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ABSTRACT

As an important and challenging problem in the multime-
dia area, multi-modal data understanding aims to explore
the intrinsic semantic information across different modali-
ties in a collaborative manner. To address this problem, a
possible solution is to effectively and adaptively capture the
common cross-modal semantic information by modeling the
inherent correlations between the latent topics from differ-
ent modalities. Motivated by this task, we propose a super-
vised multi-modal mutual topic reinforce modeling (M3R)
approach, which seeks to build a joint cross-modal proba-
bilistic graphical model for discovering the mutually con-
sistent semantic topics via appropriate interactions between
model factors (e.g., categories, latent topics and observed
multi-modal data). In principle, M3R is capable of simulta-
neously accomplishing the following two learning tasks: 1)
modality-specific (e.g., image-specific or text-specific ) latent
topic learning; and 2) cross-modal mutual topic consistency
learning. By investigating the cross-modal topic-related dis-
tribution information, M3R encourages to disentangle the
semantically consistent cross-modal topics (containing some
common semantic information across different modalities).
In other words, the semantically co-occurring cross-modal
topics are reinforced by M3R through adaptively passing
the mutually reinforced messages to each other in the model-
learning process. To further enhance the discriminative pow-
er of the learned latent topic representations, M3R incorpo-
rates the auxiliary information (i.e., categories or labels) into
the process of Bayesian modeling, which boosts the modeling
capability of capturing the inter-class discriminative infor-
mation. Experimental results over two benchmark datasets
demonstrate the effectiveness of the proposed M3R in cross-
modal retrieval.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models
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1. INTRODUCTION
Nowadays, many real-world applications involve multi-

modal documents, where information inherently consists of
data with different modalities, such as a web image with
loosely related narrative text descriptions, or a news article
with paired text and images. Since multi-modal documents
exploit the symbiosis of multiple-modality data to deliver
high-level semantics, it is desirable to disentangle the under-
lying latent correlations between data objects with different
modalities in multi-modal documents and support similari-
ty search across different modalities. However, the so-called
heterogeneity-gap has been widely understood as a funda-
mental barrier of multi-modal document modeling. There-
fore, effectively understanding the multi-modal data as well
as their underlying semantic properties plays a crucial role
in cross-media analysis.

To achieve the goal of multi-modal data understanding, a
number of approaches have been proposed for multi-modal
document modeling in the recent literature. According to
the model-constructing mechanisms, these approaches can
be typically categorized into two classes: statistical depen-
dency modeling and probabilistic graphical modeling. Specif-
ically, the first class of approaches mainly focuses on max-
imizing the statistical dependency (e.g., measured by the
mutual information) of different modalities in the common
latent space [12, 24, 23, 7]. In contrast, the second class of
approaches is derived from the joint modeling of data ob-
jects with different modalities in a probabilistic manner[2,
22, 26]. These approaches tend to maximize the likelihood
of observed multi-modal data in terms of their latent topic-
s. They are usually based on some assumptions about how
multi-modal data is correlated such as all modalities share
same topic proportions, or have one-to-one topic correspon-
dences, or have commonly sharing topics.

In order to learn discriminative correlated latent represen-
tations, a group of approaches integrate the side information
(e.g., class labels) into the process of multi-modal document
modeling, to enhance representation performance for within-
class multi-modal data. For instance, canonical correlation
analysis (CCA) and support vector machine (SVM)are com-
bined in [8] to multi-view classification. A generic multi-view
latent space Markov network was proposed in [5] to jointly
maximize the likelihood of multi-view data and their super-
vising labels. By introducing the class label information, the
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The lion (Panthera leo) is one of the four big cats in the

genus Panthera and a member of the family Felidae.

With some males exceeding 250 kg in weight, it is the

second-largest living cat after the tiger...They typically

inhabit savanna and grassland,although they may take

to bush and forest. Lions are unusually social compared

to other cats. A pride ofl ions consists of related females

and offspring and a small number of adult males.

Groups off emale lions typically hunt...

Highly distinctive, the male lion is easily recognized by

its mane, and its face is one of the most widely

recognized animal symbols in human culture...

While a lioness such as this one has very sharp teeth.
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Figure 1: The intuitive illustration of multi-modal mutual topic reinforce modeling. Given one multi-modal
document, its textual units or the visual units respectively describe individual text-specific topics (i.e., appear-
ance,biology and habitat) or image-specific topics (i.e., appearance, background and habitat) with different
probabilities. The proposed M3R attempts to assign a high priority to the sharing cross-modal topics (i.e.,
appearance and habitat). The areas in the image and the words in the text highlighted by the same color
share a same latent topic. (Figure best viewed in color)

generalized multi-view analysis (GMA) [24] extended orig-
inal unsupervised two-view CCA to supervised multi-view
counterpart. In [31], coupled dictionary learning (DL) was
introduced to discover the correlations of multi-modal da-
ta. It is worth noting that various forms of side-information
can potentially offer “free” supervision in many scenarios for
multi-modal data modeling such as category belonging, user
tagging, ratings and so on.

