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ABSTRACT

In recent years, cross-modal scene retrieval has attracted more

attention. However, most existing approaches neglect the semantic

relationship between objects in a scene together with the embedded

spatial layouts. Moreover, these methods mostly apply the batch

learning strategy, which is not suitable for processing streaming

data. To address the aforementioned problems, we propose a new

framework for online cross-modal scene retrieval based on binary

representations and semantic graph. Specially, we adopt the cross-

modal hashing based on the quantization loss of different modalities.

By introducing the semantic graph, we are able to extract wealthy

semantics and measure their correlation across different modalities.

Further more, we propose a two-step optimization procedure based

on stochastic gradient descent for online update. Experimental

results on four datasets show the superiority of our approach over

the state-of-the-art.
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KEYWORDS
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1 INTRODUCTION

With the explosive growth of the Internet, increasing people would

like to search information by both image and keyword. But due

to the too much semantic information and complex relationship

between objects, cross-modal scene retrieval is still a challenging

problem. Lots of efforts have been paid to cross-modal scene re-

trieval in recent years [10, 15, 31–33, 37].

The binary representation or hashing method has been one of

the promising techniques for large-scale cross-modal retrieval [2,

6, 17, 21, 43] for its low time and storage costs. Multi-modal data is
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common in the mobile Internet. For instance, Instagram and Flickr,

the most popular photo sharing social apps, have more than 500

million photos with text tags or comments. Considering that the

users always intend to search images by some natural language

descriptions or mine text messages by visual data, cross-modal

hashing becomes an important problem.

As can be seen from Figure 1, in an indoor scene image, there

are three kinds of objects: a girl, a window and the chairs. If

these objects can be identified from the image, direct link between

image and text can be established. More information can be further

extracted by detecting the object attribute and analyzing the spatial

layout. Better understanding of the scene image is not only to study

with regard to objects, but also the relationships between them.

An ideal cross-modal retrieval method should be able to model the

graph structure of semantic information and measure the similarity

across different modalities precisely.

Besides, multi-modal data become available continuously as

streams in the real-world Internet. Therefore, the cross-modal

hashing should be performed in an online manner. Existing hashing

methods usually use batch mode to retrain new hash functions,

which are less efficient for streaming data. Considering that a query

or search job is required to be responded very quickly, adaptive

optimization is necessary and important.

In this paper, a novel framework for online cross-modal scene

retrieval is proposed. The main contributions include:

• We adopt the cross-modal hashing method based on the

quantization loss across different modal domains.

• A novel semantic-graph model is proposed to measure

the semantic correlation and similarity between multi-

modality instances.

• A two-step optimization method is developed to handle the

online streaming data, which consists of an off-line step

optimizes the quantizer with binary code learning, and a

stochastic gradient descent based on-line step.

We conduct extensive experiments on four popular real-worldmulti-

modal datasets to exploit the performance of our proposed method.

Experimental results show that our approach is competitive with

state-of-the-art method.

The rest of this paper is organized as follows. Related work is

briefly discussed in Section 2. The proposed framework for online

cross-modal scene retrieval is presented in Section 3. Then the

experimental results are shown in Section 4. Finally, we draw the

conclusion in Section 5.
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Figure 1: Overview of proposed framework. From left to right, we use training data and similarity matrix to learn hashing

function for individual modal data, and the top process is measuring cross-modal semantic correlation with semantic graph.

2 RELATEDWORK

Image Retrieval with Hashing. The locality-sensitive hashing

(LSH) [9] is an important early work, in which binary codes are

generated with random threshold by projecting data points to a

random hyperplane. However, LSH requires a long hash code or a

large number of hash table, which makes it inefficient. To address

this issue, data-dependent hashing methods are proposed. Spectral

hashing (SH) [35] uses Laplacian eigenfunction to compute the

hash code based on uniform distribution. Iterative quantization

(ITQ) [11] constructs hash codes by iteratively rotating the or-

thogonal projection of hash function. Kernelized locality-sensitive

hashing (KLSH) [16] is an unsupervised learning method that can

utilize unlabeled data. Recently, deep learning has been introduced

to hashing based image retrieval [7, 40, 41].

