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ABSTRACT

This paper proposes a novel recursive hashing scheme, in
contrast to conventional one-off based hashing algorithms.
Inspired by human’s nonsalient-to-salient perception path,
the proposed hashing scheme generates a series of binary
codes based on progressively expanded salient regions. Built
on a recurrent deep network, i.e., LSTM structure, the binary
codes generated from later output nodes naturally inherit
information aggregated from previously codes while explore
novel information from the extended salient region, and there-
fore it possesses good scalability property. The proposed deep
hashing network is trained via minimizing a triplet ranking
loss, which is end-to-end trainable. Extensive experimental
results on several image retrieval benchmarks demonstrate
good performance gain over state-of-the-art image retrieval
methods and its scalability property.
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1 INTRODUCTION

With the growing of image data, more and more research has
concentrated on finding more useful methods to make the
image retrieval both accurate and efficient. Representing the
image with binary codes (known as Hashing [5, 6, 16, 24, 26]),
is an efficient method for image search, which maps images
with similar semantic information to binary codes with small
Hamming distance [27]. Usually, to deal with larger image
search database, longer binary codes are utilized, i.e., to
make the representation more expressive and discriminative.
However, long codes are redundant for small sized problem
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Figure 1: We propose Deep Progressive Hash-
ing(DPH), a class of architecture leveraging the com-
plete and comprehensive information extracted from
salient regions. The feature extracted by DPH will
be more representative since larger sized salient re-
gions enclose smaller ones. The newly generated
binary codes inherit discriminative information ex-
tracted from previous binary coding steps. The out-
put of DPH is scalable with concatenating the newly
binary codes. The number l and N on the top of fig-
ure represents the number of concatenated sequence
and the number of bits in the sequence respectively.

and consume unnecessary computation and storage resources.

Developing a problem-scalable hashing method is thus
highly demanded in multimedia retrieval community [8, 25,
33]. However, most of these methods could be considered as
one-off solution, namely, the length of the generated binary
codes are fixed once and is not feasible to adjust if the problem
size changes. In the case of dynamically growth of retrieval
database, scalable and adaptive capability is particularly
important. To explicitly address this issue, in this paper, we
propose Deep Progressive Hashing (DPH), a novel recurrent
architecture for scalable image retrieval. This proposed new
hashing scheme is capable of recursively generating binary
codes from a gradually expanded salient region of the input
image, in order to yield finer and finer descriptions to cope
with dynamically increasing search database.

Our proposed deep progressive hashing framework is in-
spired by human’s nonsalient-to-salient perception path. More
specifically, human visual system can focus on the main ob-
ject quickly in the image and look around the region of
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interest. There are two forms of visual attention: bottom-
up saliency-driven attention and top-down task-driven at-
tention. Top-down task-driven attention attempts to use
one’s prior knowledge to process the specific task. Bottom-
up saliency-driven attention can grasp the distinctiveness of
visual elements and help human to fix their eyes on the main
information. Therefore, visual feature extracted from this
fixation region could be used to represent the image. Our
method is thus inspired by the bottom-up visual perception
path. Rather than a fixed region of interest (i.e., salient re-
gion), in this work we explore a series of image regions with
increasing sizes which all enclose the fixation point (i.e., with
larger sized regions enclose smaller ones). More complete and
comprehensive discriminative information could be extracted
from larger sized salient regions, and since larger sized salient
regions enclose smaller ones, feature representations obtained
from larger and larger salient regions would become more
and more descriptive. This well matches our problem require-
ments, namely, to deal with small scale retrieval problem,
we can just use binary codes computed from high salient
regions (i.e., with small region size). And when the problem
scales up, we can augment more codes to the existing codes
by computing new binary representation from lower salient
regions (i.e., with larger region size). The newly computed
binary codes which also inherit discriminative information
extracted from previous binary coding steps, provide incre-
mental information to describe the image, therefore it could
be used to cope with larger sized image search problem.

