
Learning Multi-view Deep Features for Small Object
Retrieval in Surveillance Scenarios

Haiyun Guo1, Jinqiao Wang1, Min Xu2, Zheng-Jun Zha3, and Hanqing Lu1

1National Laboratory of Pattern Recognition, Institute of Automation
Chinese Academy of Sciences, Beijing, China, 100190

2GBDTC, School of Computing and Communications, University of Technology, Sydney, Australia
3Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China

{haiyun.guo, jqwang, luhq}@nlpr.ia.ac.cn, min.xu@uts.edu.au, junzzustc@gmail.com

ABSTRACT
With the explosive growth of surveillance videos, object re-
trieval has become a significant task for security monitoring.
However, visual objects in surveillance videos are usually of
small size with complex light conditions, view changes and
partial occlusions, which increases the difficulty level of effi-
ciently retrieving objects of interest in a large-scale dataset.
Although deep features have achieved promising results on
object classification and retrieval and have been verified to
contain rich semantic structure property, they lack of ade-
quate color information, which is as crucial as structure in-
formation for effective object representation. In this paper,
we propose to leverage discriminative Convolutional Neural
Network (CNN) to learn deep structure and color feature to
form an efficient multi-view object representation. Specifi-
cally, we utilize CNN trained on ImageNet to abstract rich
semantic structure information. Meanwhile, we propose a
CNN model supervised by 11 color names to extract deep
color features. Compared with traditional color descriptors,
deep color features can capture the common color property
across different illumination conditions. Then, the comple-
mentary multi-view deep features are encoded into short bi-
nary codes by Locality-Sensitive Hash (LSH) and fused to
retrieve objects. Retrieval experiments are performed on a
dataset of 100k objects extracted from multi-camera surveil-
lance videos. Comparison results with several popular visual
descriptors show the effectiveness of the proposed approach.

Categories and Subject Descriptors
I.4.10 [Image Representation]: Multidimensional; I.5.4
[Applications]: Signal processing
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1. INTRODUCTION
Nowadays an increasing number of surveillance cameras

are installed in public places and produce massive video da-
ta every day. Therefore, efficiently retrieving objects of in-
terest across large scale surveillance videos has become a
hot spot of research. Although it has been studied for many
years, small object retrieval in surveillance videos remains
a challenging topic, primarily due to the following reason-
s. Firstly, the objects extracted from surveillance videos
are usually of small size, even imprecise. Secondly, the im-
age including object of interest also inevitably involves some
background pixels. Thirdly, there are various complex con-
ditions existing in surveillance areas, such as illumination
changes, shadows, viewpoint shifts and partial occlusions.

Therefore, an efficient object representation is crucial to
object retrieval in surveillance videos. Over the past few
decades, a series of hand-crafted features have been proposed
to bridge the semantic gap between image pixels and seman-
tic concepts. One is global descriptor, which describes the
coarse global color, texture or shape information distribution
of input image. Yang and Yu [19] made use of color his-
tograms and three different texture descriptors to real-time
search eight kinds of clothes in surveillance videos. Calder-
ara et al. [3] presented a global descriptor by estimating the
color probability distribution with a mixture of Gaussians
to conduct person retrieval in multi-camera surveillance sce-
narios. However, these global descriptors fail to distinguish
between the object and unrelated pixels within image, thus
introducing noise to object representation. Besides, they are
not robust to some complex variations. Another is local de-
scriptor such as SIFT [10] and GLOH [12], all of which are
based on feature point detection. However, as mentioned be-
fore, the objects detected from surveillance videos are usual-
ly rather small, so there are often few even no feature points
detected from an object. As a result, local descriptors ex-
tracted from small objects usually lack of adequate discrim-
ination. Apart from the above descriptors, other researchers
utilized various attributes to describe visual objects. Thorn-
ton et al.[16] proposed a generative model covering some at-
tributes such as gender, hair/hat color, clothing color and
bag position for person search. Although attribute features
convey middle-level visual information, the extraction and
fusion of various attributes are a very challenging task for
small objects in surveillance videos.

With the rapid development of deep learning, it has been
verified in [8, 20] that features learned by deep models are
more efficient than traditional hand-crafted features. Hinton
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Figure 1: The overall framework of learning multi-view deep features for small object retrieval.

et al.[7] and Teng et al.[15] both applied features learned by
deep auto-encoders to content-based similar image retrieval
and obtained better retrieval performance than using pixel-
based features. But as pointed out in [8], the retrieval re-
sults can have similar edge patterns but may not be seman-
tically related. In contrast, deep representations learned by
Convolutional Neural Network (CNN) conveyed rich seman-
tic information and obtained state-of-the-art image retrieval
performance in [13].