Cross-Modal Hashing. The basic idea of cross-modal hash-

ing is based on canonical correlation analysis (CCA) [11], which

mapped two modal data into a common latent space by maxi-

mizing the correlation. Cross-modal similarity-sensitive hashing

(CMSSH) [2] use Adaboost method to construct hash function for

each modality. Cross-view hashing (CVH) [17] extends spectral

hashing to cross-modal. Zhen et al. [42] do cross-modal hash-

ing in a probabilistic way. Semantic correlation maximization

(SCM) [39], which is inspired by Kernel-based supervised hashing,

seamlessly integrate semantic labels into the learning procedure of

hashing. Linear cross-modal hashing (LCMH) [44] preserves multi-

modal similarity with different anchor graphs. Zhai et al. [38]

propose a parametric method to learn individual projection matrix

for each modal. Wang et al. [34] perform cross-model hashing

by learning bridging mappings. Collective matrix factorization

hashing (CMFH) [6] adopts latent collective matrix factorization

to learn unified hash codes for different modalities. Latent seman-

tic sparse hashing (LSSH) [43] adopts a sparse coding scheme to

learn the latent semantic representation. Semantics-preserving

hashing (SePH) [21] generates unified codes by minimizing the

Kullback-Leibler divergence.

OnlineHashing. Thefirst work attempt to learn hash functions

in an online manner is proposed by Huang et al. [12]. However,

this work, which is named online kernel-based hashing (OKH),

can only handle a pair of instances at one time. Online sketching

hashing (OSH) [19] maintains a small size sketch of streaming data,

which requires less computation and storage. Cakir and Sclaroff [3]

propose an adaptive hashing approach for fast similarity search,

which iteratively updated the hash functions based on stochastic

gradient descent.

Graph-structured Representations. Fisher et al. [8] compare

three dimensional scenes by graph kernels. Chang et al. [4] con-

struct three dimensional scene by using a graph representation with

language descriptions. Lin et al. [20] generate semantic graphs for

video retrieval based on manually-defined rules. Johnson et al. [14]

build a comprehensive scene graph using 5,000 images using man-

ually labeled attributes.

3 PROPOSED APPROACH

As illustrated in Figure 1, our approach mainly consists of four

parts: cross-modal binary representation, semantic graph across

different modalities, the joint objective function and the online

update method.
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3.1 Cross-Modal Hashing

To achieve the cross-modal hashing across scene image and text

label, we adopt the quantized correlation hashing method inspiring

from [36]. Let X ∈ Rn×dx and Y ∈ Rn×dy be a coupled training set

of two different modalities, where n is the sample number and dx
and dy are the data dimensions of the two modalities respectively.

The ith row of X is denoted as xTi . Similarly the jth row of Y is

written as yTj . To simplify the formulation, we assume the data is

zero-centered. The hash functions of two modalities are defined

as f (xi ) = siдn(WT
x xi ) and д(yj ) = siдn(WT

y yj ) respectively
1 ,

whereWx ∈ Rdx×c andWy ∈ Rdy×c are two linear projections that
can map two modalities into a linear subspace of equal dimension.

What’s more, we define S are the cross-modal similarity matrix (See

Figure 1), which will be discussed later in Section 3.2. Based on the

hash functions, we learn two kinds of binary codes Bx ∈ {−1, 1}n×c

and By ∈ {−1, 1}n×c that of the same length c .
Cosine metric is used to measure the similarity between hash

codes of different modalities,

cos(f (xi ),д(yj )) =
f (xi )

Tд(yj )

‖ f (xi )‖2‖д(yj )‖2
. (1)

Then we substitute the hash code with projection vector into Equa-

tion (1):

cos(f (xi ),д(yj )) ≈
xTi WxW

T
y yj√

xTi WxW
T
x xi

√
yTj WyW

T
y yj

.

Also, we adopt the subtraction operation instead of the ratio opera-

tion, which is inspired from the maximum margin criterion idea

in [26]:

(xTi WxW
T
y yj −

√
xTi WxW

T
x xi

√
yTj WyW

T
y yj ).

Taking the quantization loss [11] on each modality and the similar-

ity constraint on cross-modality into consideration, the objective

can be formulated as minimizing the following function:

minF (Bx ,By ,Wx ,Wy )

= (‖Bx − XWx ‖
2
F + ‖By − YWy ‖

2
F )

− α ′
∑
i, j

Si j
(
xTi WxW

T
y yj −

√
xTi WxW

T
x xi

√
yTj WyW

T
y yj

)
,

s .t .WT
x Wx = I , WT

y wy = I .
(2)

Here, α ′ is a trade-off parameter balances the quantization loss

and the cosine similarity. I is c × c identity matrix. Constraints

WT
x Wx = I andWT

y wy = I are used to make sure thatWx andWy

are orthogonal projections. Considering the inequality:

xTi WxW
T
x xi + y

T
j WyW

T
y yj

2
≥

√
xTi WxW

T
x xi

√
yTj WyW

T
y yj ,

1 Here siдn(x ) =

{
−1, x ≤ 0

+1, x > 0
.