More specifically, the proposed deep progressive hashing
scheme works as follows, as illustrated in Figure 1. First, we
leverage off-the-shelf saliency model to generate a series of
gradually/progressively expanded salient regions (i.e., with
each one encloses its predecessor), therefore forming a se-
quence of foreground rectangular regions with increasing sizes
and decreasing saliency values. Second, each region in the
sequence is connected to deep convolutional neural networks
based hashing unit, forming basic building blocks of the recur-
sive hashing scheme. Third and most important, to achieve
recursive and scalable hashing, we propose a recurrent neural
network structure (e.g., LSTM [10]) built on the sequence of
salient region based hashing generation units. As an LSTM
infrastructure is capable of aggregating discriminative infor-
mation along the input sequence, binary codes output from
later nodes convey useful information extracted with previous
output codes, thus yielding more and more discriminative
binary encoding. In the same time, it is very flexible to com-
bine arbitrary number of output codes to deal with different
sized retrieval problem. The proposed deep hashing network
is trained via minimizing a triplet ranking loss, which is end-
to-end trainable. Extensive experimental results on several
image retrieval benchmarks (NUS-WIDE [14], CIFAR10 [2])
demonstrate our method is state-of-the-art and possesses
good scalable property.

The rest of this paper is organized as follows. We review
some related work in Section 2. The Deep Progressive Hashing
method details are introduced in Section 3. Then we apply

DPH in Several benchmarks in Section 4. Finally, conclusion
is drawn in Section 5.

2 RELATED WORK

Learning-based Hash. The application of learning-based
hash methods in large-scale image retrieval has attracted
the interest of researchers because it can perform extremely
fast retrieval by mapping the high-dimensional visual data
into a low-dimensional binary codes. Learning-based hash ap-
proaches can be grouped into three categories: unsupervised,
semi-supervised and supervised approaches. Unsupervised
approaches use unlabeled data to learn hash functions and p-
reserve similarities in Euclidean space rather than Hamming
space. Representative methods are Iterative Quantization
(ITQ) [6], Kernelized Locality-Sensitive Hashing (KLSH) [17],
and Semantic Hashing(SH) [28]. Semi-supervised approach-
es [32] generate hash code by labeled and unlabeled infor-
mation. Supervised approaches [21, 23, 26, 31] learn more
significant binary codes by using the labeled data. Bina-
ry Reconstruction Embedding (BRE) [15] minimizes the
squared error between the Euclidean distance and Hamming
distance to learn more efficient binary codes. Minimal Loss
Hashing(MLH) [26] minimizes the hinge-like loss for code
construction. Supervised Hashing with Kernels (KSH) [23]
learns binary codes through minimizing the Hamming dis-
tance between the datasets with similar labels while max-
imizing the Hamming distance between the datasets with
dissimilar labels. Other types of work are based on deep
neural network [29, 34, 38]. Deep networks can also be used
in Deep Hashing (DH) and Supervised DH (SDH) [22]. Deep
Multi-View Hashing (DMVH) designs hand-crafted features
to handle multi-view data. Deep convolutional networks can
also be used in hashing problems. CNNH and CNNH+ [34] de-
sign a two-stage learning strategy. They decompose a matrix
into hash codes and then use CNN to learn the correspond-
ing hash function. Another method Deep Semantic Ranking
Based Hashing (DSRH) [38] optimizes a triplet loss based on
labels during hash code construction.

Recurrent Neural Network and LSTM. Recurrent
neural networks especially the Long-Short Term Memory
(LSTM) [10] have achieved great success in a large variety
of applications including temporal modeling such as speech
recognition [7], natural language processing, image caption
generation [13, 30] and activity recognition [4]. In [4], Don-
ahue et al proposed the long recurrent convolutional network
(LRCN) which uses the CNN to extract high-level features
and stack LSTM on temporal dimension to deal with video
recognition and image description tasks.