Structure and color attributes are two most crucial prop-
erties for effective object representation. In this paper, we
leverage multi-view information abstracted with CNN mod-
els to jointly describe the structure and color properties of
visual objects. The overall framework of the proposed ap-
proach is illustrated in Figure 1. Specifically, we take ad-
vantage of the CNN model trained on ImageNet [20] to ex-
tract deep feature from the view of structure. This kind of
feature has two advantages: for one thing, it includes rich
local structure information and is robust to pose change,
object deformation as well as partial occlusion; for another,
it delivers rich semantic information about object catego-
ry. However, the above deep structure feature turns out to
lack of adequate color information in retrieval experiments.
Thus, we build a CNN model supervised by 11 color names
[18] to abstract deep feature from the view of color, which
could capture the common color property across different il-
lumination conditions. Therefore, with discriminative CNN
models, we can extract efficient and robust multi-view deep
features for small objects. Furthermore, to accelerate the
retrieval efficiency, the above two deep features are encod-
ed into 256-bit binary codes by Locality Sensitive Hashing
(LSH) [4] separately. Finally, we combine the complemen-
tary multi-view deep features using a late fusion strategy
and obtain state-of-the-art performance for small object re-
trieval in surveillance scenarios.

2. MULTI-VIEW DEEP REPRESENTATION
Since introduced by LeCun [9] in the early 1990’s, CNN

has demonstrated record-beating performance at challeng-
ing tasks such as image classification, object detection and
face recognition. Three crucial architectural ideas, local re-
ceptive fields, shared weights, and spatial or temporal sub-
sampling, are responsible for the power of CNN. Usually,
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Figure 2: The structure of color CNN.

CNN-based deep feature learning pipeline has two stages.
The first is to learn a CNN model in a supervised man-
ner. The second is to extract deep feature from last several
layers of CNN. Following this pipeline, we extract two deep
features to jointly describe the object from the view of struc-
ture and color.

2.1 Deep Structure Feature
It has been verified that CNN model supervised by ob-

ject categories can not only abstract rich semantic informa-
tion but also capture local structure property of the object
[20]. Since the 1000 object categories in ILSVRC12 dataset
include person and vehicle, which are the most often re-
trieved objects in surveillance scenarios, we choose ILSVR-
C12 dataset to train a CNN model to extract rich semantic
structure information. Specifically, we adopt the exact CNN
architecture specified in [20] and train the model with the
help of Caffe [6]. Considering higher layers in CNN models
generally produce more discriminative features, we extract
deep structure feature from the penultimate layer. During
the image preprocessing in feature extraction phase, we first
resize the input image to 225× 225, then subtract the mean
activity over the training set from each pixel.

2.2 Deep Color Feature
Although deep structure feature delivers rich semantic

structure information, it does not contain enough color in-
formation, which is rather crucial in describing small ob-
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jects. Therefore, inspired by [17], we build a CNN model
to describe the object from the view of color. Based on
the linguistic study of Berlin and Kay [2], we select 11 ba-
sic color terms of the English language: black, blue, brown,
grey, green, orange, pink, purple, red, white and yellow, as
the supervisory information when training CNN on Google
color name set. By training CNN model to classify 11 col-
or names, we can learn deep color representation which is
robust to illumination change and color distortion across dif-
ferent scenes. The detailed architecture of the CNN model is
shown in Figure 2. To comprehensively describe the spatial
color distribution, we first preprocess the input image to be
of 55×55 size and zero mean value, then divide it averagely
into 16 overlapping 37×37 patches and send them into color
CNN to get 16 96-d features, which are concatenated into
1536-d deep color feature. To test the discriminability of the
deep color feature, we perform a classification experiment on
Ebay dataset [18] and achieve an accuracy of 0.80, which is
higher than that obtained by using traditional hand-crafted
color features, such as color histogram.

2.3 Multi-view Deep Features Encoding
The above multi-view deep features are rather descriptive

but not compact enough. For searching objects in large scale
dataset, high dimensionality will significantly corrupt the
retrieval efficiency. Due to the efficiency in both storage and
speed, hashing based approximate nearest neighbor search
methods have attracted much attention in the past years.
Hashing converts all feature representation of images into
binary codes and then conducts a bitwise XOR operation in
very fast speed. LSH [4] is one of the most popular hashing
algorithms. Using LSH, we encode each deep feature into
one 256-bit binary code as a compact descriptor for visual
object. The time cost is smaller for computing Hamming
distance than Euclidean distance. Since in modern CPUs,
it only takes one CPU cycle to compute Hamming distance
for 128-bit hash code in Hamming space. To further improve
retrieval accuracy, we combine the two compact descriptors
with a late fusion strategy to obtain final retrieval results.