However, the aforementioned approaches to multi-modal
modeling are generally incapable of explicitly and effectively
modeling the intrinsic interactions between modalities and
usually suffer from the modeling weakness in the follow-
ing two aspects: 1) distinguishing the relative importance
information on the latent topics for multi-modal data un-
derstanding; and 2) discovering the cross-modal topic con-
sistency information. To alleviate the limitations, we pro-
pose a multi-modal mutual topic reinforce modeling (M3R)
approach that can adaptively encode the cross-modal topic
consistency information by multi-modal reinforcement mod-
eling. Here, “cross-modal topic”means the topics simultane-
ously remarked by multi-modal data (i.e., images and texts)
within the same multi-modal documents. Using such cross-
modal topic consistency information, M3R is able to adap-
tively learn a set of more semantically meaningful latent
topics via the interactions between multi-modal topics. As a
result, the mutually consistent cross-modal topics (reflecting
the same semantic information) are encouraged with a rel-
atively high priority, while the remaining modality-specific
topics are discouraged but still preserved. Therefore, the
process of discovering the mutually consistent cross-modal
topics is associated with the concept of mutual topic rein-
forcement.

Figure 1 gives out an intuitive illustration of M3R. Giv-
en one multi-modal document about a “lion” with an im-
age and corresponding text, the textual units (e.g., words
or sentences) or the visual units (e.g., patches or region-

s) respectively describe individual modality-specific textual
topics (i.e., appearance,biology and habitat) or visual topic-
s (i.e., appearance, background and habitat) with different
probabilities. However, some of textual units and visual u-
nits all remark several cross-modal topics (i.e., appearance
and habitat). In principle, M3R tends to assign a high prior-
ity to cross-modal topics by mutual topic reinforcement and
at the same time preserves other modality-specific topics.

To obtain discriminative multi-modal data representation-
s, we further incorporate the class label information into the
process of probabilistic graphical modeling, and then for-
mulate M3R as a generative probabilistic model driven by
a supervised learning manner. Therefore, the main con-
tributions of our work are two-fold. First, we introduce
the concept of multi-modal mutual topic reinforcement into
multi-modal data understanding. Second, we establish a hy-
brid generative-discriminative probabilistic graphical model
that adaptively learns a set of semantically meaningful la-
tent topics via cross-modal mutual topic reinforcement in a
supervised learning manner.

2. RELATED WORKS
As aforementioned, the modeling of multi-modal docu-

ments can be typically categorized into two classes: statis-
tical dependency modeling and probabilistic graphical mod-
eling. Representative works of the first class are Canonical
Correlation Analysis (CCA) [12] and its extensions [24, 23]
which project multi-modal data into a common (or shared)
subspace so that the correlations between multi-modal data
is preserved or maximized. For examples, after the maximal-
ly correlated subspace of text and image features is obtained
by CCA, logistic regression is employed to cross-media re-
trieval in [23]. As a supervised kernelizable extension of
CCA, Generalized Multiview Analysis [24] is conducted to
map data in different modality spaces to a single (non)linear
subspace. Although the aforementioned methods are able to
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effectively discover the desired latent representations, they
generally lack intuitive explanations since the obtained rep-
resentations are projections of the multi-modal data in a
common space without apparently interpretable meanings.

Representative works of probabilistic graphical modeling
include multi-modal latent Dirichlet allocation (mmLDA)[2],
Correspondence LDA (Corr-LDA) [2], Topic-regression Multi-
modal LDA (tr-mmLDA) [22] and Factorized Multi-Modal
Topic Model [26]. These approaches introduce shared la-
tent variables which either indicate the topic proportions
as in mmLDA or the indexes of topics as in CorrLDA [2].
Therefore, they either assume that all modalities share same
topic proportions, or have one-to-one topic correspondences,
or have commonly shared topics. Nevertheless, those pre-
defined assumptions inherently restrain a more flexible ap-
plication of cross-media retrieval in the setting involved un-
controlled multi-modal data. Thus, other topic model based
methods such as Multi-modal Document Random Field (M-
DRF) [14] are proposed to deal with more realistic scenar-
ios. All the above models learn the latent representations
of the multi-modal data in an unsupervised manner though
they are able to offer intuitive probabilistic interpretations.
The most similar work with us is the so-called nonparamet-
ric Bayesian supervised multi-modal topic modal [16], which
present a nonparametric Bayesian approach to learning up-
stream supervised topic models for analyzing multi-modal
data. However, our proposed method is a downstream su-
pervised topic model and encourages the learning of cross-
modal topics through topic distribution interactions.

