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ABSTRACT
Depression is a major cause of disability world-wide. The
present paper reports on the results of our participation to
the depression sub-challenge of the sixth Audio/Visual Emo-
tion Challenge (AVEC 2016), which was designed to com-
pare feature modalities (audio, visual, interview transcript-
based) in gender-based and gender-independent modes using
a variety of classification algorithms. In our approach, both
high and low level features were assessed in each modality.
Audio features were extracted from the low-level descriptors
provided by the challenge organizers. Several visual fea-
tures were extracted and assessed including dynamic char-
acteristics of facial elements (using Landmark Motion His-
tory Histograms and Landmark Motion Magnitude), global
head motion, and eye blinks. These features were combined
with statistically derived features from pre-extracted fea-
tures (emotions, action units, gaze, and pose). Both speech
rate and word-level semantic content were also evaluated.
Classification results are reported using four different classi-
fication schemes: i) gender-based models for each individual
modality, ii) the feature fusion model, ii) the decision fusion
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model, and iv) the posterior probability classification model.
Proposed approaches outperforming the reference classifica-
tion accuracy include the one utilizing statistical descriptors
of low-level audio features. This approach achieved f1-scores
of 0.59 for identifying depressed and 0.87 for identifying not-
depressed individuals on the development set and 0.52/0.81,
respectively for the test set.
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AVEC 2016; image processing; speech processing; pattern
recognition; affective computing; depression assessment; mul-
timodal fusion

1. INTRODUCTION
Depression is a common mood disorder, which burdens

many people around the globe at an alarmingly increas-
ing rate. Objective measures of depressive symptomatol-
ogy could be advantageous for clinicians, in the context of a
decision support system. Thus, automatic depression assess-
ment has been drawing increasing attention in the past few
years to a certain extend due to the AVEC. However, AVEC
2013 [30] and AVEC 2014 [29] differed from the present in
a number of aspects. The provided dataset is different, in
terms of the data collection protocol: in the previous, volun-
teers were performing tasks in response to presented stimuli,
while in the present the volunteers interact with a virtual
human in the form of an interview. Previously both video
recordings, as well as pre-extracted features were provided,
while this year only the features are available, increasing the
difficulty of the challenge. The aim of the depression sub-
challenge used to be continuous, while now it is categorical.
In the present work, the participation of our team FORTH-
TEIC, for the depression sub-challenge of the AVEC 2016
[27], is being described. Section 2 covers related work, while
Section 3 describes the feature extraction methods designed
and implemented by our team. Section 4 presents the experi-
mental results of the participation, while Section 5 concludes
with the discussion and conclusions.

2. RELATED WORK
Motion History Images (MHI) is an algorithm widely used

in the field of human action recognition [3]. Valstar et al.
proposed the use of MHI for the recognition of facial ac-
tion from videos [28]. Ptucha and Savakis [23], among else,
proposed an Active Shape Model (ASM) based history im-
age, which encoded the motion of each landmark by a black
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motion vector with a blue tail and red tip on white back-
ground. Therefore only the beginning and the end of the
movement was indicated by the colored pixels, while the in-
between motion was all black. Meng et al. [17] in their
participation to AVEC 2013 [30], used MHIs for depression
recognition, by extracting Local Binary Patterns (LBP) and
Edge of Oriented Histograms from them. Optical flow, first
introduced as a concept by Gibson in 1950 [9] to describe
the visual stimulus provided to animals when they move,
has been widely used in the area of computer vision for mo-
tion detection and recognition, object segmentation, motion
compensation etc. Histogram of Optical Flow (HOF) has
been proposed for depression estimation in AVEC 2014 [11]
[14]. HOF estimates the motion within visual representa-
tions, by using vectors for each pixel in order to describe a
dense motion field. Head motion is another widely used fea-
ture in depression assessment [8] [11]. Blinking rate has also
been proposed, among others, by Zhou et al. in [31]. Text
features, finally, have not been used as widely as the visual
for depression assessment, with the only relevant approaches
reported in [8] and [11].