Saliency model. In past decades, several saliency model-
s [1, 9, 11, 20, 35] have been proposed to simulate the human
visual attention. Itti et al [11] proposed the bottom-up se-
lective model with fusing color, intensity and orientation of
the images. Bruce et al [1] use Shannon’s self-information to
measure the saliency. In [9], Harel et al proposed a bottom-up
visual saliency model named Graph-Based Visual Saliency.
This model consists of two steps: it first builds the activation

Session: Fast Forward 2 MM’17, October 23–27, 2017, Mountain View, CA, USA

209



Figure 2: Overview of the Deep Progressive Hashing. DPH randomly selects the images from the training set
forming the triplets (I, I+, I−). The image I is more similar to the imageI+ than the image I−. The saliency
model zooms in the main object of the images and generates a series of images with different thresholds. After
extracting the semantic features by convolutional neural networks, the next binary codes from later output
nodes, with the LSTM, naturally inherit information aggregated from previously codes while explore novel
information from the extended salient region. Thus, binary codes contain more information about salient
region. The next more accurate codes can be concatenated to the previous codes, which means the DPH is
scalable for image retrieval. Finally, the triplet ranking loss preserves the similarities on images.

maps on certain convolutional feature channels, and then
normalizes them in a way which highlights conspicuity and
admits combination with other maps. Different with these
methods, our DPH generates the binary codes by inheriting
the previous saliency information and current input, which en-
sures the new binary codes obtain more efficient information
from the salient region.

All of above methods utilize the whole image as input to
generate the final binary codes. However, image retrieval is
usually to retrieve the part of image (e.g. the object in image).
In other words, the key information we want to retrieve
usually exists in the part of image rather than the whole
image. The information out of interest region(key region)
is redundancy for retrieval task. To this end, inspired by
human nonsalient-to-salient perception path, we propose a
hashing scheme which generates a series of binary codes
based on progressively expanded salient regions. Thus, more
comprehensive and discriminative binary codes are generated.

3 DEEP PROGRESSIVE HASHING

Conventional Hashing methods attempt to learn a mapping
Γ from the original feature space to a binary codes space,
i.e., Γ(I): I → {0, 1}N , such that an input image I can be
encoded into N-bit binary codes Γ(I). The learned mapping
usually preserves semantic similarities, i.e., similar entities

in the original space also possess small Hamming distances
in the codes space. On the contrary of the above one-off
solution for binary codes generation, we proposed a recurren-
t/progressive mechanism for binary codes generation. More
concretely, the input is a sequence of image parts/regions
(which is obtained from the original image by some way),
denoted as I1, I2, ..., Il . The output is a sequence of binary
codes, denoted as b1, b2...bl. (i.e., Γ(I): I → b. the sequence
I1, I2, ..., Il are encoded into the binary sequence b1, b2...bl )
l represents the number of images generated from original
images. Note that every binary codes in the output sequence
is the refined/updated/enhanced version of the previously
output codes, with respect to the output order. This pro-
gressive scheme possesses the following advantages compared
with the traditional one-off binary codes generation. First,
DPH progressively generates newly codes inheriting the pre-
vious nodes and exploring the novel information from salient
region. Second, the recurrent mechanism is also applied to the
previous output, in turn, to reduce the redundancy. Finally,
DPH possesses the scalability by concatenating the output
binary codes.

The proposed progressive hashing scheme is shown in Fig-
ure 2. First, the proposed approach gradually zooms in the
region of interest based on the corresponding saliency map
to generate the sequence inputs. With recursive saliency
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threshold operation, a series of image patches with increasing
amount of details (may with more and more redundancy) are
generated. Second, each region in the sequence is connected
to deep convolutional neural networks based hashing unit,
forming basic building blocks of the problem recursive hash-
ing scheme. Third, an LSTM structure is proposed to take
the sequence as the input and recursively generates hashing
codes sequence. Note that: in each time step, the output
codes inherit information aggregated from previously state
while they also explore novel information from the extended
salient region, therefore yielding more and more discrimina-
tive binary codes. The proposed DPH scheme is scalable and
end-to-end trainable.