Other methods based on dictionary learning for multi-
view/multi-modal retrieval such as factorized/coupled dic-
tionary learning were proposed in [13][31]. There are also
methods for cross-modal similarity metric learning based on
learning to rank such as [18] and [28], where the authors pro-
posed uni-directional and bi-directional cross-modal ranking
methods via structural SVM. Hashing based methods for
multi-modal similarity search were initiated by Bronstein et
al. in CMSSH [4]. After that, CVH [15], MLBE [30] and
sparse multi-modal hashing [29] were proposed respective-
ly. These methods bear some resemblance with CCA and
its extensions that they directly utilize intra-modality and
inter-modality similarities to map multi-modal data into a
comparable subspace and thus lack the interpretability for
the latent representations.

Motivated by the recent remarkable advance of deep learn-
ing, several deep architectures have been conducted to learn
the joint multi-modal representation. A multi-modal Deep
Boltzmann Machine for learning a generative model for data
with multiple modalities is proposed in [25]. Methods like
stacked autoencoders [21] and deep CCA [1] have similar
incentive. However, these methods all build their models
on an unsupervised manner. In [10], a deep visual-semantic
embedding model was presented to identify visual objects us-
ing both labeled image data as well as semantic information
gleaned from unannotated text. However, this supervised
deep learning method is for image labeling and can not be
extended to multi-modal analysis in a straightforward man-
ner.

3. THE MODEL OF M3R
In this section, we illustrate the detailed information of

our model. Notations and formulations are first presented
followed by the generative process and model inference. Fi-

nally, we derive the prediction algorithm using our model
for multi-modal retrieval.

3.1 Problem Formulation
With some training data of multi-modal documents and

their corresponding labels, we aim to learn the latent repre-
sentations in terms of mutually reinforced cross-modal topics
as well as maintaining discriminative information of multi-
modal documents. Terminologies from text modeling such
as“words”, “documents”, and“vocabulary”are generalized in
modeling data of other modalities and are used throughout
the paper.

Suppose that we have a labeled training set of D multi-
modal documents withM modalities from C categories: Ω =
{xd = (xd1, · · · ,xdm, · · · ,xdM , cd)}

D
d=1, where xdm, which

has Ndm words (e.g., textual words for texts or visual words
for images) {xdmn}, represents the unimodal document of
m-th modality inside d-th multi-modal document while cd ∈
{1, · · · , C} is the category of d-th multi-modal document.
We assume that each word xdmn from xdm takes a discrete
value from its modality-specific vocabulary {Vm}

M
m=1. There

is no constraint that all the multi-modal document must
have all M modalities, we just assume full correspondence
for presentation convenience. This will be apparent in the
section of generative process.

As aforementioned, the modality correlations in multi-
modal documents are adaptively learned by the interactions
of latent topic distributions while discriminations are ac-
quired by integration of label information into the proba-
bilistic graphic model. Figure 2 illustrates our model as
a graphic model. The shaded nodes indicate observation-
s, while the others represent latent variables. The dashed
edges indicate that the topic proportion of each unimodal
document is determined not only by the prior, but also by
the topic proportions of other unimodal documents with the
same multi-modal documents as it. Note that M3R system-
atically models the observed multi-modal data, the class la-
bels and the interactions between cross-modal latent topics.

Following the notations in Figure 2, our model follows
the tradition of latent Dirichlet allocation (LDA) that the
topic proportions πd1, · · · ,πdM are generated from Dirichlet
distribution with hyper-parameter α while the topic zdmn

of the word in a document with certain modality is drawn
from a multinomial distribution. Each word xdmn is drawn
from the corresponding topic-word multinomial distribution
φmk while φmk is drawn from a Dirichlet distribution with
prior β1:M . In addition to that, we introduce the correlation
(interaction) among topic proportions inside a multi-modal
document as well as the supervision (label) information.

3.2 Correlation and Supervision Modeling
Given the d-th multi-modal document xd, there must be

some correlations between different modality data {xdm}
M
m=1

to synthetically express the whole semantic delivered by xd.
For example, given one multi-modal document with an im-
age and corresponding text, the image and corresponding
text are complementary to each other for describing the
same semantics embedded in the multi-modal document.
Here we assume that if two data objects in one multi-modal
document are similar or correlated, the same should be with
their topic proportions. Therefore, we learn the correlation-
s and further reinforce the cross-modal topics of different
modalities inside the multi-modal document through topic
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proportion similarities. If πi and πj are topic proportions of
two data objects in one multi-modal document respectively,
the similarity between topic proportions πi and πj can be
calculated by the potential function as follows [14]:

Ψ(πi,πj) = exp(−λf(πi,πj)) (1)

where λ is a positive scaling factor for the potential function,
and f(πi,πj) is the symmetric KL-divergence which can be
defined as follows:

f(πi,πj) =
1

2
(DKL(πi||πj) +DKL(πj ||πi))

=
1

2

K
∑

k=1

(πik log
πik

πjk

+ πjk log
πjk

πik

)
(2)

where K is the dimension of topic proportions πi and πj ,
i.e., the number of topics.