3. FEATURE EXTRACTION
The current DAIC-WOZ dataset [10] includes audio record-

ings, audio features, interview transcripts, video features,
pixel coordinates for 68 2D facial landmarks, world coor-
dinates for 68 3D facial landmarks, gaze vector, head-pose
vector, Histogram of Oriented Gradients (HOG) features,
emotion, and Action Unit (AU) labels. The challenge pro-
vides three data subsets: training, development, and test.
Depression labels - one for each recording - are provided
only for the training and development sets, and are with-
held for the test set. Participants’ gender is provided for all
three subsets.

The provided baseline features are all frame-based, de-
rived from static images, as opposed to features employed
in the proposed work which are all video-based, both of high
and of low level. As a results, none of the baseline features
have been used herein without undergoing further process-
ing in order to derive video-based features. The choice of
video-based against frame-based features is in accordance
to literature [20] [21], which supports that signs of depres-
sion are of temporal nature [7]. Thus information derived
over the course of an interview session is expected to be
much more informative than any single frame. In fact the
Diagnostic and Statistical Manual of Mental Disorders [2]
suggests that symptoms must have a minimum duration of
two weeks to qualify for depression diagnosis.

Features selected for the proposed work were the ones con-
sidered as clinically relevant [2] [7], and which are further
supported by the presented related work. High level fea-
tures are those which can be translated to common sense
knowledge; for instance head motion, blinking, facial expres-
sions, AUs, and text related features, can be annotated with
a high degree of certainty by a human expert. Low level fea-
tures, on the other hand, are derived from image processing
algorithms, which extract descriptors from an image, but
cannot be directly translated to human knowledge. Such
features extracted here are the Landmark Motion History
Images combined with LBP and HOG, Landmark Motion
Magnitude, and most of the audio-based features.

In the following paragraphs, feature extraction algorithms
are explained in detail for each modality (video, audio, and

text). Features used in the classification approaches were
computed over the entire interview period excluding the ini-
tial and final portions during which the participants were
positioned and given instructions. Audio and text features
were further constrained to the participants’ own vocal re-
sponses, disregarding periods when the virtual human is
speaking. Most of the feature extraction algorithms were
implemented in MATLAB using embedded libraries, with
the following exceptions: i) the LBPs that were extracted
using the library provided by Ojala et al. [19], ii) the Land-
mark Motion Magnitude (LMM) which employed methods
from OpenCV [12] and the Boost C++ libraries [24], and
iii) the Linguistic Inquiry and Word Count (LIWC) features
that were extracted by the corresponding software [15].

3.1 Visual Features
Although visual features were limited by the unavailabil-

ity of raw video recordings, several meaningful (both high
and low level) features could be extracted from the set of
numbered 2D facial landmarks illustrated in Fig.1. Statis-
tics derived from the provided features of emotion, AUs,
gaze, and pose were also used as complementary features.

3.1.1 Landmark Motion History Images
Landmark Motion History Images (LMHI) were computed

on the provided 2D landmarks, in the absence of the actual
intensities of the video frames. LMHI encodes the motion
of the facial features into a grayscale image, with the most
recent movement corresponding to white pixels, the earli-
est corresponding to the darkest gray, and temporally inter-
mediate movements indexed by corresponding gray values.
The extension of the proposed work in comparison to that
of Ptucha and Savakis [23] is that the in-between motion is
also preserved with the use of respective gray-scales, which
is important for the descriptors applied later on the LMHI.
The landmarks used for LMHI, according to the number-
ing of Fig.1, were those corresponding to eyebrows {18-27},
eyes {37-48}, nose-tip {32-36}, and mouth {49-68}. Before
computing the LMHI all landmarks were coregistered, using
affine transformation, by aligning the points corresponding
to the temples, chin, and inner and outer corners of the eyes
{1, 9, 17, 37, 40, 43, 46}.

The gray value was defined by a step s, which corre-
sponded to the maximum pixel value (255) divided by the
total number of frames. Thus in every frame the gray value
was computed by s multiplied by the frame count (i.e. for
the 4th frame the gray value was 4 x s). The morphological
operation of erosion was applied in order to remove outliers
(very distant movements), and the image was cropped to
the non-black pixels (non-zero). The resulting LMHI was
further resized to fit the average size of the LMHI. An ex-
ample of the resulting LMHI is illustrated in Fig.2, where
the amount of movement is indexed by the thickness of the
pixels.

