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Input image Automatic wall-color replacement results produced by the proposed Magic-wall 

Figure 1: Given an image of an indoor scene, the proposed Magic-wall is able to automatically replace the
current wall color with the provided colors.

ABSTRACT

This work focuses on Magic-wall, an automatic system for
visualizing the effect of room decoration. Given an image
of the indoor scene and a preferred color, the Magic-wall
can automatically locate the wall regions in the image and
smoothly replace the existing color with the required one.
The key idea of the proposed Magic-wall is to leverage visual
semantics to guide the entire process of color substitution
including wall segmentation and color replacement. We pro-
pose an edge-aware fully convolutional neural network (FCN)
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for indoor semantic scene parsing, in which a novel edge-
prior branch is introduced to better identify the boundary
of different semantic regions. To accurately localize the wall
regions, we adapt a semantic-dependent optimized strategy,
which pays more attention to those pixels belonging to the
wall by adapting larger optimization weights compared with
those from other semantic regions. Finally, to naturally re-
place the color of original walls, a simple yet effective color
space conversion method is proposed for replacement with
brightness reservation. We build a new indoor scene dataset
upon ADE2 0K [41] for training and testing, which includes
6 semantic labels. Extensive experimental evaluations and
visualizations well demonstrate that the proposed Magic-wall
is effective and can automatically generate a set of visually
pleasing results.
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1 INTRODUCTION

—Interior design is the art and science of enhancing the
interiors of a space or building, to achieve a healthier and
more aesthetically pleasing environment for the end user.1

With the development of the society, people gradually
pay much more attention to living and working environment.
Particularly, the walls’ color of living rooms or offices indeed
have impact on moods and thoughts of peoples there. For
instance, the warm colors (e.g. red, yellow and orange) can
spark a variety of emotions ranging from comfort and warmth
to hostility and anger, while the cool colors (e.g. green, blue
and purple) often spark feelings of calmness as well as sadness.
In addition, colors have influences on people in many other
ways, depending on the age, gender, ethnic background and
occupation. Therefore, it’s important to choose wall colors
wisely when it comes to decorating. Nowadays, there is a large
variety of colors for wall painting. In general, we may easily
choose several candidate colors for the target room, according
to personal desires or the function of the room. However, it is
difficult to determine which color fits best. Thus, our goal is
to develop a system to perform automatically wall painting
for indoor scene images, so that people can have a look at
the room with preferred colored-walls before making the last
decision for painting.

Although it seems very desirable, performing automatically
indoor wall painting is a challenging task for the following rea-
sons. Firstly, indoor scenes primarily contain a lot of furniture
(e.g. sofa and bed). There exist strong occlusions between
furniture and walls. In addition, windows, doors and items
(e.g. clock and photo frame) hanging on the wall also enhance
the difficulty of segmenting the wall regions. Secondly, the
edges of the wall are usually hard to be identified, owing to
the similarity with other semantic parts of indoor scenes, e.g.
ceiling. Thirdly, since the distribution of light on the wall is
not uniform, it is still difficult to replace the original color
with the target color even with satisfactory wall segments.

To address the raised issues, we propose a semantic-aware
approach called Magic-wall for wall color editing in this work
(see Figure 1). In particular, the Magic-wall is able to auto-
matically locate the wall regions and naturally substitute the
current color of the walls with the desirable colors. Magic-wall
leverages visual semantics to guide the entire process of wall
color editing, including wall segmentation and color replace-
ment. Basically, to effectively generate a dense pixel-wise
prediction of semantic labels, we adopt the state-of-the-art
semantic segmentation framework, i.e. deep Fully Convolu-
tional Neural Network (FCN) [23], as the backbone of the
proposed Magic-wall for parsing an input indoor image. In
particular, we propose an edge-aware-FCN to better identify
the edges of the wall regions, in which a novel edge-prior
branch has been introduced to edge prediction. Those fea-
tures rich in edge information are then utilized for predicting
the pixel-level semantics of indoor scene images. In addition,
to replace the color of the original wall smoothly and natu-
rally, we present a simple yet effective color space conversion

1https://en.wikipedia.org/wiki/Interior design

take a photo

Magic
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Figure 2: The overall illustration of the proposed
Magic-wall system. The user first takes a photo of
the target room. The photo accompanying with a
chosen color is fed into the Magic-wall system to
generate the result.

approach for color replacement with brightness reservation.
We build a new indoor scene dataset upon the well-annotated
large-scale scene parsing dataset ADE20K [41]. Since our
target is to segment walls, we only consider the semantics as-
sociated with wall and re-organize the pixel-level annotations
for learning to segment.