Equation (2) can be written in a matrix form:

minF (Bx ,By ,Wx ,Wy ) = (‖Bx − XWx ‖
2
F + ‖By − YWy ‖

2
F )

− 2α(tr (WT
x XT SYWy ) − tr (WT

x XT LxXWx )

− tr (WT
y YT LyYWy )),

(3)

where α = 1
2α

′, and Lx and Ly are diagonal matrices represent the

row-sum and column-sum of S respectively. Then we define

W =

[
Wx

Wy

]
, S̃ =

[
βLx αS

αST βLy

]
,Z =

[
X

Y

]
, B =

[
Bx ,
By

]
.

The objective function can be written as

min F (B,W ) =‖B − ZW ‖2F − tr (WTZT S̃ZW ),

s .t .WTW = I .
(4)

3.2 Semantic Graph

As illustrated in Figure 1, the proposed Semantic Graph is designed

to be a bridge between scene image and corresponding text label,

by which the similarity matrix S mentioned in Section 3.1 can be

computed. It is constructed to describe object instances, attributes

and inter-object relations that are regarded as important semantic

features. Given a scene image these semantic elements can be

extracted via object detection, while given a paragraph of text it

can be archived by key word extraction. No matter what kind of

input, the graph similarity is correlated to the similarity of scene

category.

Graph Construction. Denote a set of object classes as C =
{c1, ..., cN (C)}, attribute types set as A = {a1, ...,aN (A)} and inter-

object relationship set as R = {r1, ..., rN (R)} respectively, an object

in the scene image can be represented as oi = (ci ,ai ). Here N (C),
N (A) and N (R) are the numbers of object class, attribute type and

inter-object relationship respectively. We can define a semantic

graph as G = (O,E), where O = {o1, ...,oi } is a set of objects

and E = {O × R × O} is a set of edges between different objects.

In this work, the semantic graph of the scene is constructed by

adopting the real-world scene graphs [14], which consists of over

5,000 images, 93,000 objects, 110,000 types of attributes, 112,000

types of relationships.

Mapping from Text to Graph. Since the keywords can repre-

sent rich semantic information of a scene, we extract noun, verb

and adjective and preposition from text by the Stanford parser [22].

Let T = {k1, ...,kN (K )} be a paragraph of text, where ki denotes

the ith keyword and N (k) is the number of keywords. We de-

note the mapping from text T to semantic graph G = (O,E) as
{ψ : k → o, e}. Because the graph is represented by natural lan-

guage, the output of mapping is set to binary, i.e. if the keywords

is matched with the part of semantic-graph {ψ : k → o, e} = 1,

otherwise {ψ : k → o, e} = 0. The matching possibility between

text T and graph G is:

P(ψ |T ,G) =
1

N (C) + N (A) + N (R)

( N (k )∑
i=1

N (C)∑
j=1

1{ψ : ki → c j }

+

N (k )∑
i=1

N (A)∑
j=1

1{ψ : ki → aj } +

N (k )∑
i=1

N (R)∑
j=1

1{ψ : ki → r j }
)
.

(5)
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Mapping from Image to Graph. The mapping from scene im-

age to the semantic graph is achieved by detecting the objects. Then

faster regional convolutional neural networks (faster R-CNN) [24,

30] is used to obtain the class, attribute and location of appeared

objects. The results are further converted to possibility scores by

applying the random forest [1]. Let κ be the grounding parts that

represents the part of graph correspondence to the scene image.

We model the distribution of all possible grounding parts in new

image by conditional random field (CRF) [18]. The grounding parts

of the maximum possibility is obtained by maximum a posteriori

inference.

For an input scene image, we can get a set of bounding boxes

B = {b1, ...,bn }. We draw a mapping {ϕ : κi → B} from the

grounding parts of the semantic graph to bounding boxes. So the

distribution of possible grounding parts is:

P(ϕ | G,B) =
∏
o∈O

P(ϕo | o)
∏

(o,r,o′)∈E

P(ϕo ,ϕo′ | o, r ,o
′). (6)

Depending on P(ϕo | o) = P(o | ϕo )P(ϕo )/P(o), we have the simpli-

fied objective

ϕ∗ = argmax
ϕ

∏
o∈O

P(o | ϕo )
∏

(o,r,o′)∈E

P(ϕo ,ϕo′ | o, r ,o
′). (7)

The term P(o | ϕo ) is regarded as the unary energy. Draw o = (c,A)
into it we have

P(o | ϕo ) = P(c | ϕo )
∏
a∈A

P(a | ϕo ), (8)

where P(ϕo ,ϕo′ | o, r ,o
′) represents the binary energy that models

the bounding box pair in the scene image. Let the bounding box co-

ordinates be κo = (x ,y,w,h) and κo′ = (x ′,y′,w ′,h′) respectively,
then the spatial relationship between them can be defined as

R(ϕo ,ϕo′ ) =
(
(x − x ′)/w, (y − y′)/h,w ′/w,h′/h

)
.