LBP, as well as HOG, were extracted based on LMHI.
LBP was computed for two sets of parameters: radius and
neighborhood for {1, 8} and {2, 16}, resulting in a total
of 28 features covering the entire face. The LMHI was fur-
ther partitioned using corresponding half ratios to represent
three composite regions: “nose+mouth”,“left eye+eyebrow”,
and “right eye+eyebrow”. These regions are partitioned by
red dashed-lines in Fig.2. For each subregion 28 additional
features were computed. Further, HOG was computed for
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Figure 1: 2D Facial Landmarks numbering

the entire face area with 1080 features, as well as for the re-
maining sub-regions of “nose+mouth”, giving 360 features,
“left eye+eyebrow” with 144, and “right eye+eyebrow” with
144 features as well. Additionally, the LMHI histogram bins
were computed resulting in 255 additional features (black
was excluded). Mean and standard deviation of the pixel
values constitute the final two features, resulting in a total
of 2097 LMHI features.

3.1.2 Landmark Motion Magnitude
Landmark Motion Magnitude (LMM), inspired by HOF,

was applied here to the 2D landmarks. For the extraction
of the landmark activity features, the vectors that displace
each landmark from one frame to the next were calculated
based on the landmark coordinates. From these vectors, un-
wanted global head motion was removed by subtracting the
average motion vector of a landmark group representing the
nose {28:36}. Subsequently the magnitude of the displace-
ment vectors was calculated as in (1)

M =
√

(x2 + y2) (1)

and the maximum magnitude from each of the following 5
landmark groups was selected for each frame: right eyebrow
{18-22}, left eyebrow {23-27}, mouth center {51-53, 62-64,
66-68, 57-59}, right mouth corner {49, 61} and left mouth
corner {55, 65}. A sample of LMM vectors is shown for the
mouth region in Fig.3. The five LMM time-signals, corre-
sponding to the five regions defined above, were used for the
feature extraction. Statistical and spectral features were
extracted for the whole duration of the interview. These
features were selected based on our previous positive expe-
rience for stress/anxiety assessment [22], as well as for ac-
tivity recognition from accelerometer data [5] which describe
motion patterns similar to LMM. The resulting 70 features
in total are described next.

The variance of the time intervals between any two subse-
quent spikes or transients was used as an index of movement
based on the assumption that rhythmic movements would be
associated with near-zero variance. The energy ratio of the

Figure 2: Landmark Motion History Image

Figure 3: Landmark Motion Magnitude for the mouth region
between 2 consecutive frames.

autocorrelation sequence was calculated as the relationship
of the energy contained in the last 75% of the samples of the
autocorrelation sequence and the energy contained by the
first 25%, and was used as a measure of the motion man-
ifested as quasiperiodic spikes (randomness). The median
of the signal based on the P2 algorithm [13]. The standard
deviation of the signal. The interquartile range (i.e. the dif-
ference between the 75th and 25th quartiles), based on the
P2 algorithm [13]. The skewness of the sample distribution,
defined as the ratio of the 3rd central moment to the 3/2-th
power of the 2nd central moment of the samples. The kurto-
sis of the sample distribution, defined as the ratio of the 4th
central moment and the square of the 2nd central moment
of the samples, minus 3. The Shannon entropy of the energy
in bins, H(xi) calculated from the normalized energy of 10
equally sized consecutive bins, taken from the signal, as in
(2).

H(xi) = −
N∑
i=1

xilog2xi (2)

The 25% spectral power frequency, which corresponds to the
upper bound of the frequency band starting at 0 Hz that
contains 25% of the total spectral power. The dominant fre-
quency which corresponds to the signal frequency associated
with the highest power. The spectral roll-off : the frequency
value at which 80% of the spectral power is below that point.
The spectral centroid as in (3) corresponding to the average
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(a) (b) (c)

(d) (e) (f)

Figure 4: Head motion time series for velocities in first row, and for displacements in the second.

frequency of the spectrum, according to the formula:

SpectralCentroid =

∑N
i=1 fipi∑N
i=1 pi

(3)

where pi is the power at frequency fi.

