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ABSTRACT
In this paper, we propose a biologically inspired quality
model, focusing on interpreting how humans perceive vi-
sually and semantically important regions in an image (or
a video clip). Particularly, we first extract local descrip-
tors (graphlets in this work) from an image/frame. They
are projected onto the perceptual space, which is built upon
a set of low-level and high-level visual features. Then, an
active learning algorithm is utilized to select graphlets that
are both visually and semantically salient. The algorithm is
based on the observation that each graphlet can be linearly
reconstructed by its surrounding ones, and spatially nearer
ones make a greater contribution. In this way, both the local
and global geometric properties of an image/frame can be
encoded in the selection process. These selected graphlets
are linked into a so-called biological viewing path (BVP)
to simulate human visual perception. Finally, the quality
of an image or a video clip is predicted by a probabilistic
model. Experiments shown that 1) the predicted BVPs are
over 90% consistent with real human gaze shifting paths on
average; and 2) our quality model outperforms many of its
competitors remarkably.
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1. INTRODUCTION
The volume of media data1 we handle on a daily basis is

growing exponentially due to the availability of ubiquitous
and cheap sensors, sharing platforms, and new social trends.
Artificial intelligence has proven useful for interpreting this

1The media data in this work specifically denotes images or
video clips. The training media means the training images
or video clips; and the test media denotes a test image or
video clip.
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preponderance of data. In the last decades, many models
have been proposed to evaluate the quality of an image or
a video clip. A successful quality model can facilitate many
multimedia applications. For example, by quantifying the
saliency of different image regions, a higher accuracy can be
achieved if we employ only the salient regions from each im-
age for retrieval. Moreover, video summarization algorithms
typically extract key frames from one or multiple video clips.
A well-designed quality model can generate a set of seman-
tically representative and low redundant key frames.

In the literature, various media quality models have been
proposed by utilizing both low-level (e.g., texture and struc-
ture) and high-level visual features, (e.g., portrait and ar-
chitecture). As far as we know, however, none of them can
capture the movement of the human eye and the mechanism
of of visual cortex in aesthetic perception. Recent reports
from both neuroscience and computer vision have demon-
strated that biologically plausible features perform impres-
sively in visual recognition. Thus, we propose a biological
inspired quality model containing two modules: 1) engineer-
ing biological viewing paths (BVPs) that reflect how human
perceive regions salient in an image/frame; and 2) a mathe-
matical model that combines the BVPs of multiple users to
assess media quality. It is worth emphasizing that develop-
ing such two modules encounters the following challenges:

Figure 1: The gaze shifting paths recorded from five
observers (left) and the BVP predicted by our algo-
rithm (right)

• To mimick human gaze shifting, the predicted BVP
should maximally reflect human perception of image/frame
geometric attributes. However, current models cannot
ensure that the detected salient regions can best re-
cover an image/frame both locally and globally. This
is because of the difficulty to establish a mathematical
model that optimizes the local and global descriptive-
ness of a BVP simultaneously.
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• Psychophysics studies have demonstrated that object-
level visual cues dominate over the deployment of at-
tention [1]. That is to say, observers are more likely
to attend to the “interesting” objects, rather than the
highly contrasted non-object regions. However, cur-
rent computational saliency models have limited ca-
pabilities to exploit object-level cues. One common
scheme is to integrate object detectors, but this does
not scale well and in practice, only a few pre-specified
categories such as human faces can be well detected.

• We target a quality model that can simulate human
visual perception. That means the model should con-
vey some subjective factors. As shown in Fig. 1, ob-
servers with different backgrounds, education, and na-
tionalities might generate slightly different gaze shift-
ing paths on a same image (or a video clip). Toward a
fair gaze shifting prediction, we expect that a BVP is
maximally similar to the gaze shifting paths recorded
from multiple observers. The challenge is how to im-
plement such a “maximally similar” mechanism.
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Figure 2: The pipeline of the proposed biological
inspired media quality model