To model the discriminative (label) information, we re-
ferred to downstream supervised models such as supervised
latent Dirichlet allocation (LDA) and its variants [3] [27],
which have gained much success in many applications such
as document or image classification in uni-modal scenarios.
Inspired by these works, the label information of the multi-
modal documents is modeled through the softmax function.
We generate the labels using the softmax regression based
on the empirical topic frequencies of the multi-modal doc-
uments which are the concatenations of the empirical topic
frequencies for unimodal documents within the multi-modal
documents.

Thus, referred to Figure 2, the parameters of our model
include the hyper-parameter α for topic proportions, a set
of M hyper-parameter β1:M for topic-words distributions in
different modalities, a parameter λ for the correlation (in-
teraction) term, and a set of C class coefficients η1:C . Each
coefficient ηc is a M ×K-vector of real values.

3.3 The Generative Process
For generating a unimodal document within a multi-modal

document, we start with choosing the category label of the
multi-modal document, then we generate the topic propor-
tion of this unimodal document, next the topic of each word
of this unimodal document is assigned, finally we generate
the word according to the topic. This process is repeated
until we draw the whole multi-modal document. Denoting
Dirichlet and Multinomial distributions as “Dir” and “Mul-
ti”, the whole generative process can be described as follows:

1. For each topic k in each modality m, sample the Vm

dimensional topic-word distribution φmk ∼ Dir(φ|βm)

2. For each multi-modal document xd:

a) Draw the M topic proportions πd1, · · · ,πdM of xd

from the distribution

p(πd1, · · · ,πdM ) =
1

Z
exp(−λ

M
∑

mi=1

∑

mj 6=mi

f(πdmi
,πdmj

))

×
M
∏

m=1

Dir(πdm|α)

where Z is a normalization constant. If some modal-
ities are missing in a multi-modal document, we just
adjust M to the accurate number of modalities in the

K

Figure 2: The graphical structure of our model.
Given one multi-modal document xd, the dashed
edges denote the topic proportion of each uni-modal
document (πdm here) is determined not only by the
prior, but also by the topic proportions of other uni-
modal documents (such as π

dm
′ and π

dm
′′ ) in the

same multi-modal document.

multi-modal document. For example, in the retrieval
stage, M = 1 and the first term (similarity term) is
disregarded.
b) For each word xdmn in xdm of the multi-modal doc-
ument xd :

Draw a topic zdmn ∼ Multi(z|πdm);

Draw a word xdmn ∼ Multi(x|φmzdmn
).

c) Draw class label cd|z(1...M)1:Ndm
∼ softmax

(z̄d,η) , where z̄d = [z̄d1 · · · z̄dm · · · z̄dM ] and z̄dm =
1

Ndm

∑Ndm
n=1 zdmn denotes the empirical topic frequen-

cies. The softmax function provides the following dis-
tribution,

p(c|z̄d,η) = exp(ηT
c z̄d)/

C
∑

l=1

exp(ηT
l z̄d)

Given the parameters α, η , β and λ, following the gener-
ative process above, we can now write the joint probability
of a corpus with D multi-modal documents as follows:

p(x,z,π,c,φ)

=
1

Z

D
∏

d=1

p(cd|z̄, η) exp(−λ

M
∑

mi=1

∑

mj 6=mi

f(πdmi
,πdmj

))

M
∏

m=1

(

K
∏

k=1

Dir(φmk|βm)
)

Dir(πdm|α)

(

Ndm
∏

n=1

Multi(zdmn|πdm)Multi(x|φmzdmn
)
)

(3)
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3.4 Inference
In this section, we come to the learning strategy of our

model. The hidden variables of the model are the topic-
words distribution parameters φ , topic proportions π, and
the topic assignments z for the whole corpus. As with other
topic models, the exact inference of the model is in gener-
al intractable. Some commonly used approximate methods
are usually conducted in parameter inference as substitutes,
such as variational inference[2], expectation propagation[20],
or Gibbs sampling[11]. In this paper, we utilize the collapsed
Gibbs sampling method for its simplicity and effectiveness.