3.1.3 Head Motion
The set of head-pose features provided by the baseline is

frame-based, just as the landmarks. Both consist of coordi-
nates and do not incorporate temporal and motion related
information. Hereby, head motion was computed based on
the horizontal and vertical deviations of specific reference
points (landmarks 2, 4, 14, 16) between consecutive frames.
The reference points selected were those characterized by
minimal intra-facial movement, such as mouth movements,
eye blinks, and other facial expressions, in order to empha-
size global head motion.

The assumption was that the region between the eyes and
mouth is the most appropriate region, as it is minimally in-
volved in facial expressions and occlusions. The positions of
the reference landmarks in each frame were stored in four
different vectors that represent the trajectory of each land-
mark [16]. The most stable reference points were selected
for further analysis by calculating the maximum distance
travelled by each point between consecutive frames; points
with a distance exceeding the mode of the distribution were
considered as unstable and therefore discarded. Finally, the
trajectories of the points were analyzed, producing six dif-
ferent time series related to the frame to frame movement
and velocity: the horizontal and vertical scalar components
and the vector magnitude. Fig.4 displays an example of un-
filtered time series.

Several statistical indices were subsequently derived from
the six time series in the form of the mean, median, and stan-
dard deviation of a) velocity and displacement separated on
the X and Y axes, and b) velocity and displacement magni-
tude, resulting in a total of 18 features.

3.1.4 Blinking Rate
Blinking rate was extracted using the 2D landmarks in

order to segment and mark out the eyeball perimeter. The
landmark points used for each eye were numbered {37-42}

and {43-48} in Fig.1. The area defined by each set of land-
marks was computed over the entire recording. Time series
were filtered to remove spikes and smooth out highly variable
segments. Sharp decreases were considered as blinks. De-
tection of downward peaks was performed using a gradient
peak detection algorithm utilizing the following parameters:
minimum peak distance, peak duration, derivative ampli-
tude, and derivative peak distance. The resulting feature
was blink frequency, i.e. the number of blinks per minute.

3.1.5 Emotions, AUs, Gaze & Pose
Emotion variability features were computed based on the

emotion and AU labels embedded in the AVEC dataset. The
statistical measures chosen to represent this variability were:
minimum, maximum, mean, mode, median, range, mean de-
viation, variance, standard deviation, skewness, and kurto-
sis. These indices were calculated for each of the 10 pre-
labeled emotions, and for each of 19 AUs, resulting in 110
and 209 feature sets, respectively. The same set of statistical
indices were computed for the provided gaze and pose.

3.2 Audio Features
The audio data provided by AVEC consisted of a se-

ries of pre-extracted features using the COVAREP tool-
box at 10-ms intervals over the entire recording (F0, NAQ,
QOQ, H1H2, PSP, MDQ, peakSlope, Rd, Rd conf, MCEP
0-24, HMPDM 1-24, HMPDD 1-12, and Formants 1-3). For
the purposes of the present work, the resulting timeseries
data were submitted to additional preprocessing steps as
follows: First, the participant’s voice was isolated using the
time stamps in the TRANSCRIPT files. Segments with
TRANSCRIPT values of“<synch>”,“<laughter>”,“[laugh-
ter]”, “<sigh>” and “scrubbed entry” were ignored as non-
informative segments. Next, segments containing unvoiced
segments (VUV=0) were removed from the final concate-
nated time series. Furthermore, to correct for instances of
apparently inaccurate annotation analyses were restricted to
continuous voiced segments lasting > 5 ms. To control for
speaker dependency, the F0 was normalized to a scale of 0
to 1, and the deltas and delta-deltas were extracted for F0

and MFCCs.
The main analyses consisted in computing three sets of

features to be used in subsequent classification approaches.
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Table 1: Statistical descriptors calculated from the pre-extracted audio features