To solve the above problems, we propose a novel media qual-
ity model. The key is a geometry-preserving active learn-
ing (GPAL) that constructs BVPs in the perceptual space,
which reflects both the low-level and high-level features. An
overview of the proposed framework is presented in Fig. 2.
By transferring semantics of media tags (i.e., image/video-
level labels) into different graphlets in an image, we repre-
sent each graphlet by a number of low-level and high-level
visual features. Thereby, each graphlet can be deemed as
a point in the perceptual space. To select those salient
graphlets, a geometry-preserving active learning (GPAL) al-
gorithm is utilized based on [9]. GPAL assumes that each
graphlet can be linearly reconstructed by its spatially neigh-
boring ones. To encode image/frame geometric properties
both locally and globally, the nearer neighbors contribute a
greater effect. To solve GPAL, an efficient two-stage itera-
tive scheme is proposed. These detected salient graphlets are
then linked into a biological viewing path (BVP) to mimick
human gaze shifting. Based on the BVP, the media quality

is predicted by probabilistically combining the BVPs learned
from multiple observers. More specifically, we use GPAL to
predict BVPs from both the training media recorded from
multiple observers and the test media. Afterward, the me-
dia quality is quantified by the amount of BVPs that can
be transferred from the training media data into a test one
based on a probabilistic model.

2. RELATED WORK
Our approach assesses video quality by combining the

quality scores of its constituent frames. Therefore, it is
closely related to two topics in multimedia: image quality
measurements based on human perception and human gaze
estimation from an image.

2.1 Perceptual Image Quality Measure
Recently many image quality evaluation methods have

been proposed, aiming at simulating how humans perceive
an image. Ke et al. [6] developed a group of high-level vi-
sual features, such as the image simplicity based on the
spatial distribution of edges, to imitate human perception
of photo quality. Datta et al. [4] proposed 58 low-level vi-
sual features, e.g., shape convexity, to capture photo quality.
Dhar et al. [5] proposed a set of high-level attribute predic-
tors to evaluate photo aesthetic quality. In [8], Luo et al.
evaluated photo quality by utilizing a GMM-based hue dis-
tribution and a prominent line-based texture distribution.
In [58], Cheng et al. proposed the omni-range context, i.e.,
the spatial distribution of arbitrary pairwise image patches,
to model photo aesthetic quality. Nishiyama et al. [10] as-
sesses image quality by combining the SVM classifiers cor-
responding to a photo’s internal subject regions. In [15],
Nishiyama et al. proposed a color harmony-based photo
quality model. The patch-level color distribution is con-
verted into a bag-of-patches histogram, which is then clas-
sified by an SVM to identify photo quality. Luo et al. [29]
attempted to use both photo-based aesthetic features and
motion features for evaluating video quality. Moorthy et
al. [30] introduced an approach to identify video quality
based on 1) image-quality features, 2) motion features, and
3) single-photo aesthetic features. Yeh et al. [32] proposed
to model video aesthetics by two modules: aesthetic features
construction and temporal integration. Zhang et al. [7] learn
human gaze shifting paths from image sub-regions to evalu-
ate the quality of a candidate cropped photo. This model,
however, discovers salient regions only in the semantic space.
Comparatively, our approach detects salient regions in the
perceptual space, reflecting both the low-level and high-level
visual cues.

2.2 Human Gaze Prediction Techniques
The current gaze estimation can be categorized into two

groups: model-based and appearance-based methods. Model-
based methods use 3D eyeball models and estimate gaze di-
rection using the geometric eye features [17, 44, 47]. They
typically use infrared light sources and a high-resolution
camera to locate the 3D eyeball position. Although this
approach can estimate gaze directions accurately, its heavy
reliance on the specialized hardware is a limitation. There
exist methods relaxing this requirement by adopting only
eye images to calculate the line of sight from the iris con-
tour [42]. However, this is only effective within a short dis-
tance where high-resolution observations are available.
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Appearance-based methods compute the non-geometric
image features from the input eye image and then estimate
gaze directions. The eye position is pre-computed for es-
timating the gaze target in the world coordinate system.
With the popularity of monocular head pose tracking [49]
and RGB-D head-tracking cameras [50], head poses can be
captured accurately. Some appearance-based gaze estima-
tion techniques use head poses as an auxiliary input for gaze
estimation [51, 52]. Appearance variation of the eye images
caused by head pose changes is another challenge. Usually
they are tackled by a compensation function [51] or warp-
ing training images to new head poses [52]. While most
of the existing appearance-based models adopt a person-
dependent data set, Funes et al. proposed a cross subject
training method for gaze estimation [53]. An RGB-D cam-
era warps the training and test images to the frontal view.
Then, an adaptive linear regression function is applied to
compute gaze directions.