3.1 LSTM-Hashing Infrastructure

Deep Hashing Unit. The basic hashing unit we adopt in
this work is based on [34]. We use the fully connected layer
to generate approximate binary codes. Then the output is
quantified by a fixed value to generate binary codes. Our basic
hashing unit takes the AlexNet for image feature extraction.
Lai et al. [18] design deep convolutional neural networks
tailored for learning-based hashing. They add max pooling
after the convolutional layers with 1× 1 kernel and replace
the fully-connected layer with average pooling. DNNH [18]
designs divide-and-encode module to generate the binary
codes. They use a sigmoid activation function followed by a
piece-wise threshold function. Then [18] generates the binary
codes with threshold. In this paper, we use fully connected
layer rather than the divide-and-encode model because the
output of LSTM is the semantic information of images. The
divided-and-encode module will break the inner relationship
of feature. In [18] the average pooling layer uses the 6 × 6
kernel size to reduce the size of feature map from 6 × 6 to
1× 1, i.e., the final outputs of pooling layer are 1× 1 feature
maps. In other words, the final feature vector contains no
spatial information and can be seen as the representations of
different views. The divide-and-encode module will reduce
the redundancy while it is not suitable for our method.

Recursive Hashing. Assume we have already obtained a
sequence of attended foreground regions from the input image,
the purpose of recursive hashing is to aggregate important in-
formation from various foreground details thus to update the
binary codes step by step to achieve more and more discrimi-
native codes. During recursion, good features{x1,x2, ...,xl}
of earlier output are also preserved, yielding a scalable bina-
ry coding scheme. More specifically, our recursive hashing
scheme is built on the basic hashing unit within the infras-
tructure of LSTM as described in [37]. Namely, a sequence of
basic (deep) hashing units are sequentially linked by LSTM
nodes, and the status of each coding unit is propagated to fur-
ther coding units, along with novel patch information inputs.
An LSTM unit consists of the hidden state ht ∈ Rn and a
memory cell ct ∈ Rn. n is the number of hidden units. LSTM-
s define that σ(x) = (1 + e−x)−1 is the sigmoid non-linearity

and tanh(x) = ex−e−x

ex+e−x = 2σ(2x) − 1 is the hyperbolic tan-

gent non-linearity. LSTM unit updates its memory cell and

hidden state though 4 gates: input gate it ∈ Rn, forget gate
ft ∈ Rn, output gate ot ∈ Rn, and input modulation gate
gt ∈ Rn. The LSTM updates for time step t when the inputs
are xt, ht−1, and ct−1 are:

it = σ(Wxixt +Whiht−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 + bf ) (2)

ot = σ(Wxoxt +Whoht−1 + bo) (3)

gt = σ(Wxcxt +Whcht−1 + bc) (4)

ct = ft � ct−1 + it � gt (5)

ht = ot � tanh(ct) (6)

The symbol � represents element-wise multiplication. W
and b are weights and biases respectively. From Equation 5 ,
the forget gate ft decides whether the previous memory cell
ct−1 is delivered. The input modulation gate gt is a function of
the current input and previous hidden state. The input gate it
controls how much information of gt are admitted to ct. The
memory cell ct modulated by ft and it learns to selectively
forget previous information or focus on its current input and
delivers them to the next time step. Finally, the output gate
ot determines the number of memory cells transferred to the
hidden state. This architecture can incorporate long-term
temporal dynamics and complex contextual dependencies.

We simplify the above system with an equation:

(ht, ct) = LSTM(xt, ht−1, ct−1) (7)

with the help of LSTMs, the newly generated approximate
codes et (t = 1, 2, ..., l) can selectively forget previous infor-
mation (ht−1) and receive more object information from the
salient region (xt). Thus, the binary codes are more efficient
containing more information about object. In the meantime,
as shown in Figure 3, the saliency model moves away from
the region of interest. DPH can remember the previous infor-
mation and low down the weight of the current input, which
prevents the previous codes form the influence of error input.