Low Level Descriptors Statistical descriptors
normalized F0 mean, min, skewness, kurtosis, standard deviation, median,

peak-magnitude to root-mean-square ratio, root mean square level,
interquartile range, spectral flatness

delta F0 , delta-delta F0 mean, standard deviation
NAQ, QOQ, H1H2, PSP, MDQ,

peakSlope, Rd, Rd conf
mean, standard deviation, peak-magnitude to root-mean-square ratio,

root mean square level, interquartile range, spectral flatness
MCEP 0-24 mean, standard deviation, peak-magnitude to root-mean-square ratio,

root mean square level, interquartile range, spectral flatness
delta MCEP 0-24, delta-delta MCEP 0-24 mean, standard deviation

HMPDM 1-24, HMPDD 1-12 mean, standard deviation, root mean square level, interquartile range
Formants 1-3 mean, standard deviation, peak-magnitude to root-mean-square ratio,

root mean square level, interquartile range, spectral flatness

The first set of audio features consisted of a series of statis-
tical descriptors (shown in Table 1) for each pre-extracted
descriptor. The second set of audio features consisted of
Discrete Cosine Transform (DCT) coefficients for each de-
scriptor in the first column of Table 1. The first 10 values of
the DCT were retained, reducing the number of parameters
and therefore complexity. The third set of audio features
consisted of 8 high level features which were computed for
the entire duration of the concatenated time-series. The
Pause Ratio measuring the frequency of pauses during the
participant’s speech. Pauses were detected automatically
using a pause detector [26], which relied on a low loudness
detection function based on the Perceptual Quality mea-
sure. The Voiced Segment Ratio, computed as the number
of voiced segments divided by the length of the entire speech
segment. The Speaking Ratio, computed as the number of
speaking instances that there is participant’s speech, was di-
vided by the total number of selected recorded segments, as
in (4)

SpeakingRatio =
#allinstants−#pauses

#allinstants
(4)

The Mean Laughter Duration was defined as the duration of
laughter segments divided by the total number of laughter
instances. The Mean delay in response to Ellie’s questions.
The Mean duration of pauses. The Maximum duration of
pauses. The Fraction of pauses in overall time.

Finally, the former two sets of features were individually
combined in feature level with the high level features into
single feature vectors. The final set of statistical descriptors
with high-level features was of size 494, and the set of DCTs
with high-level features was of size 1278.

3.3 Text Features
We also extracted a number of features from participants’

responses. Namely, total number of words and number of
sentences, normalized by video duration, average number of
words in each sentence, and ratio of laughters over the total
number of words. The use of these features is supported
by literature indicating that slowed and reduced amount of
speech, elongated speech pauses, and short answers are non-
verbal manifestations of depression [7]. A fifth text-based
feature was extracted in the form of the ratio of depres-
sion-related words over the total number of words spoken.
Depression-related words were identified from a dictionary

of about 700 words that was manually constructed based on
online resources such as [6] [18].

Additionally, the Affective Norms for English Words rat-
ings (ANEW) [4] provided seven additional text features:
Mean and Standard Deviation for pleasure, arousal, and
dominance ratings, and word frequency.

Finally, features extracted by the LIWC software [15] pro-
vided 93 additional features. The LIWC software was de-
veloped to identify words referring to social processes (such
as reference to family, friends, and social affiliation) and
psychological states (such as overall negative/positive and
specific emotions).

4. FEATURE SELECTION
The value of individual features was assessed by docu-

menting the effect of removing each feature or set of features
on the resulting f1 score on the development set.

The initial performance, that of the complete visual fea-
tures’ set, was 0.0 for identifying the depressed and 0.83
for identifying the non-depressed. When gaze was removed
the performance improved to 0.36 (0.88) respectively. Ad-
ditionally, with emotions and AUs removal the performance
improved to 0.5 (0.9). Among visual features only LMHI-
FaceHOG appeared to have a noticeable impact on the per-
formance, since its removal resulted in a drastic drop of f1
to 0.13 (0.76). Removal of the remaining features had null
impact on classification accuracy. Therefore, only LMHI-
FaceHOG was included in the final visual feature set.