In summary, the contributions of this work for automatic
wall color replacement are as follows:

• We develop an automatic system called Magic-wall
for visualizing the effect of room decoration. Exten-
sive visualizations have well demonstrated that the
proposed Magic-wall is fully capable to generate a
set of visually pleasing results.

• We propose an edge-ware-FCN for effectively learn-
ing to semantic segmentation by leveraging the pre-
dictive edge information from a novel edge-prior
branch. Experimental comparisons well demonstrate
the effectiveness of the proposed edge-aware-FCN.

• We propose to employ a simple yet effective color
space conversion approach for color replacement with
brightness reservation, so that the proposed Magic-
wall can produce realism results.

The organization of the rest of this paper is as follows. In
Section 2, we provide a review of the related work. Section
3 makes an overview of our proposed Magic-wall. Next, in
Section 4, more detailed introductions of the Magic-wall,
including edge-aware-FCN and color replacement, are pre-
sented. The experimental results are shown later in Section
5. Finally, we conclude this work in Section 6.

2 RELATED WORK

2.1 Indoor scene parsing

There is a rich history of exploration in the field of scene
parsing. Liu et al. [21] proposed to use label transfer for scene
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parsing. Since convolutional neural networks tremendously
improved the performance of image classification[1, 15, 30, 31,
38], many CNN-based methods are proposed. In particular,
since Long et al. [23] proposed fully convolutional network
(FCN) that replaced the fully connected layer with convo-
lution layer and achieved remarkable advances in semantic
segmentation [8, 35–37], after which many FCN-based ap-
proaches have been presented for addressing scene parsing.
In later works, Noh et al. [25] learned a multi-layer decon-
volution network to obtain the coarse-to-fine segmentation.
While the segmentation results produced by above-mentioned
methods are somewhat coarse, Chen et al. [9, 10] proposed
the dilated convolution to enlarge receptive field of neural
networks that can better localize the object boundaries. In
the meantime, a fully-connected CRF was employed as post-
processing, which increased the segmentation accuracy near
object boundaries significantly. Recently, Zhao et al. [40]
proposed a pyramid scene parsing network to incorporate
global features with local, which achieved excellent perfor-
mance on scene parsing. In addition, many approaches of
indoor scene parsing have been proposed based on RGBD
data [11, 26, 28, 29, 33]. Silberman and Fergus [28, 29] ad-
dressed this problem by exploring depth information to assist
with indoor scene segmentation. Taylor and Cowley [33] also
proposed to parse the structure of indoor scene from a RGBD
image.

2.2 Edge detection

As a fundamental and important task in computer vision,
edge detection has a very long history. Recently, several works
has explored convolutional neural networks to detect edge and
achieved excellent performance, such as Deep-Contour [27],
DeepEdge [4], CSCNN [17], and HED [39]. For instance, Xie
and Tu [39] leveraged fully convolutional neural networks
and deeply-supervised nets for edge detection. Bertasius et
al. [5] predicted boundaries by utilizing object-level features,
and the boundaries were then applied to facilitate semantic
segmentation. Liang et al. [20] also proposed to incorporate
semantic edge context for human parsing. With the same
purpose, Chen et al. [8] learned object contours to optimize
the semantic segmentation task with a domain transform
edge-preserving filter. The main difference between our ap-
proach with this work is that they used the edge map to guide
the semantic segmentation optimization, while we learn to
segment by taking advantages of the intermediate edge-aware
convolutional features.