After getting the output of LSTM, given a 256-dimensional
feature ht, the output of fully-connected layer is defined by

fc(ht) = Wht (8)

where t denotes the timestep of LSTM with W being the
weight matrix. Given mt = fc(ht), the sigmoid fuction is
defined by

et = sigmoid(mt) =
1

1 + e−mtσ
(9)

where σ is a hyper-parameter. For one sequence, the outputs
of sigmoid are defined as {e1, e2, ..., et} and are quantified
by an fixed value, where t = 1, 2, ..., l. We use 0.5 as the
threshold:

bt = sgn{et, 0.5} (10)

To generate an ordered sequence of image regions to feed
into the recursive hashing framework, we utilize visual salien-
cy encoding. The motivation is as follows. Human visual
system can sample in detail the most significant area in the
image, while it ignores background or uninterested areas.
Bottom up saliency-driven attention can help humans to
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rapidly concentrate on the main object of visual scenes. As
shown in Figure 2, we calculate the saliency map via an
off-the-shelf graph-based visual saliency model (GBVS) [9].
We then generate a series of images regions {I1, I2, ..., Il} by
picking out the obtained saliency maps based on increasing
threshold values from the original images. Note that the larg-
er the threshold is, the more remarkable the objects are. The
sequence generated can be showed as followed:

R,C = find (saliency (I0) > threshold) (11)

I = I0[Rmin : Rmax, Cmin : Cmax] (12)

where I0 represents the original images, saliency denotes the
saliency model and threshold is the threshold on the output
of saliency model. R,C denote the x, y coordinate vector of
points in the saliency region respectively. In other words, I
is the minimal rectangle region cropped from original image
I0, which contains the salient region.

This series of image regions progressively highlight the
object-of-interest: more concentrated foreground regions re-
flect more object centered information, while larger regions
contain more contextual information, and these two types of
visual information are complementary to each other. With
the proposed LSTM based recursive hashing architecture,
important information including foreground object and con-
textual knowledge are mutually excited to yield more and
more discriminative binary codes via information aggregation
and noise attenuation.

3.2 Learning DPH

The objective of training the proposed deep progressive hash-
ing network is two-fold. On one hand, following conventional
deep hashing optimization goal, similar samples in the orig-
inal image space should preserve similarity in the encoded
binary space. On the other hand, the output binary codes
through recursion should possess more and more confidence
(i.e., more and more reliable codes through recursion).

Similarity Preserving Objective: Among the current
learning-based hashing methods, supervised hashing preserve
the pair-wised similarities or triple-wised rankings, devised
by the supervised information, to let the binary codes obtain
the semantic structure of data more efficiently. The works in
[19, 27] preserve relative similarities by forcing the image I is
more similar to the image I+ than the image I−. The triplet
based similarities are easier to capture than the pair-wised
similarities.

Our method follows the settings of [19] using triplet loss
to preserve relative similarities of images. The input images
are formed to the triplet set (Γ(I),Γ(I+),Γ(I−)). Γ(I+) and
Γ(I−) are positive and negative instance respectively. Triplet
loss attempts to make the binary code Γ(I) closer to Γ(I+)
than Γ(I−) in Hamming distance. Let’s define the symbol
‖.‖H as the Hamming distance. The triplet loss can be defined
as:

�triplet(Γ(I),Γ(I
+),Γ(I−))

= max(0, 1− (‖Γ(I)− Γ(I+)‖H − ‖Γ(I)− Γ(I−)‖H))

(13)
The binary constraint on the output leads to a NP-hard

optimization problem. Our method relaxes the constraint
with �2 norm and eases the integer with the continuous
constraints on Γ(.). The new loss can be defined as:

�triplet(Γ(I),Γ(I
+),Γ(I−))

= max(0, 1 + (‖Γ(I)− Γ(I+)‖22 − ‖Γ(I)− Γ(I−)‖22))
subject to Γ(I),Γ(I+),Γ(I−) ∈ [0, 1]N