3. THE PROPOSED APPROACH

3.1 Perceptual Space Construction

3.1.1 The Concept of Graphlets
There are usually a number of of components within a

photo. Among them, a few spatially neighboring ones and
their spatial interactions capture the local features of a photo.
Since graph is a powerful tool to describe the relationships
among objects, we use it to model the spatial interactions
of components in a photo. Particularly, we segment a photo
into a set of atomic regions2, and then construct graphlets to
capture the local features of this photo. Formally, a graphlet
is a small-sized graph defined as:

G = (V,E), (1)

where V is a set of vertices representing those spatially
neighboring atomic regions; and E is a set of edges, each of
which connects pairwise spatially adjacent atomic regions.
We call a graphlet with t vertices a t-sized graphlet. It
is worth emphasizing that the number of graphlets within
a photo is exponentially increasing with the graphlet size.
Therefore, only small graphlets (i.e., vertex number less
than 10) are employed.

In this work, we characterize each graphlet in both color

size=1 size=2 size=2

size=3 size=4

Local

descriptors

Figure 3: An example of differently sized graphlets

and texture channels. Given a t-sized graphlet, each row of
matrix Mc

r represents the 9-dimensional color moment [2]
and each row of matrix Mt

r denotes the 128-dimensional

2The atomic regions are superpixels segmented using
SLIC [46].

HOG [3] of an atomic region. To describe the spatial in-
teractions of atomic regions, we employ a t × t adjacency
matrix as:

Ms(i, j) =

{
θ(Ri, Rj) if Ri and Rj are adjacent
0 otherwise

, (2)

where θ(Ri, Rj) is the horizontal angle of the vector from
the centroid of atomic region Ri to that of atomic region
Rj . Based on the three matrices Mc

r, M
t
r, and Ms, we can

describe a graphlet by M = [Mc
r,M

t
r,Ms].

3.1.2 Semantically Encoding Graphlets
In addition to the color and texture channels description,

high-level semantic cues should also be exploited for pre-
dicting human gaze shifting paths. In this paper, the se-
mantic cues are integrated based on a weakly supervised
algorithm. We transfer the semantics of image/video-level
labels into different graphlets in an image/frame3. Particu-
larly, the weakly supervised algorithm is implemented based
on a manifold embedding described as:

argminY[
∑
i,j

||yi − yj ||2ls(i, j)−
∑
i,j

||yi − yj ||2ld(i, j)]

= argminY tr(YRYT ), (3)

where Y = [y1, y2, · · · , yn] contains a collection of post-
embedding graphlets; R = [⃗eT

n−1,−In−1]W1 [⃗e
T
n−1,−In−1]+

· · ·+ [−In−1,
e⃗T
n−1]Wn[−In−1, e⃗

T
n−1]; Wi is an n × n diagonal matrix

whose h-th diagonal element is [ls(h, i)− ld(h, i)].
ls(·, ·) and ld(·, ·) are functions measuring the semantic

similarity and difference between graphlets respectively. De-
noting bi as a C-dimensional row vector containing the mul-
tiple labels of the media from which graphlet Gi is extracted;
and n⃗ = [n1, n2 · · · , nC ]T where nc is the number of images
(or video clips) with label c, then ls and ld are defined as:

ls(i, j) =
[bi ∩ bj ]n⃗∑

c n
c

, (4)

ld(i, j) =
[bi ⊕ bj ]n⃗∑

c n
c

, (5)

Based on the semantically aware embedding, we project
graphlets onto the perceptual space, where each graphlet
is described by [ϕ(Mc

r), ϕ(M
t
r), y]. ϕ(·) is a row-wise ma-

trix stacking operator. ϕ(Mc
r), ϕ(M

t
r), and y are three vec-

tors describing each graphlet in color, texture, and semantic
channels, respectively. For ease of expression, we again use
Y = {y1, y2, · · · , yn} to represent the n graphlets in the
perceptual space.