2.3 Appearance assignment and
composing

Several studies were made on assigning appearance to a 3D
model that can be used to assist users, such as [3, 6, 7, 18,
24]. Nguyen et al. [24] proposed a technique to transfer the
material style from source images into a target 3D scene.
Chen et al. [7] presented a system that automatically assign
material properties to all objects parts in the 3D scene. The
previous works described above have a little parallelism with

ours. Nevertheless, their algorithms are developed primarily
to 3D scene material suggestions. Besides, the core problem
of their works is to define the material and aesthetic rules
that can be solved by combinatorial optimization.

The main purpose of appearance composing is to seam-
lessly combine the given images. Tao et al. [32] presented an
algorithm for minimizing artifacts in gradient-domain image
compositing. Tsai et al. [34] proposed an automatic back-
ground replacement algorithm that generated images with
diverse stylized skies. Liu et al. [22] proposed to automatically
synthesis the makeup for a female’s face by a novel Deep
Localized Makeup Transfer Network.

However, to generate more realistic results by Magic-wall,
it is necessary to meet with the high requirements for well
matching between images under-merged. Thus, as the ap-
proaches mentioned above, one of the important steps is
searching a set of images similar to input image from the
dataset. Instead, users can choose any color they like for
replacement in our system.

3 OVERVIEW

Given an input indoor scene image, we aim to automatically
generate a set of results, in which the color of walls is nat-
urally replaced. To achieve this, the key problem is how to
successfully separate the wall regions with others. In this pa-
per, we propose an edge-aware-FCN for indoor scene parsing.
Figure 3 shows the overview of the framework, which is the
critical component of the Magic-wall system. The network
is built upon the Deeplab-LargeFOV [10], whose parameters
are initialized by VGG16 pre-trained on ImageNet [13]. In
general, Convolutional Neural Networks (CNNs) usually use
several hidden layers to hierarchically learn high-level repre-
sentation of images. In this case, the layers at the front (end)
of networks usually perceive the low-level features (high-level
semantics) of the input image. As shown in Figure 3, we
predict edges by leveraging features from the front several
layers, i.e. conv4 and conv5, and produce the dense pixel-
wise prediction of semantic labels using the last convolutional
layer, i.e. conv7. In particular,

• Edge prediction We conduct convolutional opera-
tions on the last feature maps of each convolutional
group (from conv4 and conv5 ), as shown in Fig-
ure 3. The produced convolutional feature maps are
reduced to 2-channel confidence maps, which are
further concatenated for edge prediction.

• Pixel-wise semantic prediction To enhance the
capability of semantic representation for the last con-
volutional layer, we adopt the convolutional feature
map from conv7 to predict dense pixel-level semantic
labels. Meanwhile, we also exploit edge-aware feature
maps for better semantic segmentation. In particu-
lar, the features produced by the intermediate layers
from edge-ware branch, as shown in Figure 3, are
concatenated with that from conv7 for making the
dense pixel-wise prediction of semantic labels.
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Figure 3: Overview of the proposed edge-aware-FCN for semantic segmentation.

We resize the feature maps to gain the same spatial res-
olution by bilinear interpolation before concatenation and
conduct the convolutional operation with 1×1 kernel size to
produce semantic labels and edge predictions. Based on the
obtained wall regions, we conduct the replacement operation
in the HSV color space for keeping brightness information,
which is able to strengthen the reality of the produced indoor
scene image.

4 MAGIC-WALL MODEL

In this section, we first explain the proposed edge-aware-FCN
more formally. Then, the details of color replacement with
brightness reservation are introduced in the following.