Audio feature statistical descriptors that did not appear
to impact classification accuracy were the mean, Standard
Deviation (SD) and RMS of mcep(20-24), iqr of mcep(20),
sp flatness of mcep20, mean and SD of delta mcep(20-24),
and SD of delta-delta mcep(20-24). DCT features that did
not add to classification performance included mcep(20-24),
delta mcep(20-24), and delta-delta mcep(20-24).

With respect to the text features, removal of ANEW fea-
tures had the greatest impact on classification performance,
while custom features had a lesser yet significant effect on
performance, and were retained in the final classification
schemes. Given that removal of LIWC features, separately
and in various combinations, had either null or positive im-
pact on classification performance, they were not included
in the final text-feature set.
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Table 2: Performance of visual features in the course of se-
lection, tested on the development set. F1-score: depressed
(not-depressed)

Feature-Setup F1-Score Impact
Full-set 0.00 (0.83) -

Gaze-removed 0.36 (0.88) ↑
AUs-removed 0.50 (0.90) ↑

LMHIFaceHOG-removed 0.13 (0.76) ↓

Figure 5: Posterior Probability Classification Model

5. CLASSIFICATION
Four different approaches were implemented for classifica-

tion: Gender-based, Feature-Level Fusion, Decision Fusion,
and the Posterior-Probability Model. A Decision Tree clas-
sification algorithm was applied in each case.

Gender-based classification for depression has been re-
ported to substantially improve performance [1] [25]. In the
present work, gender-based classification was implemented
by building two separate classifiers, one for male and another
for female participants. The classifier for male subjects was
trained on feature-sets extracted from data of male partic-
ipants and the female classifier with feature-sets extracted
from data of female participants.

The Feature Level Fusion concatenates the individual mo-
dalities to produce a single feature vector, so that a sin-
gle classifier is trained. The Decision Fusion model uti-
lized labels that were produced from the individual classifiers
per modality (either gender-independent or gender-based)
and combined them through logical operations (“OR” and
“AND”) in all possible combinations.

The Posterior Probability Classification Model was based
on the posterior probabilities resulting from the Decision
Trees, and consisted of three layers. Layer 1 was the Decision
Tree of the Visual features, while Layer 2 was the Decision
Tree of the fused Audio+Text (feature fusion). The input to
Layer 3 consisted of the posterior probabilities produced by
Layers 1 and 2, plus the gender label, resulting in a three-
item feature vector for the final decision. Fig. 5 illustrates
this classification approach.

6. EXPERIMENTAL RESULTS
The aforementioned classification approaches were eval-

uated through training on the training set and subsequent
testing with the development and test sets. In addition,
the algorithms were assessed using the leave-one-out proce-
dure on the joined training and development sets. Perfor-
mance of each modality, and of the fused models, in gender-
independent and gender-based models, as well as a compari-
son to the baseline performance, are reported in Tables 3, 4,
and 5. The models that performed best on the development
set were further evaluated on the test set.

As shown in Table 4, the gender-based approach outper-
formed gender-independent models with the audio statistical
descriptors and text features. There was a slight improve-
ment in performance of the gender-based over the gender-
independent feature fusion approach as well.

The Decision Fusion models performed best on the de-
velopment data set (c.f. Table 3 #7 and #8, and Table
5). Surprisingly, these models did not fare as well when ap-
plied to the test data set. The best-performing model in the
Leave-one-Out scheme was the Posterior-Probability model
which, however, performed rather poorly when applied to
the development set.

Compared to the reference audio model provided by AVEC
[27], three of the current models showed improved perfor-
mance: the gender-based model utilizing statistical descrip-
tors for both development and test sets, and the decision
fusion (Table 3 #8) for the development set (c.f. Table 5).

