in [1, 21] is used as evaluation metric. Table 2 summarizes
the results on these 2 datasets (entailing 5 sub-datasets).
The proposed architecture achieves the best scores on almost
all datasets, closely followed by Behavior CNN [37]. except
on the Hotel dataset where Social LSTM [1] yields the best
result, which is slightly ahead of our method. Our framework
remains superior to Baselines 1 and 2 owing to the reasons

Figure 7: Labeled entries/exits in the PWPD
dataset.

mentioned earlier. Figure 5 depicts several examples on the
ETH dataset.

4.3 Destination estimation

Estimating the potential destinations of pedestrians is an-
other task that is critical to comprehending the behavioral
tendencies of the crowds. Unlike path prediction, destination
estimation implies observing the entire trail of a pedestrian
all the way up to the pouring point, which determines his/her
likely destination. Thus, it can be regarded as a long-term
prediction. Our framework enables long-term path prediction
by manipulating the values of K and K′, which are set to
5 and 15 as to comply with the evaluation scenario in [37].
Top-N accuracy (correct destination estimation belongs to
the Top-N predictions) is used to quantify the accuracy, in
line with [37].

In order to determine the final destinations, we adopt the
same procedure in [37] on the PWPD dataset, by calculating
the Euclidean distance between the last predicted coordinate
and the center of the labeled entries/exits.

The quantitative results are reported in Table 3. It can be
seen that our approach incurs large margin improvements
versus Behavior CNN [37] and both baselines. For instance,
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Top 1 rate amounts to 61% , which drastically advances
the Behavior CNN [37] by 8%. The obtained score from
our approach also confirms the superiority of the proposed
architecture in the long-term prediction scenario, which meets
our expectations thanks to the integration of temporal and
spatial dependencies in a single pipeline, which is further
boosted by the conv layer. We provide prediction examples
in Figure 6. The labeled groundtruth of the entries/exits
provided by [35] is displayed in Figure 7.

5 CONCLUSION

This paper proposed a deep spatio-temporal architecture
for pedestrians’ path prediction in crowds provided their
walking records across a given scene. The convolutional as
well as recurrent nature of the framework enables capturing
the spatial and temporal motion dynamics in one unified
framework. The proposed architecture is thoroughly assessed
on three widely used benchmark datasets in the contexts of
path forecasting and destination estimation. We have shown
that it can outperform trending works.

We believe that the presented approach can benefit from
further improvements by opting for instance for a deeper archi-
tecture. This would expectedly learn richer spatio-temporal
motion dependencies yet leads to better prediction scores.
Another interesting direction is to investigate our framework
on a different crowd related task, such as crowd profiling.
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