4.1 Edge-aware-FCN

Suppose the training set I includes N images. We denote I
as any image from I and S is the corresponding pixel-wise
segmentation mask. Based on S, we further produce the edge
mask E for I, in which the pixels between two semantic
regions are set as 1 and others are set as 0. Denote the
sets of semantic labels and edge labels for segmentation and
edge prediction as Cseg and Cedge, respectively. We assume
that all the semantic labels are included in each training
image. Our target is to train a segmentation network f(I; θ)
parameterized by θ, which predicts the pixel-wise probability
of each label c ∈ Cseg or c ∈ Cedge at each location u of the
image plane fu,c(I; θ). Totally, the cross-entropy loss used
for optimizing the edge-aware-FCN is formulated as

min
θ

∑
I∈I

Ledge(f(I; θ)) + Lseg(f(I; θ)), (1)

where Ledge(f(I; θ)) and Lseg(f(I; θ)) are the loss functions
for edge prediction and pixel-wise semantic segmentation,
respectively.
Edge Prediction We consider that the edge-aware feature
map generates from the ith(i = 4, 5) convolutional feature
map with 1×1 convolutional filters as Fe i, which is further
employed to produce confidence map for edge prediction. To
increase the edge prediction accuracy, we first concatenate
the confidence maps from multi-level prediction streams as
show in Figure 3, and then a convolutional operation with
1×1 kernel size is conducted to fuse the individual confidence
maps into the final one, i.e. Pe.

Based on the generated Pe, the loss function for predicting
edge map of I can be formulated as

Ledge = − 1∑
c∈Cedge

|Ec|
∑

c∈Cedge

∑
u∈Ec

log fu,c(Pe; θ). (2)

Ledge is computed over all pixels in I; however, over 90%
of the pixels do not belong to edges. Following the class-
balancing cross-entropy loss advised by [39], Ledge can be
computed by weighting non-edge and edge pixels with differ-
ent ratios. We denote λ0 and λ1 as the weights of no-edge
(indicated by 0) and edge (indicated by 1) pixels. Eqn (2) is
then formulated as

Ledge =− 1

|E0|
∑
u∈E0

λ0 log fu,c(Pe; θ)

− 1

|E1|
∑
u∈E1

λ1 log fu,c(Pe; θ).
(3)

Semantic Segmentation As shown in Figure 3, we employ
two optimization terms for making the dense pixel-wise pre-
diction, including one non-edge-aware term (Lneseg) and one
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edge-aware term (Leseg). In general, we formulate the loss
function of the pixel-level semantic segmentation as

Lseg = Lneseg + Leseg. (4)

We employ the Lneseg to encourage the feature maps from
conv7 (denoted as Fc 7) to perceive high-level semantics of
indoor scene. The corresponding confidence map Pneseg is then
produced by conducting convolutional operation with kernel
of 1×1 size on Fc 7. Meanwhile, to leverage edge-aware feature
maps for improving the quality of predicted segmentation
confidence map, we integrate Fc 7 with Fe i from the edge
prediction branch with a concatenated operation to construct
the edge-aware feature representation (denoted as Fc 7+e).
With the confidence map P eseg calculated from Fc 7+e, the
loss function for predicting segmentation mask of I can be
formulated as

Lseg =− 1∑
c∈Cseg

|Sc|
∑

c∈Cseg

∑
u∈Sc

log fu,c(P
ne
seg; θ)

− 1∑
c∈Cseg

|Sc|
∑

c∈Cseg

∑
u∈Sc

log fu,c(P
e
seg; θ),

=⇒

Lseg =− 1∑
c∈Cseg

|Sc|
∑

c∈Cseg

∑
u∈Sc

log fu,c(P
ne
seg, P

e
seg; θ).

(5)

Since our target is to accurately locate pixels belonging
to the wall for color replacement, we prefer the edge-aware-
FCN to produce the segmentation results more accurate on
the wall semantics. To achieve this goal, we adopt a larger
optimized weight for the pixels belonging to wall compared
with those of other semantics. Formally, suppose the weights
for wall-pixel and non-wall-pixel as ηw and ηnw, Eqn (5) can
be re-formulated as

Lseg =− 1

|Swall|
∑

u∈Swall

ηw log fu,c(P
ne
seg, P

e
seg; θ)

− 1∑
c6=wall

|Sc|
∑

c6=wall

∑
u∈Sc

ηnw log fu,c(P
ne
seg, P

e
seg; θ).