3.2 Biological Viewing Path Learning
Our proposed salient graphlets discovery is motivated by

the transductive experimental design (TED) proposed by
Yu et al. [18]. The key idea is to minimize the prediction
variance of salient graphlets by a regularized linear regres-
sion function. In a geometrical view, it is equivalent to find

3Note that image/video-level labels are cheaply available
nowadays. For example, many Flickr images and Youtube
videos are associated with semantic tags. Also, image and
video labels can be accurately predicted by an existing
classification model, such as the spatial pyramid matching
(SPM) [59].
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Figure 4: Projecting graphlets onto manifold by se-
mantically encoding image/video-level labels

m salient (representative) graphlets Z = {z1, z2, · · · , zm} ∈
Y in the perceptual space to maximally retain the informa-
tion of Y. This objective can be formulated as:

min
Z,A

∑n

i=1
(||xi − Zai||22 + α||ai||22)

s.t. Z = [z1, z2, · · · , zm] ∈ Y,

A = [a1, a2, · · · , an] ∈ Rm×n, (6)

where α is a regularization parameter controlling the speed
of shrinkage. To solve this problem, a sequential greedy
strategy is proposed by Yu et al. [18].

3.2.1 Mathematical Formulation of GPAL
Obviously, TED reconstructs each graphlet via a linear

combination of all the selected salient ones. Thus, it is rea-
sonable to approximate a graphlet yi by the linear combi-
nation of those salient graphlets, where the local and global
geometric properties are preserved simultaneously as shown
in Fig. 5. For any selected salient graphlet zj ∈ Z, we denote
function d(zj , yi) as the distance between zj and yi, where
d(·, ·) can be any distance such as the geodesic distance. In-
tuitively, the smaller d(zj , yi) is, the greater effect zj will
have for the reconstruction of yi.

Motivated by this, we propose a new method called

Local geometry

global geometry

Figure 5: An illustration of the geometry-preserving
mechanism in GPAL. The distance between a salient
graphlet (red) and the rest non-salient ones (yellow)
are well preserved in the salient graphlets discovery.

Geometry-Preserving Active Learning (GPAL) to select a
few salient graphlets from an image/frame. For each graphlet
yi in an image/frame, we assume that the reconstruction is
built upon the remaining graphlets. By penalizing the co-
efficients of the reconstruction, we formulate an objective

function as:

min
Z,A

∑n

i=1
(||yi − Zai||22 + µ||aji||d(zj , yi))

s.t. Z = [z1, · · · , zm] ∈ Y,

A = [a1, · · · , an] ∈ Rm×n, (7)

where aji is the j-th element of vector ai and µ is a regular-
ization parameter. In this objective function, the first term
||yi − Zai||22 means that yi should be close to its approx-
imation Zai. The second term

∑n
j=1 |aji|d(zj , yi) reflects

that salient graphlets closer to yi contribute more than those
distant ones. This term encodes both the local and global
geometric properties implicitly. The solution of the above
algorithm is based on [9]’s theory.

The convergence can be guaranteed by the block-wise co-
ordinate descent scheme. After obtaining the m salient
graphlets, we link them into a biological viewing path (BVP).
The first BVP vertex denotes the most salient graphlet, the
second vertex represents the second most salient one, and so
on.

3.3 Probabilistic Media Quality Measure
The learned BVPs capture the local and global geomet-

ric properties of an image/frame, at both the low-level and
high-level. To effectively integrate them for measuring the
quality of an image or a video clip, a probabilistic model is
proposed.

