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ABSTRACT 
This paper proposes a novel saliency detection method by 
developing a deeply-supervised recurrent convolutional neural 
network (DSRCNN), which performs a full image-to-image 
saliency prediction. For saliency detection, the local, global, and 
contextual information of salient objects is important to obtain a 
high quality salient map. To achieve this goal, the DSRCNN is 
designed based on VGGNet-16. Firstly, the recurrent connections 
are incorporated into each convolutional layer, which can make 
the model more powerful for learning the contextual information. 
Secondly, side-output layers are added to conduct the deeply-
supervised operation, which can make the model learn more 
discriminative and robust features by effecting the intermediate 
layers. Finally, all of the side-outputs are fused to integrate the 
local and global information to get the final saliency detection 
results. Therefore, the DSRCNN combines the advantages of 
recurrent convolutional neural networks and deeply-supervised 
nets. The DSRCNN model is tested on five benchmark datasets, 
and experimental results demonstrate that the proposed method 
significantly outperforms the state-of-the-art saliency detection 
approaches on all test datasets. 

Keywords 
Saliency detection; deeply-supervised recurrent convolutional 
neural network; deeply-supervised learning; recurrent connection. 

1. INTRODUCTION 
Visual saliency detection, which aims to highlight the most 

important object regions in an image, is an important and 
challenging task in computer vision and has received extensive 
attentions in recent years. Numerous image processing 
applications incorporate the visual saliency to improve their 
performance, such as image segmentation [1] and cropping [2], 
object detection [3], and image retrieval [4], etc. A large number 
of visual saliency detection approaches [5-37] have been proposed 
by exploiting different salient cues recently. They can be roughly 
categorized as hand-designed features based approaches and CNN 
based approaches. 

For the hand-designed features based approaches, the local and 
global features are extracted from pixels [5-7, 30] and regions [8-
11, 18, 19, 23, 25, 27, 32-35, 37] for saliency detection. Generally, 

the approaches extracted features from pixels highlight high-
contrast edges instead of the salient objects, or get low contrast 
salient maps. That is because the extracted features are unable to 
reflect the complex relationship between pixels. The approaches 
extracted features from regions are much more effective than the 
ones from pixels to detect the saliency, since more sophisticated 
and discriminative features can be extracted from regions. Even so, 
the hand-designed features cannot capture the high-level and 
multi-scale information of salient objects. 

Convolutional neural network (CNN) is powerful for high-level 
and multi-scale feature learning, which has been successfully used 
in many applications of computer vision, such as semantic 
segmentation [38, 39] and edge detection [40, 41]. In last year, 
several researchers [21, 26, 28] also propose CNN based 
approaches for saliency detection and get the state-of-the-art 
performance. That is because CNNs are able to extract more 
robust and discriminative features with considering the global 
contextual information of regions. All of these approaches [21, 26, 
28] first segment images into a number of regions (such as sliding 
windows [28], multi-level decomposition regions [21], and 
superpixels [26]) and then use CNN to extract features from these 
regions, based on which the saliencies are estimated. Therefore, 
these approaches are complex and cannot generate the precise 
pixel-wise saliency prediction.  

To overcome these problems, this work proposes a full image-
to-image saliency prediction by developing a deeply-supervised 
recurrent convolutional neural network (DSRCNN), which is 
based on VGGNet-16 [42]. The DSRCNN combines the 
advantages of recurrent convolutional neural networks [43] and 
deeply-supervised nets [44] by incorporating the recurrent 
connections into each convolutional layer and adding side-output 
layers to supervise the feature learning of the intermediate layers. 
Therefore, an input image is fed into the DSRCNN model and a 
high quality salient map of the same size as the input image is 
directly produced after the feed-forward process. Figure 1 shows 
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(a) (b) (c) (d) (e) (f)  

 Figure 1. Three examples of saliency detection results. (a) The 
input images. (b) The ground truths. (c) Our detection results. 
(d)-(f) The salient maps detected by the state-of-the-art CNN 
based approaches, i.e. MC [26], LEGS [28], and MDF [21], 
respectively. 