For a specific object class c , Gaussian mixture model (GMM) [45] is

used to get P(R(ϕo ,ϕo′ ) | c, r , c
′). After that, random forest is used

to transform the GMM density value at R(ϕo ,ϕ
′
o ) to a probability

P(ϕo ,ϕo′ | o, r ,o
′).

Semantic Correlation. As previously stated, we achieve the

final cross-modal semantic correlation Si j between the ith image

and the jth text instance by

Si j = P(ψ | G,T )P(ϕ | G,B). (9)

We further conduct a normalization step, i.e., Si j =
si j∑
si j

to force

its value in the range of [0, 1].

3.3 Joint Objective Function

After constructing the semantic graph across scene image and text

data, we get the original similarity matrix S . However, most conven-

tional hashing methods quantified the similarity between two in-

stance points to (+1,−1) or other arbitrary values, which could not

describe the correct relationship among training data. To address

this problem, we learn S automatically through a joint framework

integrating the cross-modal hashing and semantic graph.

Based on Equation (4), the joint objective can be formulated as

min F (B,W , S) := �1(F , S) + μ{�2(X , S) + �3(Y , S)}

+ ξr (S) + ν (‖B − ZW ‖2F − tr (WTZT S̃ZW )),

s.t. WTW = I , S ≥ 0.

(10)

Here �1(F , S), �2(X , S) and �3(Y , S) are the loss functions to measure

the smoothness of S on the scene semantic features F , image feature

X and text feature Y , respectively. r (S) is regularization terms w.r.t.

S . μ, ξ and ν are the balancing parameters. We define

�1(F , S) =
∑
i, j

‖ fi − fj ‖
2
2si j , �2(X , S) =

∑
i, j

‖xi − x j ‖
2
2si j ,

�3(Y , S) =
∑
i, j

‖yi − yj ‖
2
2si j , r (S) = ‖S ‖2F ,

(11)

where x and y represent raw features of scene image and text

respectively, and fi and fj are the semantic features of data points

xi and x j . The semantic feature consists of the object category,

attributes and relationships in scene semantic graph, which is a

5,000 dimensional vector [14].

3.4 Online Optimization

We develop a two-step optimization strategy. In the first step S ,W
and B are iteratively updated off-line, while in the second stepW
is respectively optimized for each modal online.

3.4.1 Off-line Step. Optimizing S. By fixingW and B, we
could update S according to Equation (10). The simplified objective

function as

min
S

∑
i, j

‖ fi − fj ‖
2
2si j + μ

∑
i, j

(‖xi − x j ‖
2
2 − ‖yi − yj ‖

2
2 )si j

+ ξ ‖S ‖2F + ν (‖Bx − XWx ‖
2
F + ‖By − YWy ‖

2
F − α ′

∑
i, j

S

(xTi WxW
T
y yi −

√
xTi WxW

T
x xi

√
yTj WyW

T
y yj ))

⇒ min
S

∑
i

tr
(
(ai + μ(bi + ci ))s

T
i + ξsis

T
i − να ′sTi di

)
+ νC .

(12)

Here ai = {ai j , 1 ≤ j ≤ N } and ai j = ‖ fi − fj ‖
2
2 ,bi = {bi j , 1 ≤ j ≤

N } and bi j = ‖xi − x j ‖
2
2 ; ci j = ‖yi − yj ‖

2
2 ; di = {di j , 1 ≤ j ≤ N }

and di j = (xTi WxW
T
y yi −

√
xTi WxW

T
x xi

√
yTj WyW

T
y yj ). Since C =

‖Bx − XWx ‖
2
F
+ ‖By − YWy ‖

2
F
is a constant, Equation (12)) can be

reformulated as

min
S

∑
i

tr
(
(ξsis

T
i − (να ′di − (ai + μbi + μci ))s

T
i )

)
⇒ min

S

∑
i

‖si −
να ′di − (ai + μbi + μci )

ξ
‖22 ,

(13)

which can be solved by accelerated projected gradient method [28].