3. EXPERIMENTS
Since there is no available standard large scale database

in the field of object retrieval in surveillance scenarios, we
collect surveillance videos with HD cameras mounted at res-
idential entrances inside university. We adopt background
subtraction and object tracking [5] to extract moving ob-
jects, and build a dataset consisting of 100k objects. The
dataset covers various weather conditions, light changes,
poses, viewpoints, and partial occlusions. A total of 300
query objects, 100 vehicles and 200 persons, are selected to
evaluate the retrieval performance. Mean average precision
(MAP) is used to measure the retrieval performance of dif-
ferent methods.

3.1 Comparison with Hand-crafted Features
To show the effectiveness of the multi-view deep features,

we compare them with some hand-crafted visual descriptors.
The comparison results are demonstrated in Table 1. We
calculate the MAP of top 10k returned objects for person
and vehicle respectively. Six hand-crafted visual descriptors
are used as comparison features. “ColorHist” is a 81-d col-
or histogram in HSV space, while “ColorMoment [14]” is a
9-d feature obtained by calculating first, second and third

Table 1: Comparison with hand-crafted features.

MAP(person) MAP(vehicle)

WaveletTransform 0.1801 0.1750
ShapeContext [1] 0.1978 0.1921
CannyEdgeHist 0.2119 0.1835
GLCM [11] 0.2390 0.2119
ColorMoment [14] 0.2825 0.2998
ColorHist 0.2876 0.3648
colCNN-LSH 0.4378 0.4113
strCNN-LSH 0.4729 0.3991
colCNN 0.5007 0.4609
strCNN 0.6122 0.4321
str+colCNN-LSH 0.5955 0.4732
str+colCNN 0.6585 0.4893

Table 2: Retrieval cost of different methods.
Retrieval cost(s)

colCNN-LSH 0.935
strCNN-LSH 0.971
str+colCNN-LSH 1.243
ColorMoment [14] 1.861
WaveletTransform 1.871
GLCM 1.936
CannyEdgeHist 1.954
ColorHist 1.964
ShapeContext [1] 1.979
colCNN 5.758
strCNN 12.445
str+colCNN 18.109

moments of image pixels in LAB space. “GLCM [11]” is a
48-d texture feature based on gray-level co-occurrence ma-
trix and “WaveletTransform” is a 20-d texture feature based
on wavelet transform. “CannyEdgeHist” is a 64-d feature
describing the edge information returned by canny edge de-
tector, while “ShapeContext [1]” is a 72-d feature describ-
ing the local shape information of objects. It can be found
that color descriptors are more useful than texture, edge and
shape descriptors for small object retrieval.

For deep features extracted from CNN, “strCNN” is the
4096-d deep structure feature and “colCNN” is the 1536-d
deep color feature, which describe the object from the view
of structure and color respectively. “str+colCNN” indicates
the late fusion of “strCNN” and “colCNN”, which performs
the best both in person and vehicle retrieval with a relative
improvement of 7.56% and 6.16% in MAP than the best
results achieved by single descriptor. “strCNN-LSH” and
“colCNN-LSH” is the 256-bit compact feature encoded from
“strCNN” and “colCNN” with LSH respectively. Although
they achieve lower MAP than “strCNN” and “colCNN”, they
perform better than all of the remaining comparison features
and save retrieval time greatly. By fusing “strCNN-LSH”
and “colCNN-LSH”, we get “str+colCNN-LSH”, which re-
duces the retrieval time from about 18 seconds to 1 sec-
onds, with only a little decrease in MAP compared with
“str+colCNN”.

3.2 Comparison of Retrieval Cost
As shown in Table 2, six hand-crafted features all cost less

than 2 seconds in retrieval time due to the low dimension-
ality. And it is no surprise that the 4096-d deep structure
feature costs the most retrieval time, which is then greatly
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Figure 3: Comparison of the ranking examples.

reduced by encoding deep features into 256-bit binary codes
with LSH. All the retrieval experiments are conducted on
Intel i5-2400 CPU 3.1 GHz with 20 GB memory. Figure 3
shows some retrieval examples of our proposed approach as
well as several comparison methods.

4. CONCLUSIONS
In this paper, we propose an effective multi-view deep fea-

tures learning approach for small object retrieval in surveil-
lance scenarios. For structure view, we train a CNN model
for object category classification to extract deep structure
feature. For color view, we propose a CNN model for color
name classification to extract deep color feature. Then we
use LSH to encode deep features into short binary codes to
accelerate retrieval efficiency and fuse the compact deep fea-
tures to increase retrieval accuracy. Compared with several
popular visual descriptors, our proposed approach achieves
the best performance.
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