With the joint probability of Eq.(3) for a corpus, we then
conduct collapsed Gibbs sampling for inference. Gibbs sam-
pling samples the topic assignment for one word based on its
conditional probability with the observations and the top-
ic assignments for the other words given, while the latent
variables π and φ are integrated out. We only perform
Gibbs sampling on the z in this case. The probability of ob-
servations and sampling variable conditioned on the hyper-
parameters can be calculated by integrating out the latent
variables:

∫

p(x,z,π, c,φ)dπdφ

=
1

Z

D
∏

d=1

exp(ηT
cd
z̄d)/

C
∑

l=1

exp(ηT
l z̄d)×

M
∏

m=1

Γ(
∑K

k=1 α)
∏K

k=1 Γ(α)

∏K

k=1 Γ(ndmk + α)

Γ(
∑K

k=1(ndmk + α))

K
∏

k=1

Γ(
∑V

v=1 βm)
∏V

v=1 Γ(βm)

∏V

v=1 Γ(nmkv + βm)

Γ(
∑V

v=1(nmkv + βm))

∫

exp(−λ

M
∑

mi=1

∑

mj 6=mi

f(πdmi
,πdmj

))dπ

(4)

where nmkv is the occurrence number of word v in topic
k for modality m while ndmk is the occurrence number of
words assigned to topic k of xdm in multi-modal document
xd, respectively.

Noticing that the topic proportions for different modality
data inside the multi-modal document are coupled, which
makes the integration difficult. Inspired by [2], we introduce
an empirical topic proportion instead of the original one to
relax the coupled topic proportions of our model. We use
the empirical model for the rest of our paper. We define
the empirical topic proportion distribution given the topic
assignments as follows:

π̂dmk =
ndmk + α

∑K

k=1(ndmk + α)
(5)

where ndmk is the occurrence number of topic k of xdm in
multi-modal document xd.

At this point, the markov chain updates of the topic as-
signment for one word based on the observations and the
topic assignments for the other words can be derived as fol-

lows:

p(zdmn = k|D, z−xdmn
, α,β,η, λ) ∝

ndmk + α
∑K

k=1(ndmk + α)
×

nmkx + βm
∑V

x=1(nmkx + βm)

×
exp(ηT

cd
z̄d,z=k)/

∑C

l=1 exp(η
T
l z̄d,z=k)

exp(ηT
cd
z̄d,−z)/

∑C

l=1 exp(η
T
l z̄d,−z)

∏

mj 6=m

exp
(

λf(π̂dm,−z, π̂dmj
)− λf(π̂dm,z=k, π̂dmj

)
)

(6)

where nmkx is the occurrence number of word xdmn in topic
k for modality m while ndmk is the occurrence number of
words assigned to topic k of xdm in multi-modal document
xd respectively, both exclude the current word. π̂dm,−z is
the empirical topic distribution for xdm in multi-modal doc-
ument xd excluding the current word, and π̂dm,z=k is the
empirical topic distribution for modality m of multi-modal
document d when the topic for the current word is k.

After getting z, we can estimate π according to Eq.(5)
and φ as follows:

φ̂mkv =
nmkv + βm

∑V

x=1(nmkv + βm)
(7)

For determining the hyper-parameters, we choose to au-
tomatically update the hyper-parameters. We initialize α
to be identical for all the dimensions and β to be identical
for all the modalities, then we update them according to the
training data as follows [19]:

α←

α
[

∑D

d=1

∑M

m=1

∑K

k=1

(

Ψ(ndmk + α) −Ψ(α)
)]

K
[

∑D

d=1

∑M

m=1

(

Ψ(
∑K

k=1(ndmk + α))−Ψ(
∑K

k=1 α)
)]

(8)

βm ←

βm

[

∑K

k=1

∑V

v=1

(

Ψ(nmkv + βm)−Ψ(βm)
)]

Vm

[

∑K

k=1

(

Ψ(
∑V

v=1(nmkv + βm))−Ψ(Vmβm)
)]

(9)

where Ψ(·) is the digamma function Ψ(x) = d
dx

ln Γ(x). For
the updating of η, we resort to the general gradient descent
method of softmax regression parameter update. We sum-
marize the learning process in Algorithm 1.

3.5 Multi-modal Retrieval
After the training stage, we aim to verify whether the pro-

posed M3R can find the corresponding modality data given
the query of certain modality and rank the corresponding
modality data with the same category as the query for-
ward than those with other categories, when it is applied
to cross-media retrieval. Suppose we are given a query x

which consists of N words, i.e. x = {x1, x2, · · · , xN} from
p-th modality and aim to find its similar data from the q-
th modality by cross-media retrieval. First we compute the
topic proportion of all the q-th modality data, then we rank
the q-th modality data using scores of the likelihood for the