As shown in Fig. 6, given a set of training images4 {I1, I2,
· · · , IL} and a test media, they are highly correlated through
their respective BVPs P and P∗. The probabilistic model
contains two types of nodes: observable nodes (green rect-
angles) and hidden nodes (blue rectangles). These two types
of nodes form four layers. The first layer corresponds to all
the training images with high quality; the second layer de-
notes all the BVPs learned from training media; the third
layer represents all the BVPs learned from test media; and
the last layer denotes the test media (I∗: an image, or
{I1∗ , I2∗ , · · · , IF∗ }: a video clip with F frames). The correla-
tion between the first and the second layers is p(P|I1, I2, · · · , IL).
The correlation between the second and the third layers is
p(P∗|P). The correlation between the third and the fourth
layers is p(I∗|P∗) (an image) or p(I1∗ , I

2
∗ , · · · , IF∗ |P∗) (a video

clip).
Intuitively, media quality can be quantified as the number

of BVPs can be probabilistically transferred from the train-
ing media into the test one. Thus, the quality of a test video
clip5 can be formulated as a posterior probability as:

γ = p(I1∗ , I
1
∗ , · · · , IF∗ |I1∗ , I1∗ , · · · , IL∗ )

= p(I1∗ , I
1
∗ , · · · , IF∗ |P∗) · p(P∗|P) · p(P|I1, I2, · · · , IL)

= p(P∗|P), (8)

where the probability p(P∗|P) is calculated as:

p(P∗|P) =
∏F

i=1

∏L

j=1
p(P i

∗|P j)

=
∏F

i=1

∏L

j=1

∏K

k=1
p(Gi

∗(k)|Gj(k)), (9)

where P i
∗ and P j denote the i-th and j-th BVP from the

training and test media respectively; Gi
∗(k) and Gi(k) are

the k-th graphlet in BVP P i
∗ and P j respectively.

4A video clip can be treated as a sequence of frames.
5We simply set F = 1 for predicting the quality of an image.
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Figure 6: An illustration of the quality model by probabilistically transferring BVPs

Following many algorithms such as [20], we define the sim-
ilarity between graphlets as a Gaussian kernel:

p(G|G′) ∝ exp

(
−||y(G)− y(G′)||2

2σ2

)
, (10)

where y(G) is the vector corresponding to graphlet G in the
perceptual space, as elaborated in Sec 3.1.

4. EXPERIMENTS
This section evaluates the effectiveness of our biological

inspired quality model based on four experiments. The first
experiment compares our predicted BVP with the previous
computational saliency models, as well as the real human
gaze shifting paths. The second experiment compares our
method with well-known quality models. The third part
conducts user studies to evaluate our method. Finally, we
analyze the influence of different parameters.
All the experiments were conducted on a PC equipped

with an Intel X5482 CPU and 8GB RAM. The algorithms
were implemented on the Matlab 2012 platform.

4.1 Effectiveness of the BVP
As the key component of our quality model, it is impor-

tant to assert whether the learned BVPs can capture human
visual saliency accurately. To the best of our knowledge,
there are only a few public saliency data sets containing
images with ground-truth human fixations. We experiment
on the NUSEF [54] and the recent OSIE [1] data sets since
they contain appropriate numbers of different semantic ob-
jects. The NUSEF consists of 758 images with 75 differ-
ent objects, and the ground-truth human fixations are also
provided. The OSIE is comprised of 700 images with eye-
tracking data recorded from 15 viewers. The accompanied
annotation data consists of 5,551 segmented objects with
fine contours and 12 types of semantics. As the NUSEF
and OSIE contain only hundreds of images, it is difficult to
affirm our approach on them comprehensively. We thus col-
lect 4,819 images from the PASCAL VOC series [55] and the
Lotus Hill (LHI) data set [56]. For each image, we manually
assign multiple semantic tags and collect the human fixation
from five volunteers.
In our first experiment, we compare our learned BVP