397



some saliency detection results of the proposed method, which are 
very close to the ground truths. 

2. DSRCNN FOR SALIENCY DETECTION 
Recently, recurrent convolutional neural network (RCNN) has 

achieved state-of-the-art results of object recognition [43], and 
deeply-supervised nets (DSN) [44] have been successfully used in 
image classification [44] and edge detection [40]. RCNN has the 
ability to learn the contextual features, and DSN is able to learn 
more discriminative and robust features from local and global 
view. The contextual, local, and global features are important to 
extract a high quality salient map. Therefore, a deeply-supervised 
recurrent convolutional neural network (DSRCNN) is designed 
for saliency detection in this paper. In this section, we describe the 
DSRCNN in detail. 

To obtain a precise saliency prediction, the CNN architecture 
should be deep and have multi-scale stages with different strides, 
so that we can learn discriminative and multi-scale features for 
pixels. Training such a deep network from scratch is difficult 
when there are few training samples. So this work chooses the 
VGGNet-16 [42] trained on the large-scale dataset as the pre-
trained model for fine-tuning as done by [40]. The VGGNet-16 
has six blocks. The first five blocks contain convolutional layers 
and pooling layers, and the last block contains a pooling layer and 
fully connected layers. The last block is removed in this work, 
since the pooling operation in this block makes the feature maps 
become too small (about 1 32⁄  of the input image size) to obtain 
fine full-size prediction and the fully connected layers are time 
and memory consuming. Based on the first five blocks of 
VGGNet-16, the deeply-supervised recurrent convolutional neural 
network (DSRCNN) is constructed as shown in Figure 2. 

To make the model learn more contextual information, we use 
the recurrent convolutional layers (RCL) (as shown in Figure 3(b)) 
to replace the convolutional layers (as shown in Figure 3(a)) in the 
five blocks by incorporating the recurrent connections into each 
convolutional layer. Unfolding the recurrent convolutional layer 
for T time steps results in a feed-forward subnetworks of depth 
T+1, as shown in Figure 3(c) where T=2. In this work, we set T=2. 
While the recurrent input evolves over iterations, the feed-forward 

input remains the same in all iterations. When t=0 only the feed-
forward input is present. In the subnetwork, for a unit located at 
(𝑖, 𝑗) on the 𝑘th feature map, its net input 𝑧𝑖𝑗𝑘(𝑡) at time step t is 
computed as [43] by: 

𝑧𝑖𝑗𝑘(𝑡) = (𝐯𝑘
𝑓
)
𝑇
𝐮(𝑖,𝑗)(𝑡) + (𝐯𝑘

𝑟)𝑇𝐱(𝑖,𝑗)(𝑡 − 1) + 𝑏𝑘 (1) 

where 𝐮(𝑖,𝑗)(𝑡)  and 𝐱(𝑖,𝑗)(𝑡 − 1)  denote the feed-forward and 
recurrent input, 𝐯𝑘

𝑓  and 𝐯𝑘𝑟  denote the feed-forward weights and 
recurrent weights, and 𝑏𝑘 is the bias. More details about RCNN 
can be found in its reference [43]. As we can see, compared with 
the convolutional layer, the effective receptive field of an RCL 
unit in the feature maps of the previous layer expands when the 
iteration number increases. Therefore, the RCL is able to learn 
features which contain more contextual information. 