7. CONCLUSIONS
Several conclusions can be drawn from the present work.

First, the proposed gender-based model utilizing simple sta-
tistical descriptors of pre-extracted, low-level audio features
or the audio gender-independent DCT features, outperform-
ed reference classification accuracy (c.f. Tables 3 and 5).
Improvement in performance could be attributed to the fact
that the proposed audio-based features were computed over
the entire recording as opposed to the reference model which
was frame-based, as well as the fact that the classification
model was gender-based. Additionally, the pre-processing
of the audio features increased the performance significantly
(c.f. Table 3 #2 in comparison to #3).

Another contribution of the present work lies in the novel
implementation of the LMHI and LMM, as well as in fus-
ing high and low level features. Results pertaining to the
visual features extracted from the provided data set were
rather surprising given that analyses highlighted a single vi-
sual feature (LMHIFaceHOG) has been the most significant.
This could be explained by the fact that LMHIFaceHOG in-
corporates motion information, and by being registered and
resized, it minimizes appearance-based variation. The re-
maining visual descriptors, as well as the sub-region HOGs,
appeared not to contribute to the classification performance.
However this conclusion is based on an empirical feature
selection, as described in Section 4. Given that the perfor-
mance of visual features, in any combination, did not achieve
to outperform the respective baseline score, further future
investigation is required.

Also, it is worth pointing out that some features reported
to be significant for depression classification, both in clinical
literature as well as in previous related work, did not emerge
as significant in the current analyses, including AUs, emo-

32



Table 3: Comparison of f1-score for the single modalities classification, and the fused models, during testing with Leave-One-
Out, as well as by training with the Training, and testing on the development, and test splits. F1-scores are reported for both
classes depressed / not-depressed, with not depressed in brackets.

# textbfMethod Leave-One-
Out

Development Test

1 Vis 0.35 (0.81) 0.50 (0.9) 0.18 (0.75)
2 AudGen without pre-processing 0.43 (0.74) 0.42 (0.78) -
3 AudGen 0.45 (0.85) 0.59 (0.87) 0.52 (0.81)
4 Audio-DCT 0.19 (0.71) 0.47 (0.83)
5 TextGen 0.23 (0.79) 0.46 (0.88) -
6 Feature Level Fusion {Vis+Aud+Text} 0.35 (0.79) 0.50 (0.76) -
7 Decision Fusion {Vis OR AudGen} 0.44 (0.75) 0.63 (0.86) 0.43 (0.63)
8 Decision Fusion {(Vis OR AudGen) AND (Vis OR TextGen)} 0.42 (0.81) 0.62 (0.91) 0.23 (0.71)
9 Decision Fusion {(VisGen OR Text) AND (AudGen OR Text)} 0.47 (0.86) 0.33 (0.86) -
10 Posterior Probability Classification Model 0.70 (0.95) 0.32 (0.46) -

*Note: Vis= Visual Feature (LMHIFaceHOG); VisGen= Gender-based Vis; Aud= Audio Statistical Descriptors;
AudGen= Gender-based Aud; Text=Text features (custom+ANEW); TextGen = Gender-based Text.

Table 4: Gender-independent versus gender-based classifica-
tion. F1-score: depressed (not-depressed)

Gender-
independent

Gender-
based

Visual 0.5 (0.9) 0.17 (0.83)
Audio 0.24 (0.75) 0.59 (0.87)
Text 0.36 (0.88) 0.46 (0.88)

Feature Fusion 0.35 (0.79) 0.36 (0.83)

Table 5: Comparison of the proposed approaches to the
baseline paper [27], in respect to modality. F1-score: de-
pressed (not-depressed)

Partition Modality Baseline Proposed
Development Audio 0.41 (0.58) 0.59 (0.87)
Development Video 0.58 (0.86) 0.50 (0.90)
Development Ensemble 0.58 (0.86) 0.62 (0.91)
Test Audio 0.46 (0.68) 0.52 (0.81)
Test Video 0.50 (0.90) 0.18 (0.75)
Test Ensemble 0.50 (0.90) 0.23 (0.71)

tions, gaze, pose, head motion, and blinks. In part, this
may be attributed to certain dataset characteristics. Perfor-
mance of the pre-processing applications, which provided the
baseline-visual features could not be verified in the absence
of raw video recordings, thus landmarks or emotion/AU la-
bels may not have been 100% accurate. Occasional inac-
curacies of the time-stamps on the transcripts, could have
an impact on the selection of the relevant segments/frames.
Additionally, the unbalance in the number of participants
originally rated as depressed versus not-depressed, as well
as the fact that the categorization was based on self-report
scales, as opposed to clinical diagnosis, could be important
for the outcome.