(6)
All the parameter settings are detailed in Section 5. With

the learned edge-aware-FCN, the semantic segmentation mask
of the testing image can be obtained. We then extract the
regions (denoted as W ) belonging to wall for the following
color replacement.

4.2 Color Replacement

Information of brightness and shadow is highly demanded by
natural replaced results, so we need a color space that bright-
ness channel is independent from other channels. As we know,
HSV, also called HSB (in which B for brightness), stands for
hue, saturation and value, which just meets our requirements.
Therefore, the entire replacement process is implemented
in HSV color space. However, results of the segmentation
around the boundaries, which is directly obtained from the

network, are coarse. Thus, a global sampling method [14] for
alpha matting is employed to refine the segmentation results.

Given an input image I, we first extract the wall mask
W and convert the image from RGB to HSV color space,
where W is a binary mask. If pixel in position x belongs to
the wall, W x = 1; otherwise, W x = 0. To ensure the edge
smooth, we generate the trimap according the binary mask
W . Specifically, the pixels around the edge of the wall are
set as unknown pixels, while the others are set as known
foreground/background. With the global sampling method,
alpha matte α can be computed, where αx is the opacity of
the wall in pixel x. Finally, the following formulation is used
to guide the entire replacement procedure:

hxO = αxhR + (1− αx)hxI

sxO = αxsR + (1− αx) sxI

vxO = (αx − βαx) vR + (1− αx + βαx) vxI β ∈ [0, 1],

(7)

where hO, hI and hR represent hue of output image, input
image and reference color respectively. Analogically, s and
v denote saturation and value, and β decides the extent of
value(V) that the input image reserved. If β is too small, the
output image will loss brightness and shadow information.
Conversely, it will tarnish the reference color.

5 EXPERIMENTAL RESULTS

5.1 Dataset and Settings

Dataset We evaluate our proposed approach on a dataset
built upon ADE20K [41]. ADE20K is a dataset of indoor
scenes used in MIT scene parsing challenge 2016, which has a
total of 25K images of 150 classes with a variety of semantics
about indoor scenes. For our specific task, only the images
with the wall appeared are required. Therefore, the images
without the wall are removed. And then, to train the FCN
network, four semantic labels frequently accompanied with
the wall are selected, including floor, ceiling, window, and
table. The remaining labels are set as background. Finally,
3000 images are selected, in which 2500 and 500 images are
used for training and testing, respectively.
Training/Testing Settings We utilize DeepLab code [10]
in our experiments, which is implemented based on the pub-
licly available Caffe framework [19]. Standard stochastic gra-
dient descent is employed for optimization, where initial
learning rate, momentum and weight decay are set to 0.001,
0.9 and 0.0005, respectively. Following [10], we adapt the
“poly” learning rate policy where the learning rate is changed
every iteration by multiplying a factor of (1− iter

maxiter
)
power

.
All the newly added layers are randomly initialized with zero-
mean Gaussian distributions with standard deviations of 0.01.
Each intermediate convolutional layers of edge branches has
128 kernels of size 1×1. The iteration number is set to 10K
with batch size of 4. Due to large cropsize can get good per-
formance, the training images is cropped to 473×473. The
whole networks are initialized with the pre-trained VGG-16
model provided by [10]. For comparison, we adopt Deeplab-
LargeFOV as the baseline model.
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Table 1: The comparison of mIoU(%) for baseline and our proposed edge-aware-FCN. NE denotes non-edge-
aware loss.

Method Background Wall Floor Ceiling Window Table mIoU

Deeplab-LargeFOV 72.125 72.464 68.794 79.031 54.593 36.794 63.967

Edge-aware-FCN 73.629 74.501 69.929 81.079 56.342 37.468 65.492

Edge-aware-FCN+NE 73.908 75.196 69.518 81.961 56.391 37.805 65.796

Evaluation Metrics As region intersection over union (IoU)
takes into account both the false and the missed values for
each class, it has been a standard semantic segmentation eval-
uation. Thus, we employ the IoU for semantic segmentation
evaluation in our experiments. Besides, to evaluate the re-
placement quality, we ask 21 participants to conduct the user
study according to the verisimilitude of the composed images.
The participants rate the results into five degrees: “excellent”,
“good”, “average”, “fair”, and “poor”. At last, we count the
percentage of every degree to report the performance of our
proposed approach.