with ten well-known visual saliency models, including five
low-level feature-based saliency models: Itti et al.’s saliency
model [28], graph-based visual saliency by Harel et al. [26],
image signature by Hou et al. [27], information-theory-based
saliency model by Burce et al. [37], and hypercomplex
fourier transform (HFT) saliency model by Li et al. [35];
as well as five high-level feature-based saliency models pro-

posed by Judd et al. [33], Coferman et al. [25], Yang et
al. [22], Yan et al. [23], and Zhang et al. [24] respectively.
Toward a fair comparison, we have to convert our BVP
into a saliency map. Specifically, we extract m = 5 salient
graphlet. Then, we learn a Gaussian mixture model to de-
scribe the BVP distribution. Lastly, we calculate the prob-
ability of each graphlet p(Gi), and then the saliency of the
i-th pixel ρ is:

s(ρi) = maxG⊃ρi p(G), (11)

where G ⊃ ρi is the set of graphlets containing pixel ρi, and
the “max” term mimicks the “winner-taken-all” mechanism
in biological vision [16].

The AUC (area under the curve) scores of the NUSEF,
the OSIE, and our own compiled data sets are presented
in Table 2. Accordingly, the three ROC curves are shown
in Fig. 7. To decide the threshold of saliency maps, for
the training images, we use the Dice similarity coefficient to
evaluate the overlap between the thresholded saliency map
and the ground truth, wherein the peak value corresponds
to the optimal threshold. Pixels whose saliency values falls
below this threshold are deemed as non-salient, and vice
versa. As shown in Table 2 and Fig. 7, the best performance
is always achieved by our proposed BVP.

4.2 Comparison with the State-of-the-Art

4.2.1 Image Quality Evaluation
To the best of our knowledge, there exist three data sets

for evaluating photo quality: the CUHK [6], the Photo.net [4],
and the AVA [38]. A high-level description of the three data
sets is as follows: 1) the CUHK [6] contains 12,000 photos
collected from DPChallenge.com. We use a standard split of
training/test sets on this data set; 2) the Photo.net consists
of 3,581 images. Only URLs of the original photos are pro-
vided. Nearly half of the images have been removed from the
websites, leaving only about 1,700 images available. They
are randomly split into equal partitions, one for training and
the rest for testing; and 3) the AVA [38] data set contains
25,000 highly- and low-aesthetic photos, each of which is
associated with two semantic tags. The training and test
photos of the AVA data set are pre-specified.

The first experiment compares our approach with five
photo perceptual quality methods, including three global
feature-based approaches by Dhar et al. [5], Luo et al. [8],
and Marchesotti et al. [11], respectively; and two local patch
integration-based methods by Cheng et al. [58] and Nishiyama et
al. [15], respectively.

The source codes of the above five compared methods
are not provided and some implementation details are ob-
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Table 1: Comparative AUC Scores on the NUSEF, the OSIE, and our own compiled data set
Data set Gofer. et al Hou et al GBVS Judd et al Yang et al Itti et al. Harrel et al. Zhang et al. Yan et al. Li et al. PM

NUSEF 57.64% 53.54% 50.37% 50.43% 53.19% 52.76% 52.11% 53.12% 54.22% 56.32% 64.48%

OSIE 67.65% 61.43% 58.89% 56.77% 53.37% 56.69% 54.42% 57.69% 55.64% 54.49% 65.93%

Ours 61.43%% 55.47% 56.32% 55.98% 54.12% 59.45% 56.64% 52.27% 57.76% 59.45% 67.11%

Figure 7: The ROC curves on the NUSEF (left), the OSIE (middle), and our own compiled data sets