To make the model learn more discriminative features from 
both local and global views, a side-output is generated to perform 
the deeply-supervised learning from the last RCL of each block by 
a convolutional layer and a deconvolutional layer, as shown in 
Figure 2. Another benefit of deeply-supervised learning is to 
alleviate the common problem of “vanishing” gradients during 
training such a deep network. The additional convolutional layer 
with one 1 × 1 convolutional kernel converts the feature maps to 
a salient map, and the additional deconvolutional layer is used to 
make the salient map have the same size with the input image. To 
make the final salient map consider the local and global 
information of salient objects and be robust to the size variation of 
salient objects, the side-outputs of the all five blocks are fused by 
concatenating them in the channel direction and using a 
convolutional kernel with size of 1 × 1  to convert the 
concatenation maps to the final salient map. Convolution with a 
1 × 1  kernel is a weighted fusion process. So far, the whole 
architecture of DSRCNN has been constructed, as shown in 
Figure 2. All additional deconvolutional layer and the last 
convolutional layer are followed by a sigmoid activation function. 
And for each block, a dropout layer with the dropout ratio of 0.5 
is followed to alleviate the overfitting. 

 For training of DSRCNN, the errors between all side-outputs 
and the ground truth should be computed and backward propagate. 
Therefore, we need to define a loss function to compute these 
errors. For most of images, the number of pixels in salient objects 
and background are heavily imbalanced. Here, given an image X 
and its ground truth Y, a cross-entropy loss function defined in [40] 
is used to balance the loss between salient and background classes 
as follows: 

𝑙𝑠𝑖𝑑𝑒
𝑚 (𝐖,𝐰𝑚) = −𝛼∑log 𝑃(𝑦𝑖 = 1|𝑋;𝐖,𝐰𝑚)

|𝑌+|

𝑖=1

 

−(1 − 𝛼)∑log 𝑃(𝑦𝑖 = 0|𝑋;𝐖,𝐰𝑚)

|𝑌−|

𝑖=1

 

(2) 

where α = |𝑌−|/(|𝑌+| + |𝑌−|), |𝑌+| and |𝑌−|mean the number of 
salient pixels and background pixels in ground truth, W denotes 

 
Figure 2. The architecture of the proposed deeply-supervised 
recurrent convolutional neural network for saliency 
detection. 

   
(a) (b) (c) 

 Figure 3. (a) Feed-forward convolutional layer. (b) Recurrent 
convolutional layer (RCL). (c) Subnetwork by unfolding the 
RCL. 
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the parameters of all network layers in the five blocks, 𝐰𝑚 
denotes the weights of the 𝑚th  side-output layer including a 
convolutional layer and a deconvolutional layer, and 𝑃(𝑦𝑖 =
1|𝑋;𝐖,𝐰𝑚) ∈ [0,1] is computed using sigmoid function on the 
activation value at pixel 𝑗. So the whole loss of all side-outputs is 
defined as 

𝐿𝑠𝑖𝑑𝑒(𝐖,𝐰) = ∑ 𝑙𝑠𝑖𝑑𝑒
𝑚 (𝐖,𝐰𝑚)

5

𝑚=1

 (3) 

where 𝐰 = (𝐰1, 𝐰2, … ,𝐰5). The loss between the fusion output 
and ground truth 𝐿𝑓𝑢𝑠𝑒(𝐖,𝐰, 𝐡) is also computed by using the 
cross-entropy loss function, where 𝐡  is the weights of the last 
fusion convolutional kernel. After computing all losses, the 
standard stochastic gradient descent algorithm is used to minimize 
the following objective function during training. 

(𝐖,𝐰, 𝐡)∗ = argmin (𝐿𝑠𝑖𝑑𝑒(𝐖,𝐰) + 𝐿𝑓𝑢𝑠𝑒(𝐖,𝐰, 𝐡)) (4) 

For testing of DSRCNN, given an image, we can use the 
trained model to predict a salient map, in which the salient object 
regions have larger values. 

We use the popular Caffe deep leaning library [45] to 
implement the framework of DSRCNN. The THUS-10000 dataset 
[34] which contains 10,000 images and their corresponding 
ground truths is used for training. Since DSRCNN is a fully 
convolutional network, the images with arbitrary sizes can be the 
inputs without being resized during training and test. The training 
and test processes are conducted on a PC with an Intel i7-4790k 
CPU, a TESLA K40c GPU, and 32G RAM. The average runtime 
per image on the THUS-10000 dataset is about 0.23 second. 