Optimizing B. By fixingW and S , Equation (4) turns out to be

a regularized least-square problem:

min F (B) := ‖B‖2F + ‖Z ‖2F − 2tr (BWTZT ). (14)

BecauseW and Z are fixed, the hash code Bx and By have the same

sign as ZW , this problem has a close-form solution:

B = siдn(ZW ). (15)
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Algorithm 1 Online Optimization

Input:

Two-modality streaming data X and Y , individual modal pairs

{(xti ,x
t
j )}

T
t=1 and {(yti ,y

t
j )}

T
t=1, original similarity matrix S of

semantic-graph between two modalities, code length c , initial-
izeWo , iteration number N , trade-off parameters: μ, ξ , ν , α , β ,
λ, ρ, ηt ;

Output:

Projection matrixW , similarity matrix Si j of semantic-graph

and hash codes B;
Off-line Step

1: for n = 1 → N do

2: Optimize S when fixingW and B using Eq.(13) ;

3: Optimize B when fixingW and S using Eq.(15) ;

4: Iteratively optimizeW when fixing B and S using Eq.(17);

5: end for

On-line Step

6: for t = 1 → T do

7: Compute binary codes f (xti ), f (x
t
j );

8: Compute loss lh (f (xi ), f (x j );Wx ) according to Eq.(18);

9: if �lh� � 0 then

10: Compute ∇W l(xi ,x j ,W
t );

11: compute and sort Λ;
12: j ← the incorrect first �lh� by sorted Λ;
13: ∇W l(:, j) ← 0;

14: W t+1 ←W t - ηt∇W l(xi ,x j ,W
t );

15: else

16: W t+1 ←W t

17: end if

18: end for

19: Repeat step 6-18 for y.

Optimizing W. To solve with fixed B and S , we introduced

Lagrangian multipliers with orthogonal constraint, Equation (4)

becomes

L(W , λ) = F (W ) −
1

2
tr (λ(WTW − I ))

= ‖B − ZW ‖2F − tr (WTZT S̃ZW )

−
1

2
tr (λ(WTW − I ))

= ‖B‖2F + tr (W
TZTZW ) − 2tr (BWTZT )

− tr (WTZT S̃ZW ) −
1

2
tr (λ(WTW − I )).

(16)

Tomake sure that the gradient of Equation (16) is zero, i.e.
∂L(W ,λ)

∂W =
∂F (W )
∂W −Wλ = 0, we define G = ∂F (W )

∂W . Consequently we have

λ =WTG = GTW . Let A = GWT − GTW ,W can be updated by

Crank-Nicolson-like scheme [27],

W t+1 = QW (t ), Q = (I +
τ

2
A)−1(I −

τ

2
A). (17)

Here τ is the step size.

3.4.2 On-line Step. To tackle streaming data, inspired by [3]

we adopt an online learning algorithm, which can update the hash

function fast with stochastic gradient descent. When a pair of new

instances are inputed, we could updateWx andWy in the hash

function respectively.

Taking modal data X for instance, if the label of X and the

similarity matrix sxi j ∈ {−1, 1} of its elements are known. We

employ the squared error loss and take an orthogonality regularizer

into account,

l(f (xi ), f (x j );Wx ) = (f (xi )
T f (x j ) − Bx s

x
i j )

2 +
λ′

4
‖WTW − I ‖2F .

W can be updated by online SGD,

Wt+1 ←W t − ηt∇l(f (xi ), f (x j );Wx ).

In order to determine which hash function need to be updated, we

also develop a hinge-like loss function of [12].

lh (f (xi ), f (x j )) =

{
max(0,dxH − (1 − ρ)Bx ) si j = 1

max(0, ρBx − dxH ) si j = −1

}
, (18)

where dx
H

is the hamming distance and ρ ∈ [0, 1] is used to balance

the loss. Moreover, we develop Ω = {max
( |f1(xi ) |

‖w1 ‖
,
|f1(x j ) |

‖w1 ‖

)
,

...,max
( |fBx (xi ) |

‖wBx ‖
,
|fBx (x j ) |

‖wBx ‖

)
}, wherew = [w,w0]. Then we can sort

the set Ω in descending order and the first �lh� means the incorrect

hash function.

Wy can be updated similarly by the above-described method.

Whole procedure of the two-step optimization is summarized in

Algorithm 1.

4 EXPERIMENTS

In this section, we conducted experiments to demonstrate the

effectiveness of our framework on four large-scale benchmarks:

Wiki [23], NUS-WIDE [5], MIRFlickr [13], LM+Sun [29]. Two series

of experiments are performed, i.e. image-to-text scene retrieval and

text-to-image scene retrieval respectively.