5.2 Ablation Analysis

5.2.1 Edge-aware-FCN. We adopt Deeplab-LargeFOV as
the baseline model, and we report the performance of our
Edge-aware-FCN comparing with baseline method in Table 1.
All the experiments are conducted with same experiment set-
tings. Since we find that the IoU on the wall drops near 1%
without non-edge-aware loss, non-edge-aware loss is added in
the following experiments. As shown in Table 1, it is obvious
that our proposed method outperforms the baseline model
significantly. We observe that the mIoU score is improved
from 63.967% to 65.796%. Besides, the mIoU on the wall is
increased from 72.464% to 75.196%, with 2.73% improvement.
It demonstrates that introducing intermediate edge features
indeed promote the performance of semantic segmentation.
Several visualized results are shown in Figure 4 for demon-
strating clearly. From the region in the white box, we can
see that our method performs better in capturing the object
counters than baseline, which indicating that our model really
captured the useful edge features and improved the semantic
segmentation. In addition, we also display the semantic edge
predicted by edge branches. Note that we aim at predicting
semantic edge to promote the semantic segmentation, while
the evaluation of the precision for edge is not involved.

We now proceed to evaluate the edge-aware branch and
investigate how it benefits the semantic segmentation. The
parameters λ0 and λ1 in Eqn (3) can be computed by the
ratio of non-edge and edge pixels in the image. Based on
the baseline model, we add two edge prediction branches to
the front convolutional layers (conv4 and conv5 ), and the
middle intermediate convolutional layers are concatenated
with conv7 together to facilitate the semantic segmentation.
To find out how to structure the edge-aware branch, we inves-
tigate the effect by varying convolutional layers combination
for edge detection. Note that our network aims at predict
semantic edge, the boundaries between different semantic

regions in the mask, which is not correspond to traditional
edge detection. Moreover, the layers at the front of networks
always capture more low-level features, the later capture
more high-level semantic features. Therefore, the edge de-
tection structure begins with conv5 only and is varied by
adding previous layers gradually. As shown in Table 2, all the
performances are improved compared with that of Deeplab-
LargeFOV, which indicates the effectiveness of edge branches.
We observe that the mIoU drops by near 1% when only uses
conv5 layer or all convolutional layers compared with other
combinations. The reason is that the front layers capture
more low-level features that do not corresponding to semantic
edge, while more detailed information is lost with only conv5
layer. Thus, according to the Table 2, we perform the edge
prediction from conv4 and conv5 for better segmentation
performance.

Table 2: The comparison of different combinations
for edge detection.

Method wall(%) mIoU(%)

Deeplab-LargeFOV 72.464 63.967

conv5 74.476 64.913
conv4+conv5 75.196 65.796
conv3+conv4+conv5 74.967 65.443
conv2+conv3+conv4+conv5 74.543 65.197
conv1+conv2+conv3+conv4+conv5 74.188 64.701

To further enhance the segmentation performance on the
wall, we want the network to pay more attention to the wall
semantic. Therefore, weighted cross-entropy loss is introduced
in the final network, which results in 0.5 improvement on
the wall. The weight on the wall is set as 1.5 empirically by
the validation, and all others are set as 1. After employing
CRF for post-processing, the IoU on the wall finally achieves
76.534%. The gradually improved performance validates the
effectiveness of the proposed edge-aware-FCN.

5.2.2 Color Space Conversion. Figure 5 evaluates the ef-
fects of segmentation refinement and brightness reservation.
We first compare the results with and without segmentation
refinement. As shown in Figure 5(b), without segmentation
refinement, the edges of the wall are not smooth, and the
table lamp in the red box is segmented imprecisely. Observ-
ing Figure 5(c), the edge between the wall and the ceiling
is smooth and natural with segmentation refinement. In ad-
dition, the contour of the table lamp is more accurate than
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(a) Image (b) Deeplab-LargeFOV (c) Edge-aware-FCN (d) Semantic edge 

Figure 4: Visualized semantic segmentation results. (a) The input image. (b) Scene parsing results of baseline
network. (c) Scene parsing results of our Edge-aware-FCN. (d) Edge detection results of our Edge-aware-FCN.