(14)

This relaxation simplifies the optimization problem with a
convex loss. We use b, b+, b− to represent the Γ(I), Γ(I+),
Γ(I−). We define the distance D = 1+(‖b−b+‖22−‖b−b−‖22).
The indicator function δD>0 = 1 if D > 0 while if D <= 0,
then δD>0 = 0. Thus, for each time step t, the gradients can
be solved as:

∂�

∂bt
= (2b−t − 2b+t )× δDt>0 (15)

∂�

∂b+t
= (2b+t − 2bt)× δDt>0 (16)

∂�

∂b−t
= (2b−t − 2bt)× δDt>0 (17)

Confidence Increasing Objective: As the network’s
attention progressively narrows down to the object, the mea-
surement for similarity should be more and more confident.
In other words, the confidence of LSTM outputs should be
monotonically non-decreasing as the newly codes exploring
the salient region. However, the triplet ranking loss does
not enforce such a monotonous non-decreasing property. We
therefore propose a novel monotonous loss, which extends
the triplet ranking loss to enforce the accuracy of prediction
increase when the time step goes deeper. Mathematically, we
can formulate this loss as:

Lm
t = max(0, (−1)y(st − spret )), t �= 0, (18)

spret =

{
max(s1, s2..., st−1), y = 1,

min(s1, s2..., st−1), y = 0.
(19)

where Lm
t denotes the monotonous loss at time-step t, which

penalizes the corresponding node if the output similarity score
violates the monotonous rule. y is the ground truth label,
i.e., 1 for matched and 0 for un-matched. st is the predicted
similarity score at time step t and spret is the maximum
(y = 1) or minimum (y = 0) prediction score until time step
t− 1. The max operation of Equation 18 picks out the nodes
that violate the monotonous rule. The overall loss could be
expressed as:

Lt = �triplet(Γ(It),Γ(I
+
t ),Γ(I−t )) + λLm

t , n �= 0, (20)

where λ is a weighting factor for both types of losses.
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Figure 3: Image sequence generation. Left: the salien-
cy model captures the object well. Right: the salien-
cy model moves away from the region of interest.

3.3 Implementation Details

Data Preparation. DPH uses the saliency model to gen-
erate a sequence of images from original image with the
different model. We use the GBVS model to generate the
salient images and pick out the salient region with differ-
ent thresholds. As shown in Figure 3, GBVS can find the
object of the images when it moves to the area which is
highly contrast with the background sometimes. We generate
5-images sequence for CIFAR-10 [14] and 9-images sequence
for NUS-WIDE [2].

Network Parameter. DPH is based on the open source
Caffe [12] framework. This network is trained by stochas-
tic gradient descent with 0.9 momentum. The weight decay
parameter is 0.0005 and gamma is 0.1. The batch is com-
posed by the timestep t and the number of sequence N . The
timestep represents the number of images generated from one
image. In this paper, we set batch as (9,32) for NUS-WIDE
and (5,60) for CIFAR-10. We fine tune our network with
the fixed weights based on the AlexNet model pretrained
on ILSVRC 2012. After the loss is steady, learning rate is
set to 0.01 at the beginning and decreased once every 10000
iterations.

4 EXPERIMENTS

4.1 Experiments setting

We test our method on several benchmark datasets:

• NUS-WIDE: The NUS-WIDE dataset provides about
270000 URLs of images collected from Flickr. The
images in NUS-WIDE have more than one label taken
from 81 concept tags. We collect 269646 images from
the Internet. We follow the settings in [18] to use the
images with 21 most frequently used labels. There are
at least 5000 images for each label.

• CIFAR-10: The CIFAR dataset is composed of 60000
32×32 color images grouped into 10 classes. Each class
has 6000 images.