311



Algorithm 1 The Learning Process of M3R

Input: Ω = {xd = (xd1, · · · ,xdm, · · · ,xdM , cd)}
D
d=1

Randomly initialize topics z, set values of document-
topic occurrence number vector ndmk = {· · · , ndmk, · · · }
and topic-word occurrence number vector nmkv =
{· · · , nmkv , · · · } to 0
Initialize α, β1:M and η1:C
Calculate nmkv and ndmk according to Ω and z

repeat
for d← 1 to D do

for m← 1 to M do
for n← 1 to Ndm do

k ← zdmn

ndmk ← ndmn − 1
nmkv ← nmkv − 1
calculate z̄d,−z and π̂dm,−z

for k ← 1 to K do
calculate z̄d,z=k and π̂dm,z=k

calculate p(zdmn = k) according to Eq.(6)
end for
sample a topic k of current word according to
p = {· · · , p(k), · · · }
ndmk ← ndmn + 1
nmkv ← nmkv + 1
zdmn ← k

end for
end for

end for
update α, β1:M and η1:C

until convergence or maximum iteration
calculate π̂ and φ̂ according to Eq.(5) and Eq.(7).

return π̂, φ̂;
Output:
Latent representations for multi-modal documents π̂, the
topic-words distributions φ̂

query document which can be calculated as follows:

si = p(x|πi) =

N
∏

n=1

p(xn|πi)

=
N
∏

n=1

K
∑

k=1

p(xn|z = k)p(z = k|πi),

(10)

where πi is the latent topic proportion for the i-th document
of the q-th modality data, while p(xn|z = k) looks into the

topic-word distribution φ̂pk of p-th modality learned in the
training stage. Note that the marginal probabilities p(xn|πi)
can be pre-computed during learning time, so we use this
method rather than the KL-divergence between the topic
proportions of the two modalities to avoid time-consuming
inference step for each query.

4. EXPERIMENTS
In this section, we evaluate the performance of our pro-

posed method when applied to cross-media retrieval ( spec-
ified to image-query-texts and text-query-images). We first
introduce the data sets and evaluation criteria we adopt-
ed, and then elaborate parameter setting and tuning in our
experiments. At last, we compare our method with other
state-of-the-art algorithms and demonstrate the results.

4.1 Data Sets
One of our experimental data sets is the Wiki Text-Image

data from Wikipedia feature articles [23]. Wiki Text-Image
contains 2866 text-image pairs from ten different categories
with each image associated with a text snippet describ-
ing the image. After SIFT features [17] are extracted, k-
means clustering is conducted to obtain the representation
of bag-of-visual-words (abbreviated as BoVW ) [9] for each
image. Each text is represented as a 5000-dimensional bag-
of-textual-words (abbreviated as BoTW ) vector by term fre-
quency. In this dataset, there are on average 117.5 surround-
ing textual words for each image. We randomly choose 1/5
pairs of the dataset for test with the remaining pairs for
training.

The other data set we used is the NUS-WIDE data set [6],
which contains 133,208 images with 1000-dimensional tags
and 81-dimensional concepts. Each image with its annotated
tags in NUS-WIDE can be treated as a pair of image-text
data while the concepts are regarded as the labels. We only
select those pairs that belong to the 10 largest categories
(concepts) with each pair has a unique category (concept).
As a result, we get 26813 paired data samples and then we
randomly choose 1/5 of them for test with the remaining
pairs for training. We use the 500-dimension BoVW based
on SIFT features for the representation of each image and
1000-dimensional tags for the representation of each text as
the authors supplied. There are on average 7.7 surrounding
textual words per image for this data set.

4.2 Evaluation Metrics
In the experiments, we aim to evaluate the quantitative

performance of different methods in the following two as-
pects:(1) evaluation of the category relevance between query
data and the retrieved results. A retrieved result is con-
sidered relevant if it belongs to the same category as the
query data [24]. (2) investigation of cross-modal relevance
for image-text pairs. The relevant retrieved result refers to
the corresponding unique data object paired with the query
[14]. The former aspect reveals the capability of learning
discriminative cross-modal latent representations while the
latter one can indicate the ability of learning correlated la-
tent concepts. In this paper, we use three metrics regarding
the two aspects as follows:

MAP : MAP is defined here to measure whether the re-
trieved data belong to the same category as the query (rel-
evant) or does not belong to the same category (irrelevan-
t). Given a query (one image or one text) and a set of its
corresponding R retrieved results, the Average Precision is
defined as

AP =
1

L

R
∑

r=1

prec(r)δ(r), (11)

where L is the number of relevant data in the retrieved set,
prec(r) represents the precision of the top r retrieved data
(i.e., the ratio of the relevant results in the top r retrieved
results). δ(r) = 1 if the r-th retrieved data object is relevant
to the query and δ(r) = 0 otherwise. MAP is defined as the
average AP of all the queries. Same as [30], we set R = 50
in the experiments.

Percentage: Since there is only one ground-truth match
for each image/text regarding the above mentioned aspect
(2), to evaluate the multi-modal performance we can re-
sort to the position of the ground-truth textt/image in the
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ranked list obtained. In general, one query image (or text)
is considered correctly retrieved if its corresponding ground-
truth text (or image) appears in the first t percent of the
ranked list obtained by submitting the query according to
[14]. Percentage is ratio of correctly retrieved query samples
among all the query samples. t is set to equal to 0.2 in our
experiments.