3. EXPERIMENTAL RESULTS 
3.1 Datasets and Evaluation Criteria 

We evaluate the proposed method, denoted as DSRCNN, on 
five standard benchmark datasets: SED1 [46], SED2 [46], ECSSD 
[8], PASCAL-S [20], and HKU-IS [21]. 

SED1 [46] and SED2 [46] contain 100 images with one and 
two salient object, respectively, in which objects have largely 
different sizes and locations.  

ECSSD [8] contains 1,000 images with complex backgrounds, 
which makes the detection tasks much more challenging. 

Approach Year 
SED1 SED2 ECSSD PASCAL-S HKU-IS 

w𝐅𝜷 MAE w𝐅𝜷 MAE w𝐅𝜷 MAE w𝐅𝜷 MAE w𝐅𝜷 MAE 
DSRCNN / 0.8935 0.0357 0.7924 0.0526 0.8718 0.0368 0.6974 0.1284 0.8330 0.0399 

MC CVPR2015 0.8242 0.0790 0.6959 0.1153 0.7293 0.1019 0.6064 0.1422 0.6899 0.0914 
LEGS CVPR2015 0.7671 0.1021 0.5911 0.1407 0.6722 0.1256 0.5791 0.1593 0.5911 0.1301 
MDF CVPR2015 0.6896 0.1284 0.6674 0.1152 0.6194 0.1377 0.5386 0.1633 0.6135 0.1152 

RRWR CVPR2015 0.6524 0.1412 0.5914 0.1615 0.5026 0.1850 0.4435 0.2262 0.4592 0.1719 
BL CVPR2015 0.5612 0.1850 0.4673 0.1905 0.4615 0.2178 0.4464 0.2478 0.4119 0.2136 

BSCA CVPR2015 0.6161 0.1546 0.5426 0.1591 0.5159 0.1832 0.4703 0.2220 0.4643 0.1760 
MB+ ICCV2015 0.6956 0.1334 0.6354 0.1379 0.5632 0.1717 0.5307 0.1964 0.5438 0.1497 
GP ICCV2015 0.6449 0.1536 0.5688 0.1620 0.5180 0.1919 0.4823 0.2300 0.4680 0.1852 
RC TPAMI2015 0.6033 0.1642 0.5461 0.1562 0.5118 0.1868 0.4694 0.2253 0.4768 0.1714 

SGTD TIP2015 0.5743 0.1855 0.6453 0.1285 0.4689 0.2007 0.4385 0.2269 0.4785 0.1627 
LPS TIP2015 0.6029 0.1610 0.5950 0.1411 0.4585 0.1877 0.3882 0.2162 0.4252 0.1635 
MAP TIP2015 0.6339 0.1459 0.5181 0.1703 0.4953 0.1861 0.4361 0.2222 0.4533 0.1717 

CPISA TIP2015 0.6645 0.1458 0.5939 0.1482 0.5735 0.1596 0.4478 0.1983 0.5575 0.1374 
 

Table 1. The weighted F-measure and MAE of different approaches on different test datasets (red, blue, and green texts 
respectively indicate rank 1, 2, and 3) 

     

     
(a) SED1 (b) SED2 (c) ECSSD (d) PASCAL-S (e) HKU-IS 

 Figure 4: Results of all test approaches on five standard benchmark datasets, i.e. SED1, SED2, ECSSD, PASCAL-S, and HKU-IS. 
The first row presents the precision-recall curves. The second row presents the mean F-measures and the adaptive F-
measures/precision/recall which are computed from the binary images obtained by binarizing the salient maps with adaptive 
thresholds computed by using Otsu algorithm. 

399



PASCAL-S [20] is constructed on the validation set of the 
PASCAL VOC 2012 segmentation challenge. This dataset 
contains 850 natural images with multiple complex objects and 
cluttered backgrounds. The PASCAL-S data set is arguably one of 
the most challenging saliency data sets without various design 
biases (e.g., center bias and color contrast bias). 