In NUS-WIDE, for each class, DNNH [18] randomly selects
100 images to form the test set and 500 images excluding the
test set as training set. Totally, the test set contains 2100
images and the training set contains 10500 images. We use
the rest images and the training set as the retrieval data.
SSDH [36] obtains about 230000 images from the given links
and divides the data set into two parts: a training set of 97214

images and a test set of 65075 images. SSDH [36] uses 97214
images as the training set and selects 2100 images from the
test set to form the query set. We follow the DNNH [18], BOH-
CNN [3] and compare with other methods. BOH-CNN [3]
uses the VGGNet to extract the semantic feature, while DPH
uses the AlexNet which has the same level extracting feature
as DNNH [18]. In CIFAR-10, we randomly select 1000 images,
100 images per class, from the test set to form the test query.
The training set contains 5000 images selected from the rest
images.

We compare the performance with other state-of-the-art
hashing methods including supervised methods (e.g. DNNH,
CNNH, KSH and ITQ-CCA) and unsupervised methods (e.g.
MLH, BRE, ITQ, SH and LSH). Our method is the state-of-
the-art in different evaluation metrics with the same feature
extraction structure (i.e. CNN with similar ability). BOH-
CNN [3] extracts feature by VGGNet while DPH extracts
the feature with AlexNet. SSDH [36] uses 97214 images for
training in NUS-WIDE and 50000 images for training in
CIFAR-10 while DPH uses 10500 images for training in NUS-
WIDE and 5000 images for training in CIFAR-10.

We use the metrics as described in CNNH [18] and D-
SRH [38]. We use Mean Average Precision(MAP), precision -
recall curves, precision curves within Hamming distance 2,
precision curves w.r.t. different numbers of top returned sam-
ples, Weighted MAP and ACG(100). For fair comparison, we
use the identical training and test sets for all of the methods.

4.2 Results of Search Accuracies

Table 1 and Figure 4, 5 show the performance of all the
methods in CIFAR10 and NUS-WIDE. Our method DPH-
CONCAT achieves the best performance. DPH-FIRST uses
the first binary output generated by the original image for
test. It is still superior over the others in all criterions with
the same testing time. For example, DPH-FIRST obtains
relative increase of 19% ∼ 22% on CIFAR-10(MAP) and
7.6% ∼ 6.4% on NUS-WIDE(MAP). DPH-CONCAT gets
the increase of 24.8% ∼ 25.4% on CIFAR-10(MAP) and
8.6% ∼ 9.5% on NUS-WIDE(MAP). Figure 4 shows that
our method achieves great improvement compared with the
DNNH in all evaluation metrics. These results demonstrate
that our method can grasp the object of images in CIFAR-
10 and generate efficient binary codes achieving excellent
retrieval performance. As shown in Figure 3, saliency model
picks out the region enclosing wrong object or moves to
another object as the threshold becomes larger. Thus, LSTMs
in our method prevent the previous binary codes from the
influence of salient region enclosing wrong object. Figure 5
shows that our method is better than DNNH on MAP and
top-k precision while it has comparable performance as the
DNNH on precision-recall. These results demonstrate that
our method obtains improvement on NUS-WIDE although
the sequence contains some images without object. We use
evaluation metrics ACG(100) and weighted MAP described
in [38]. DSRH [38] collects 226265 images and randomly
selects 5000 images for testing queries and the rest is used
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Figure 4: The comparison results on CIFAR10. (a) precision curves within Hamming radius 2; (b) precision-
recall curves of Hamming ranking with 48 bits; (c) precision curves with 48 bits w.r.t different numbers of
top returned samples.

(a) (b) (c)

Figure 5: The comparison results on NUS-WIDE. (a) precision curves within Hamming radius 2; (b) precision-
recall curves of Hamming ranking with 48 bits; (c) precision curves with 48 bits w.r.t different numbers of
top returned samples

Table 1: MAP of Hamming ranking w.r.t different numbers of bits on CIFAR-10 and NUS-WIDE. For NUS-
WIDE, we calculate the MAP values within the top 5000 returned neighbors. The results are directly cited
from the respective paper. DPH-FIRST represents the binary codes are generated from the original images
without concatenation. DPH-CONCAT represents all the binary codes generated by concatenating the output.