Table 2: Comparison of aesthetics prediction accu-
racies

CUHK PNE AVA

Dhar et al. 0.7386 0.6754 0.6435
Luo et al. 0.8004 0.7213 0.6879
Marchesotti et al. (FV-Color-SP) 0.8767 0.8114 0.7891
Cheng et al. 0.8432 0.7754 0.8121
Nishiyama et al. 0.7745 0.7341 0.7659
The proposed method 0.9103 0.8595 0.8531

scure. Therefore, it is difficult to strictly implement them.
Our experiment adopts the following setups. For Dhar’s ap-
proach, we use the public codes of Li et al. [12] to extract
the attributes from each photo. These attributes are com-
bined with the low-level features proposed by Yeh et al. [13]
to train the quality classifier. For Luo et al.’s approach,
not only the low-level and high-level features in their pub-
lication are implemented, but also the six global features
from Getlter et al. [14]’s work are used to strengthen the
quality prediction. For Marchesotti et al.’s approach, sim-
ilar to the implementation of Luo et al.’s method, the six
additional features are also employed. Cheng et al.’s ap-
proach is implemented by adopting only 2-sized graphlets
for aesthetic quality measure. Noticeably, for the probabilis-
tic model-based quality evaluation methods (i.e., Cheng et
al.’s method, Nishiyama et al.’s method, and our model), if
the score is larger than 0.5, then an image is considered as
a high quality one, and vice versa.
We present the aesthetics prediction accuracies on the

CUHK, the PNE, and the AVA in Table 2. On the three data
sets, our approach outperforms Marchesotti et al.’s method
by nearly 4%, and exceeds the rest of the compared meth-
ods by over 6%, which demonstrates the advantage of our
approach.

4.2.2 Video Quality Evaluation
The only publicly available benchmark for perceptual video

quality evaluation is the Telefonica data set [30]. It contains
160 rated videos crawled from YouTube and is grouped into
16 categories. The categories include “baby laughing”, “sky
diving”, and so on. Each video is cropped into a 15-seconds

clip to reduce the potential biases of video length. The rat-
ing values of the Telefonica range from -2 to 2. If the quality
score is above 0, then the video is deemed as high quality,
and vice versa.

In the experiment, we compare our approach with three
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Figure 8: Performance comparison between our
method and the other video quality models. Yeh 1,
Yeh 2, and Yeh 3 denote the three best features se-
lected in [32].

video quality models proposed by Luo et al. [29], Moorthy et
al. [30], and Yeh et al. [32] respectively. We use half of the
videos from Telefonica for training while leaving the rest for
testing. The experiments were repeated five times and the
average accuracies are presented in Fig. 8. Our approach
achieves the best performance, which confirms the neces-
sity of exploiting human gaze shifting paths in video quality
prediction.

4.3 User Study
This experiment introduces subjective analysis. We apply

different quality models for photo retargeting on the AVA
data set [38], and then employ 30 volunteers to appraise
the retargeted photos from different aspects. Specifically, as
shown in Fig. 9, we learn the distribution of BVPs from the
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Lines/

edges

Faces/

people

texture Fore.

objects

Geometric

structure

Symmetry Aggregate

 !(with!!ref. ) 0.103 0.191 0.193 0.154 0.123 0.212 0.111

 !(without!ref. ) 0.924 0.181 0.191 0.144 0.111 0.201 0.994

(a) Agreement of results from the paired comparison with/without a reference image

(b) The percentage of votes and total ranking of the nine compared method per attribute
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(c) Grouping of the compared retargeting model per attribute

Figure 10: A detailed subjective analysis of the comparative retargeted photos on the AVA data set

well-aesthetic training photos on the AVA [38], afterward the
learned distribution guides the shrinking of 50 randomly se-
lected photos. The baseline retargeting algorithms are from
the survey article [36], including three cropping methods:
omni-range context-based cropping (OCBC), probabilistic
graphlet-based cropping (PGC), describable attribute for
photo cropping (DAPC), and five content-aware retarget-
ing algorithms: seam carving (SC) and its improved ver-
sion (ISC), optimized scale-and sketch (OSS), saliency-based
mesh parametrization (SMP), and the patch-based wrapping
(PW).