4.1 Dataset and Experiment Setup

Datasets Wiki dataset [23] consists of 2,866 text documents that

crawled from theWikipedia’s featured articles with manual marked

image-text pairs. The pair is further divided into ten categories.

Each document is represented by a 10-dimensional feature vector

through latent Dirichlet allocation (LDA), and each image is de-

scribed by a 128-dimensional SIFT feature vector. Following the

experiment settings in [23], we choose 2173 image-text pairs (about

75%) and 693 image-document pairs (about 25%) left as training set

and queries respectively.

NUS-WIDE [5] contains 269,648 images crawled from Flickr

with associated text tags. The image-text pairs are divided into

81 categories. Ten categories with largest sample number, which

consist of 186,577 image-text pairs, are used in the experiments.

In the experiments, an image is represented by a 500-dimensional

bag-of-visual-words feature, and corresponding text is described

by a 1,000 dimensional vector. Following the settings in [5], we

further sample 99% of image-text pairs as the training set, while

remaining pairs are used as queries.

MIRFlickr [13] consists 25,000 images with corresponding text

tags collected from Flickr. Each image has several associated text

labels from 38 unique categories. As in [25], every image is de-

scribed by a 3857-dimensional feature and corresponding text is
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Figure 2: Curves of the top T precision on the Wiki, NUS-WIDE and MIRFlickr varying the code length.

μ ξ ν α β

Figure 3: Parameter analysis of our approachwith respect to μ, ξ , ν , α and β over image-to-text (task1) and text-to-image (task2)

on Wiki, NUS-WIDE and MIRFlickr with code length of 128 bits.
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Table 1: Comparisons ofmean average precision(mAP) onWiki, NUS-WIDE andMIRFLickr with code length 16, 32, 64 and 128

bits. ∗ denotes the results are cited from corresponding reference. † means the results are obtained by using codes provided

by the authors. Results based on our implementation is marked by ‡.

Task Method
Wiki NUS-WIDE MIRFlickr

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Img
to
Txt

CMSSH[2]† 0.1853 0.1732 0.1653 0.1535 0.4028 0.3986 0.3886 0.3801 0.5734 0.5741 0.5716 0.5702

CVH[17]‡ 0.1947 0.1798 0.1732 0.1676 0.3652 0.4154 0.4611 0.4496 0.6075 0.6177 0.6156 0.6078

MLBE[42]∗ 0.2561 - - - - - - - 0.6608 - - -

MLBE[42]† 0.2537 0.2747 0.2599 0.2489 0.4472 0.4540 0.4703 0.4699 0.5689 0.5766 0.5799 0.5683

SCM[39]∗ 0.2393 0.2419 - - 0.4385 0.4390 - - - - - -

SCM[39]† 0.2393 0.2379 0.2419 0.2605 0.4385 0.4397 0.4390 0.4407 0.6236 0.6325 0.6467 0.6494

LCMH[44]∗ 0.273 - - - 0.562 - - - - - - -

LCMH[44]‡ 0.2531 0.2572 0.2699 0.2706 0.4657 0.4729 0.4789 0.4798 0.6382 0.6399 0.6407 0.6578

CMFH[6]∗ 0.2538 0.2582 0.2619 0.2648 0.5591 0.5698 0.5780 0.5837 0.6480 0.6597 0.6693 0.6752

CMFH[6]† 0.2538 0.2582 0.2619 0.2648 0.4391 0.4298 0.4280 0.4237 0.6480 0.6597 0.6693 0.6752

LSSH[43]∗ 0.2330 0.2340 0.2387 0.2340 0.4933 0.5006 0.5069 0.5084 - - - -

LSSH[43]† - - - - - - - - 0.5776 0.5781 0.5807 0.5672

SePH[21]∗ 0.2787 0.2956 0.3064 0.3134 0.5421 0.5499 0.5537 0.5601 0.6723 0.6771 0.6783 0.6817

SePH[21]† 0.2791 0.2962 0.3053 0.3131 0.5412 0.5481 0.5526 0.5608 0.6729 0.6773 0.6785 0.6813

Our Method 0.2802 0.3078 0.3196 0.3291 0.5585 0.5593 0.5617 0.5712 0.6756 0.6875 0.6897 0.6906