Method
CIFAR-10(MAP) NUS-WIDE(MAP)

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

DPH-CONCAT 0.689 0.707 0.716 0.729 0.734 0.771 0.775 0.783
DPH-FIRST 0.662 0.687 0.693 0.709 0.725 0.749 0.751 0.761

DNNH [18] 0.552 0.566 0.558 0.581 0.674 0.697 0.713 0.715
CNNH* [18] 0.484 0.476 0.472 0.489 0.617 0.663 0.657 0.688
CNNH [34] 0.439 0.511 0.509 0.522 0.611 0.618 0.625 0.608
KSH [23] 0.303 0.337 0.346 0.356 0.556 0.572 0.581 0.558

ITQ-CCA [6] 0.264 0.282 0.288 0.295 0.435 0.435 0.435 0.435
MLH [26] 0.182 0.195 0.207 0.211 0.500 0.514 0.520 0.522
BRE [15] 0.159 0.181 0.193 0.196 0.485 0.525 0.530 0.544
SH [28] 0.131 0.135 0.133 0.130 0.433 0.426 0.426 0.423
ITQ [6] 0.162 0.169 0.172 0.175 0.452 0.468 0.472 0.477
LSH [17] 0.121 0.126 0.120 0.120 0.403 0.421 0.426 0.441

for training and retrieval. As shown in Figure 6, we use
larger dataset containing 269646 images and use 10500 images
for training, which means we get excellent performance on
ACG(100) and weighted MAP with the top 5000 returns in

a larger search space and smaller training set. These results
verify the DPH not only learns significant representation
but also generates efficient binary codes leading to more
satisfactory ranking performance.
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Figure 6: Comparison of ranking performance of our DPH and other hashing methods based on activation
features of fine-tuned CNN on NUS-WIDE.

Table 2: MAP of Hamming ranking w.r.t different concatenated numbers of bits on CIFAR-10 and NUS-WIDE.
For NUS-WIDE, we calculate the MAP values within the top 5000 returned neighbors.

Number
CIFAR-10(MAP) NUS-WIDE(MAP)

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

9 N/A 0.734 0.771 0.775 0.783
8 N/A 0.734 0.770 0.774 0.771
7 N/A 0.733 0.768 0.772 0.770
6 N/A 0.731 0.767 0.770 0.769

5 0.689 0.707 0.716 0.729 0.730 0.764 0.768 0.767
4 0.686 0.695 0.709 0.725 0.728 0.763 0.766 0.765
3 0.685 0.695 0.701 0.720 0.727 0.762 0.763 0.763
2 0.681 0.694 0.698 0.723 0.727 0.760 0.760 0.761
1 0.662 0.687 0.693 0.709 0.725 0.749 0.751 0.753

4.3 Results of Scalable Binary Codes

We test the different length of the binary codes concatenating
the progressive output. As shown in Table 2, the first column
represents how many outputs are concatenated. The bigger
the number is, the higher the MAP in both CIFAR-10 and
NUS-WIDE are. These results indicate that our method is
variable for different request. On one hand, the performance
of DPH-FIRST is superior over others with the same time
consumption. On the other hand, if the problem is not so
urgent to the requirement of time, our scalable output can
satisfy the different requests to improve the performance
costing more testing time.

5 CONCLUSION

In this paper, we develop deep progressive hashing method
for image retrieval, which generates a series of binary codes
based on progressively expand salient regions. Based on the
recurrent neural network, the newly generated codes inherit
information aggregated from previous codes and explore the
salient region. Thus, the output of DPH possesses excellent

scalability property satisfying different problems. The pro-
posed network is an end-to-end training via minimizing a
triplet ranking loss. The output of DPH is quantified by a
fixed value to generate binary codes. The different criterions
in image retrieval show that our method deep progressive
hashing method is state-of-the-art and is scalable output
satisfying different application scene.
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