MRR: We also use Mean Reciprocal Rank (MRR) to e-
valuate the performances of different methods in our exper-
iments regarding the position of the corresponding unique
ground-truth paired with the query. The definition of Mean
Reciprocal Rank (MRR) is as follows:

MRR =
1

|Q|

|Q|
∑

i=1

1

ranki
, (12)

where |Q| is the number of query samples, ranki repre-
sents the position of the corresponding unique ground-truth
paired with the ith query in the retrieved list.

4.3 Compared Methods
We make a comparison with three state-of-the-art super-

vised cross-modal methods as follows:

• SLDA-KL: sLDA [3] is first individually employed to
obtain the latent representations (i.e.,topic proportion-
s) of each image or text. When one image (text) is
submitted, we get its nearest neighboring image (tex-
t), take the corresponding paired text (image), then
obtain the ranked list of retrieved texts (images) via
the symmetric KL-divergence between the paired tex-
t (image) and the retrieved texts (images) in term of
their topic proportions.

• Generalized Multiview Analysis (GMA)[24]: G-
MA is a supervised method in cross-modal retrieval
which utilizes both pair-wised and label information
of multi-modal data. As stated by authors , GMA is
a supervised kernelizable extension of CCA and maps
data in different modality spaces to a single subspace.

• Supervised coupled dictionary learning with gro
-up structures for Multi-Modal retrieval (SliM2)
[31]: SliM2 is a supervised dictionary learning approach
with group structures utilizing the class information to
jointly learn discriminative multi-modal dictionaries as
well as mapping functions between different modalities
for multi-modal retrieval.

4.4 Parameter Tuning
As indicated before, the parameters of our model are the

hyper-parameter α for topic proportions, a set of M hyper-
parameter β1:M for topic-words distributions in different m-
odalities, the parameter of potential function λ , and a set
of C class coefficients η1:C . The hyper-parameters α and
β1:M can be learned directly from the training data using
Eq.(8) and Eq.(9). The initial values of α and β1:M are
set to the value commonly used in text modeling[11]. The
class coefficients η1:C can also be learned in the training
process but their initial values may influence the results.
We set the initial values of η1:C same for all categories and
all dimensions making it a variable base on a single value
η. Then we perform grid-search for λ and η. The setting of
λ and η is 500 and 0.6 on Wiki data set while 40 and 6 on
NUS-WIDE data set, respectively.
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Figure 3: The Performance comparison of different
methods according to Percentage metric with varied
dimension of latent space on Wiki data set. Top is
for image query text while bottom is for text query
image.

4.5 Results

4.5.1 Performance Comparison

The performances of each algorithm are shown in Table 1
and Table 2 in terms of MAP, Percentage and MRR.

Here, two kinds of cross-media retrieval tasks are evaluat-
ed: (1) submitting one image to retrieve texts (image-query-
texts), (2) submitting one text to retrieve images (text-
query-images). From Table 1 and Table 2, we can see our
proposed method achieves the best average performance in
almost all of metrics for two data sets. Compared to the sec-
ond best methods, we gain relatively 7.8%, 7.8% and 0.84%
average performance improvement in terms of MAP, Per-
centage and MRR respectively on wiki data set while gain
relatively 7.8% and 33% average performance improvemen-
t in terms of Percentage and MRR respectively on NUS-
WIDE data set.

For NUS-WIDE data set, GMA and SliM2 performs bet-
ter than M3R in the average performance of MAP metric.
The reason is probably that one image in NUS-WIDE is as-
sociated with about only seven words in average, which re-
stricts the power of our proposed algorithm. Moreover, for
cross-media retrieval, the Percentage and MRR metrics are
considered as more accurate indicators of true performance
than the MAP metric. Since the underlying motivation of
cross-media retrieval is to learn the correlations of data ob-
jects with different modalities and perform similarity search
across different modalities, the Percentage and MRR metric-
s which evaluate the performance according to the position
of the corresponding unique ground-truth paired with the
query is more close to the goal of cross-modal retrieval than
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Table 1: The performance comparison on the Wiki data set. The results shown in boldface are best results.

Wiki
Image query Texts Text query Images Average Performance

MAP Percentage MRR MAP Percentage MRR MAP Percentage MRR
SLDA 0.2116 0.3037 0.0369 0.2146 0.2723 0.0241 0.2131 0.2880 0.0305
GMA 0.2074 0.2792 0.0153 0.2542 0.2827 0.0208 0.2308 0.2810 0.0181

SliM2 0.2548 0.4084 0.0454 0.2021 0.3106 0.0261 0.2285 0.3595 0.0358

M3R 0.2298 0.3735 0.0321 0.2677 0.4014 0.0400 0.2488 0.3875 0.0361

Table 2: The performance comparison on the NUS-WIDE data set. The results shown in boldface are best
results.