(a) Input image (b) Without refinement  (d) brightness reservation (c) Without brightness reservation 

Figure 5: Examples of replacement result with and without refinement and brightness reservation.

Figure 5(b). Obviously, Figure 5(b) looks better than Fig-
ure 5(c). That’s because the non-edge pixels, which locate
around the boundaries of the wall, are assigned low alpha
value after processed by alpha matting. Thus, with the re-
placement under the guide of the alpha matte, the edges
around the wall look more smooth.

We now discuss the importance of color space conversion.
To balance the illumination between input image and refer-
ence color, the weight β in Eqn (7) is set as 0.5. As shown
in Figure 5(c), without brightness reservation, Comparing
Figure 5(d) with Figure 5(c), we can see that the glow of
the table lamp in Figure 5(d) is reserved, which makes the
replaced regions look more harmonious and verisimilar. The
reason is that the Figure 5(d) keeps the same illumination
and shadow information with input image by reserving the
original brightness, which can generate a more realistic result.

In order to measure the quality of the proposed replace-
ment algorithm, we conduct a user study to evaluate the
verisimilitude of generated images. The baseline is directly

replacing the wall in RGB color space with the segmenta-
tion mask obtained from networks. Now we mainly compare
the baseline with the proposed segmentation refinement and
brightness reservation. We randomly select 50 images from
dataset. Each time, a 3-tuple generated by the three methods
is sent to 21 participants to mark. Note that the three images
in every tuple are shown randomly. We report the percent-
ages of every degree in Table 3. It can be found that the
scores of baseline are mainly distributed in “fair”. Instead,
segmentation refinement(SR) is concentrated on “average”. It
indicates that the replacement with segmentation refinement
can generate more harmonious results. With the brightness
reserving(BR), the scores are mainly distributed in “good”.
Furthermore, 65.9% of the results are marked as “good” even
“excellent”, which is much higher than 11.43% of the base-
line. Therefore, our algorithm can produce more realistic
results, which demonstrates the significant advantages of the
proposed approach.

To further validate the effectiveness of Magic-wall, we
also conduct additional experiments of texture replacement.
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Figure 6: Examples of indoor images with the color and texture of the wall replaced. The first column shows
the input images. In each group, the first line shows the results with four colors, and the second line shows
results with four textures.

Table 3: The comparison of quality for different
methods. SR denotes segmentation refinement, and
BR denotes brightness reserving.

Method excellent good average fair poor

Baseline 0.86% 10.57% 25.90% 41.05% 21.62%

SR 3.14% 22.29% 40.19% 24.67% 9.71%

SR+BR 18.76% 47.14% 25.14% 7.90% 1.05%

Some successful examples are shown together with color
replacement in Figure 6 (some input images are taken from
Internet). In spite of the excellent generated results, the
texture replacement still has some problems. In fact, there
should have a warp when an image is taken from a 3D space.
As shown in Figure 6, we can see that the image lost the
sense of space in the corner of the wall, which makes the
results a little unrealistic. In the future, we can leverage
layout estimation [2, 12, 16] and homography matrix to warp
the texture image for more naturalistic effect.

6 CONCLUSION

In this paper, we propose an edge-aware fully convolutional
neural network and a color space conversion method to au-
tomatically replace the current color of the wall with the
provided color. The proposed edge-aware-FCN further im-
proves the segmentation comparing with deeplab. To smooth
the edge of the wall and generate more realistic results, we
utilize alpha matting to refine the segmentation, and the
color space conversion is employed to perform the replace-
ment procedure. Extensive experiments and examples show
that our system can compose more realistic images. In the
future work, we intend to combine semantic segmentation
with layout estimation for more authentic results.
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