The results in Fig. 10 are based on the subjective eval-
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Figure 9: A illustration of photo retargeting based
on the proposed BVP

uation of retargeting algorithms in [57]. First, we evaluate
the degree of agreement when the volunteers vote for their
favorite retargeted photos, where a high disagreement re-
flects the difficulty in decision making. In our experiment,

we use the coefficient of agreement defined by Kendall and
Babington-Smith [34]. The coefficients over all the four re-
targeted photos are shown in the last column of Fig. 10(a).
Besides, we also collect the volunteers’ votes on each at-
tribute of the 50 sets of retargeted photos. As shown from
the second column to the seventh column in Fig. 10(a), the
volunteers are highly agreeable on the face/people, the tex-
ture, and the symmetry because these attributes are well
preserved. Then, we present the votes on each attribute
based on the four retargeted photos. As shown in Fig. 10(b),
the proposed method consistently receives the most votes
on all the attributes. Also, the probabilistic graphlet crop-
ping proposed by Zhang et al. [31] performs competitively
on several attributes. Based on the above votes, we rank all
the compared retargeting algorithms as shown in Fig. 10(c),
where the algorithms within a rectangle are statistically in-
distinguishable with respect to volunteer preferences. This
again demonstrates the competitiveness of our model.

Next, we compare the proposed BVPs with real human
gaze shifting paths quantitatively and qualitatively. We
record the eye fixations from five observers by using EyeLink
II6, and then connect the fixations into a path sequentially.
As can be seen from Fig. 11, in most images the proposed
BVPs are consistent with human gaze shifting paths. Fur-
thermore, the average proportion of overlap between the hu-
man gaze shifting path and the BVP is 90.89%. This shows
that the proposed BVP can accurately predict the human
gaze shifting process, leading to an excellent media quality
prediction.

6http://www.sr-research.com/EL II.html

497



Figure 11: Comparison between the learned BVPs
(yellow paths) and real human gaze shifting paths
recorded from five observers. The vertices in each
BVP indicate the centroid of the BVP’s constituent
graphlets.

4.4 Influence of Parameter Settings
The final experiment evaluates the influence of the three

important parameters in our quality model: the graphlet
number in a learned BVP m, and µ, λ in the GPAL opti-
mization.
We first evaluate the quality prediction by varying m. As

shown in Fig. 12, on all the four data sets, the quality predic-
tion accuracy improves significantly when m increases from
1 to 4. Afterward, the accuracy fluctuates when m is tuned
from 4 to 15. This is because humans typically fix on only
3 ∼ 5 objects when they view an image (free viewing with-
out specific search tasks). Therefore, we set m to 4 in our
model.

Then, we evaluate the performance under different val-

70

72

74

76

78

80

82

84

86

88

90

92

94

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CUHK

PNE

AVA

Telefonica

Number of graphlets in a BVP

A
cc
u
ra
cy
o
f
q
u
al
it
y
p
re
d
.
(%
)

Figure 12: The quality prediction accuracies by tun-
ing m on the four data sets

ues of µ, the regularization parameter. We tune the value
of µ from {0.001,
0.005, 0.01, 0.05, 0.1, 0.2, 0.5}. As shown on the left of Fig. 13,
on all the four data sets, the best accuracies were achieved
when µ = 0.01. Neither a too heavy nor a very slight penalty
on the geometry preservation term yields a good quality pre-
diction. Next, we evaluate the performance of our model by
tuning the value of λ, a regularization parameter controlling
the sparsity of â. Similarly, we tune the value of λ from
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Figure 13: The quality prediction accuracies by tun-
ing µ and λ respectively

{0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5}. As shown on the right
of Fig. 13, the best accuracies were achieved when λ = 0.1
on all the four data sets.

5. CONCLUSIONS
This paper presents a perceptually aware quality model by

mimicking how humans perceive low-level and high-level vi-
sual features from media. We first projected graphlets onto
a pre-defined perceptual space. Then, an active learning
algorithm GPAL is utilized to select graphlets both visu-
ally and semantically salient, and image/frame geometric
attributes can be preserved optimally. Finally, these discov-
ered graphlets are linked into a BVP, which is further inte-
grated into a probabilistic model for predicting media qual-
ity. We also demonstrate that applications such as photo re-
targeting can be enhanced significantly by the learned BVPs.
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