Wiki
Image query Texts Text query Images Average Performance

MAP Percentage MRR MAP Percentage MRR MAP Percentage MRR
SLDA 0.1976 0.2396 0.0022 0.2078 0.2640 0.0035 0.2027 0.2518 0.0029
GMA 0.2202 0.3765 0.0043 0.4199 0.3752 0.0045 0.3201 0.3759 0.0044

SliM2 0.3154 0.4639 0.0057 0.2924 0.3877 0.0045 0.3039 0.4258 0.0051

M3R 0.2445 0.3896 0.0065 0.3044 0.4853 0.0071 0.2742 0.4375 0.0068

the MAP metric evaluating the performance according to
the labels.

For text-query-images task,our proposed method also ac-
hieves the best performance in almost all of metrics for two
data sets except for NUS data set measured by MAP, which
can be explained by the aforementioned same reason.

For image-query-texts, SliM2 is superior except for NUS-
WIDE data set measured by MRR. SliM2 performs cross-
media retrieval by the minimization of reconstruction error
through coupled multi-modal dictionary learning. The per-
formance by SliM2 is noticeably unbalanced. The reason
is that SliM2 is prone to be over-fitting over one modali-
ty data and at the same time be under-fitting over anoth-
er modality. Mathematically speaking, the minimization of
reconstruction error in image-query-text retrieval direction
will unavoidably increase the reconstruction error in text-
query-image direction. However, our approach achieves an
attractive balance performance of cross-media retrieval due
to its intrinsic power of learning a unified space (e.g., top-
ic space) via multi-modal mutual topic reinforce modeling,
in which the pair-correspondence of images and text docu-
ments ensure an equal contribution to the learned metric,
which is essential in practical interest.

We also do performance comparison of different methods
in best parameter setting according to Percentage metric
with varied dimension of latent space on Wiki data set as
illustrate on Figure 3. The results on top row is for image
query text while results on bottom row is for text query
image. From Figure 3, we can see our method outperform all
the other methods and are relatively stable to the dimension
of latent space.

4.5.2 Results Demonstration

As one of topic model based method, our model has the
advantage to mine the interpretable latent topics. Since tex-
tual topics bear more explicit semantics and visual topics
can be hardly illustrated, we only demonstrate the latent
topics in text modality. We select some topics (indicated
by their corresponding topical words) that apparently have
some meanings related to the categories and illustrate them
in Table 3 with each topic assigned to its most relevant cate-
gory. The table indicates that our method is able to discover
the latent topics. For example, the topic related to music

consists of words like “Punk”,“video” and “bands” which all
reveals the semantics of music from different aspects.

Figure 4 illustrates one example of image query text and
one example of text query image over Wiki image-text data
set. The retrieved results by different methods are com-
pared.

The query image and the query text come from a paired
document from the “geography” category. The underlined
semantics are mainly about“Fanno creek”,“park”and“trail”.
For the example of image-query-texts, we use the corre-
sponding images together with keywords of the retrieved
texts to demonstrate the results. Though all of retrieved
texts (and their corresponding images) come from the “ge-
ography” category same as the query image but the third
retrieved text of GMA is irrelevant to the query image in
semantics. For the example of text-query-images, The re-
trieved images by SliM2 and our method (M3R) all come
from “geography” category, while there are images coming
from other categories rather than “geography” by the other
two methods. Retrieved results irrelevant to the query in
semantics are marked with red color. From the results, we
can observe that our proposed method are more semantical-
ly correlated with the query both for images and texts.

5. CONCLUSION
M3R is proposed in this paper for multi-modal data under-

standing. M3R is a supervised multi-modal mutual topic re-
inforce modeling (M3R) approach which can learn correlated
yet discriminative latent representations for multi-modal da-
ta by introducing of topic interaction and label information.
We have demonstrated the superior performance of M3R in
terms of several metrics on two data sets for cross-modal
retrieval. M3R gains interpretable latent representations
for multi-modal retrieval and is effective for cross-modal re-
trieval in terms of MAP, Percentage and MRR.
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Table 3: Exemplar topics from the Wiki dataset. We assign each learned topic to its most probable category.
Topic words are sorted by their importance values in the descending order.

Category Topic Words
Literature Literature Poets Capture Inspired Tradition God Admiral Volume Duke Piece
Media Episode Davis Filming Cast Murray Hollywood Drama Actors Angeles Round
Music Punk Video Studio Bands Award Albums Tracks Billboard POP Guitar
Sport Football Cup Ball Marshall Conference Players Wales Professional Competition Africa

Warfare Infantry Battalion Regiment Corps Units Artillery Marine Lieutenant Brigade Ridge
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