Txt
to
Img

CMSSH[2]† 0.1621 0.1592 0.1559 0.1541 0.3898 0.3776 0.3752 0.3676 0.5693 0.5738 0.5711 0.5681

CVH[17]‡ 0.1196 0.1043 0.1019 0.1001 0.3627 0.4030 0.4341 0.4259 0.6038 0.6036 0.6011 0.5968

MLBE[42]∗ 0.3209 - - - - - - - 0.5970 - - -

MLBE[42]† 0.3336 0.3693 0.3597 0.3568 0.4652 0.4889 0.5050 0.5087 0.6135 0.6277 0.6359 0.6397

SCM[39]∗ 0.2325 0.2452 - - 0.5147 0.5105 - - - - - -

SCM[39]† 0.2325 0.2454 0.2452 0.2574 0.4273 0.4265 0.4259 0.4362 0.6142 0.6207 0.6302 0.6319

LCMH[44]∗ 0.423 - - - 0.621 - - - - - - -

LCMH[44]‡ 0.3590 0.3551 0.3553 0.3690 0.4729 0.5128 0.5159 0.5189 0.6234 0.6389 0.6456 0.6499

CMFH[6]∗ 0.6116 0.6298 0.6398 0.6477 0.6614 0.6921 0.7164 0.7185 0.6174 0.6241 0.6311 0.6340

CMFH[6]† 0.6116 0.6298 0.6398 0.6477 0.4614 0.4561 0.4524 0.4465 0.6174 0.6241 0.6311 0.6340

LSSH[43]∗ 0.5571 0.5743 0.5710 0.5577 0.6250 0.6578 0.6823 0.6913 - - - -

LSSH[43]† - - - - - - - - 0.5911 0.5921 0.5939 0.5955

SePH[21]∗ 0.6318 0.6577 0.6646 0.6709 0.6302 0.6425 0.6506 0.6580 0.7197 0.7271 0.7309 0.7354

SePH[21]† 0.6216 0.6571 0.6639 0.6702 0.6311 0.6419 0.6508 0.6577 0.7199 0.7268 0.7302 0.7349

Our Method 0.6316 0.6627 0.6773 0.6691 0.6429 0.6516 0.6638 0.6698 0.7228 0.7356 0.7378 0.7392

Table 2: Comparisons on LM+Sun dataset.

Task Method
mAP@100 Training time(seconds)

8 bits 16 bits 32 bits 64 bits 32 bits

Img
to
Txt

OKH[12]+MLBE[42] 0.2934 0.3598 0.4658 0.5822 170

OSH[19]+MLBE[42] 0.2464 0.2978 0.4277 0.5289 312

Our Method 0.3055 0.3758 0.4699 0.5962 150

Txt
to
Img

OKH[12]+MLBE[42] 0.3867 0.4489 0.5768 0.6523 130

OSH[19]+MLBE[42] 0.3120 0.3690 0.5188 0.5709 253

Our Method 0.3928 0.4769 0.5788 0.6721 112

represented by a 2,000 dimensional vector that indicates its occur-

rence. We randomly take 5% image-text pairs as the query set, and

the rest pairs are used as the training set.

The training and test set of LM+Sun [29] includes 45,676 and

500 scene images respectively, including both indoor and outdoor

scenes. There are 232 kind of scenes in total. Following the experi-

ment setups in [29], 90 percents of all image-tag pairs as training

pairs, and the remaining are queries.

Evaluation Metrics We use mean average precision (mAP) as

the performance measure. Given a query and a set of T retrieved

items, the average precision (AP) is defined as

AP =
1

L

T∑
t=1

P(t)δ (t),

where L is the number of true neighbours in the retrieved set, P(t)
denotes the precision of top t retrieved items, and δ (t) = 1 if the t-th
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retrieved item is a true neighbour and δ (t) = 0 otherwise. Ground

truth neighbors are defined as those pairs which share at least one

label. Given a query set of size Q, the mAP is defined as the mean

of average precision scores for all the queries in query set

mAP =
1

Q

Q∑
i=1

AP(qi ).

In the experiments, mAP is obtained by repeating the retrieval ten

times and averaging the results.

Compared Methods First, we compare the proposed approach

with eight cross-modal image retrieval methods: Cross-Modal

Similarity-Sensitive Hashing (CMSSH) [2], Cross-View Hashing

(CVH) [17], Multi-modal Latent Binary Embedding (MLBE) [42], Se-

mantic Correlation Maximization (SCM) [39], Linear Cross-Modal

Hashing (LCMH) [44], Collective Matrix Factorization Hashing

(CMFH) [6], Latent Semantic Sparse Hashing (LSSH) [43], and

Semantics-PerservingHashing (SePH) [21]. To demonstrate the ben-

efit in hashing, two online hashing methods combine with MLBE,

i.e. Online Kernel-based Hashing (OKH) [12] and Online Sketching

Hashing (OSH) [19], are also compared2.