HKU-IS [21] contains 4447 challenging images, which is 
newly developed by considering at least one of the following 
criteria: 1) there are multiple disconnected salient objects, 2) at 
least one of the salient objects touches the image boundary, 3) the 
color contrast (the minimum Chi-square distance between the 
color histograms of any salient object and its surrounding regions) 
is less than 0.7. 

All datasets provide the corresponding ground truth in the form 
of accurate pixel-wise human-marked labels for salient regions. 

For evaluation, the popular criteria, i.e. the standard precision-
recall (PR) curves, F-measure (denoted as 𝐹𝛽), the mean absolute 
error (MAE), and the weighted F-measure (denoted as wF𝛽) [47], 
are used to test the performance of the proposed method. 

3.2 Performance Comparison 
We compare the proposed method (denoted as DSRCNN) with 

thirteen state-of-the-art saliency detection approaches on five 
datasets, including MC [26], LEGS [28], MDF [21], RRWR [27], 
BL [23], BSCA [25], MB+ [30], GP [36], RC [34], SGTD [35], 
LPS [32], MAP [33], CPISA [31]. For fair comparison, the source 
codes of these approaches released by the authors are used for test 
with recommended parameter settings in this work. 

Figure 4 shows the PR curve and 𝐹𝛽 of different approaches on 
all test datasets, and Table 1 lists the MAE and wF𝛽  of different 
approaches on all test datasets. From Figure 4 and Table 1, we can 
see that the proposed method significantly outperforms all of the 
state-of-the-art approaches on all test datasets in terms of all 
evaluation criteria, which convincingly demonstrates the 
effectiveness of the proposed method. All methods get the worst 
performance on the PASCAL-S dataset. That is because 
PASCAL-S is the most complex one in these five test datasets, 
and different salient objects get different saliencies in the ground 

truths. Therefore, we believe that if a large-scale dataset 
containing complex images and different saliencies for different 
salient objects is used to train the DSRCNN model, the 
performance will be further improved. Also, we qualitatively 
compare our detected salient maps with those detected by other 
approaches in the first six rows of Figure 5. As we can see, the 
proposed method is able to highlight saliencies of salient objects 
and suppress the saliencies of background better, and the results 
of our salient maps are much close to the ground truth in various 
challenging scenarios. 

The last three rows of Figure 5 show some cases in which the 
proposed method fails to correctly detect the salient regions. For 
example, the colors of salient objects and backgrounds are very 
similar, the backgrounds are too complex, and the salient objects 
are too small. In these cases, the other approaches also cannot 
correctly detect the salient objects.  

4. CONCLUSIONS 
In this paper, we have developed a deeply-supervised recurrent 

convolutional neural network (DSRCNN) for saliency detection, 
which integrates the ideas of recurrent convolutional neural 
networks and deeply-supervised networks. DSRCNN not only 
learns the explicit contextual and high-level information, but also 
combines multi-scale discriminative information. All of these 
information is important for saliency detection, so the proposed 
DSRCNN based saliency detection method is able to generate 
high quality salient maps for various challenging scenarios. 
Extensive experiments on five standard benchmark datasets 
demonstrate that the proposed method get the best performance 
compared with the state-of-the-art approaches, convincingly 
demonstrating the effectiveness of the proposed method. 
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Figure 5: Visual Comparisons of different saliency detection approaches in various challenging scenarios. Our method is successful 
and failed in the first six rows and the last three rows, respectively. (a) Original images, (b) Ground truth, (c) DSRCNN, (d) MC, 
(e) LEGS, (f)MDF, (g) RRWR, (h) BL, (i) BSCA, (j) MB+, (k) GP, (l) RC, (m) SGTD, (n) LPS, (o) MAP, (p) CPISA. 

 

 
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) 
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