The fact that Decision Fusion methods were the best per-
forming on the development set, but did not perform ac-
cordingly on the test set (c.f. Table 2 #6 and #7), could be
the result of overfitting. A similar explanation may apply
to the poor performance of the Posterior Probability Classi-

fication Model on the development set, despite its very high
performance in the Leave-One-Out validation.

In future work improvement of feature selection methods
is probably the best avenue to enhance classification perfor-
mance. Inspection of the bivariate and partial correlation
matrix between individual features and using probability-
based statistic indices (such as Fisher’s z) to identify sig-
nificant associations may help optimize feature selection.
Extracting video-based features on shortened time windows
(e.g., 1 sec) may further improve the sensitivity of visual
features.

This year’s dataset presents a better interpersonal con-
text for depression assessment in view of the extant litera-
ture supporting the better suitability of interviews for de-
tecting signs of depression. However, given the importance
of symptom/sign stability for depression diagnosis, repeated
recordings over several days or weeks would render results
more clinically relevant. In a similar vein data recorded
from persons with a clinical diagnosis of depression would
be desirable and should be considered in future challenges.
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[24] B. Schäling. The boost C++ libraries. XML Press,
2014.

[25] G. Stratou, S. Scherer, J. Gratch, and L.-P. Morency.
Automatic Nonverbal Behavior Indicators of
Depression and PTSD: Exploring Gender Differences.
In Humaine Association Conference on Affective
Computing and Intelligent Interaction, 2013.

[26] Y. Stylianou, V. Hazan, V. Aubanel, E. Godoy,
S. Granlund, M. Huckvale, E. Jokinen,
M. Koutsogiannaki, P. Mowlaee, M. Nicolao,
T. Raitio, A. Sfakianaki, and Y. Tang. P8-Active
Speech Modifications. In International Summer
Workshop on Multimodal Interfaces, 2012.

[27] M. Valstar, J. Gratch, B. Schuller, F. Ringeval,
D. Lalanne, M. T. Torres, S. Scherer, G. Stratou,
R. Cowie, and M. Pantic. AVEC 2016-Depression,
Mood, and Emotion Recognition Workshop and
Challenge. arXiv preprint arXiv:1605.01600, 2016.

[28] M. Valstar, M. Pantic, and I. Patras. Motion History
for Facial Action Detection in Video. In IEEE
International Conference on Systems, Man and
Cybernetics, volume 1, pages 635–640. IEEE, 2004.

[29] M. Valstar, B. Schuller, K. Smith, T. Almaev,
F. Eyben, J. Krajewski, R. Cowie, and M. Pantic.
AVEC 2014: 3D Dimensional Affect and Depression
Recognition Challenge. In 4th International Workshop
on Audio/Visual Emotion Challenge, 2014.

[30] M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang,
S. Bilakhia, S. Schnieder, R. Cowie, and M. Pantic.
AVEC 2013: The Continuous Audio/Visual Emotion
and Depression Recognition Challenge. In 3rd
International Workshop on Audio/Visual Emotion
Challenge, 2013.

[31] D. Zhou, J. Luo, V. M. Silenzio, Y. Zhou, J. Hu,
G. Currier, and H. A. Kautz. Tackling Mental Health
by Integrating Unobtrusive Multimodal Sensing. In
29th AAAI Conference on Artificial Intelligence, 2015.

34

https://github.com/itseez/opencv

	Introduction
	RELATED WORK
	FEATURE EXTRACTION
	Visual Features
	Landmark Motion History Images
	Landmark Motion Magnitude
	Head Motion
	Blinking Rate
	Emotions, AUs, Gaze & Pose

	Audio Features
	Text Features

	Feature Selection
	Classification
	Experimental Results
	Conclusions
	Acknowledgments
	References