4.2 Results and Analysis

Wiki, NUS-WIDEandMIRFlickrAlthough the proposedmethod

is designed for scene retrieval, it can be also applied to general text-

to-image/image-to-text retrieval tasks by simply treating input

image/text as a kind of scene. Considering that scene dataset with

multiple modalities is relatively rare, comparisons with general

cross-modal image retrieval method can be a good performance

reference. Therefore, we first conduct experiments on Wiki, NUS-

WIDE and MIRFlickr. The results and comparisons can be found in

Figure 2 and Table 1.

Besides the results based on our implementation, those reported

in corresponding references are also shown in Table 1. It should be

pointed out that there are some differences of experiment setting.

In [42] and [39], the authors use 80% of the data for training and the

remaining 20% to form the query set on the Wiki dataset. In [42]

on Flickr and [39] on NUS-WIDE, 99% of the data is used as gallery

set and the rest 1% forms the query set. In [6], 75% and 25% of

the data are used as dataset and query respectively on Wiki and

MIRFlickr. For NUS-WIDE, the dataset division is similar to [39].

In [43] and [21], the dataset division is 75% vs. 25% on Wiki and

99% vs. 1% on NUS-WIDE.

As can be seen, the proposed method achieves the best results in

the image-to-text retrieval on the Wiki dataset. In text-to-image re-

trieval its performance is comparable to SePH method [21]. On the

NUS-WIDE dataset, our method get the second place in both image-

to-text and text-to-image retrievals. As reported in [6], CMFH

method gets the best results. However, our method is at the first

place if based on our implementation. In MIRFlickr dataset our ap-

proach consistently outperforms the compared methods. Generally

speaking, we can reach a conclusion that the proposed method is

competitive among the state-of-the-art as a general image retrieval

method.

2In the experiments, the parameter settings of above-mentioned methods are adopted
from corresponding papers.

It should be pointed out that the proposed method is only de-

signed for scene retrieval scenario. The results imply that better

scene understanding can effectively enhance the performance of

general cross-modal image retrieval. Although not designed for

scene retrieval, Wiki, NUS-WIDE and MIRFlickr include quite a

number of scene image/text pairs. The experimental results shown

in Figure 2 and Table 1 can be a good reference of cross-modal

scene retrieval.

LM+Sun Besides general image/text retrieval, we also conduct

experiments on LM+Sun, which only consists of scene data. Re-

sults in term of mean average precision of first 100 retrieved items

(mAP@100) are shown in Table 2. Obviously, our method con-

sistently outperforms both OKH+MLBE and OSH+MLBE. When

the code length decreases, the performance drops faster than it

in Wiki, NUS-WIDE and MIRFlickr. This phenomenon shows that

scene is a complex concept that requires more details for effective

representation. For an online algorithm, update time is another

important performance indicator. We compare the training time

with 32 bits code in Table 2. The proposed method achieves lowest

time cost, which implies that the proposed method is both effective

and efficient.

Parameter Sensitivity Analysis. Parameters have a great in-

fluence on the performance. To investigate their sensitivity, ex-

periments of different parameter settings are also conducted. As

described in Section 3.4, in the off-line step, five parameters affect

the performance of our framework, i.e. μ, ξ , ν , α and β respectively.

α controls the trade-off between hash function learning and quan-

tization and β is a regularizer coefficient. The default setting for

the parameters are: μ = 1, ξ = 10, ν = 10−1, α = 0.01, β = 0.01. We

tune these five parameters in the range of {0.01, 0.1, 1, 10, 100}. The

results are shown in Figure 3. We find that when μ = 1, ξ = 10 and

ν = 0.1, the performance reach its peak, which means balancing

the semantic-graph and feature achieve better results. Also, we can

see when α > 0.1 and 0.01 < β < 0.1 on Wiki, NUS-WIDE and

MIRFlickr datasets, the results of hashing methods seem not sensi-

tive to parameter. In the on-line step, parameters α ′ is designed to

balance the hash function loss, which is fixed to 0.6.

5 CONCLUSIONS

In this paper, we introduce a novel framework for online cross-

modal scene retrieval with binary representations and semantic-

graph. We adopt the cross-modal hashing based on the quantized

correlation, and measure the semantic agreement and similarity

of semantic-graph for each instance. The problem is effectively

optimized by a two-step strategy. Extensive experiments on four

datasets indicate that our approach outperforms the state-of-the-art.

It would be a promising future work to develop graph kernel with

deep learning to retrieve scene images.
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