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ABSTRACT
The Bag-of-Words (BoW) models using the SIFT descriptors have
achieved great success in content-based image retrieval over the
past decade. Recent studies show that the neuron activations of the
convolutional neural networks (CNN) can be viewed as local de-
scriptors, which can be aggregated into e�ective global descriptors
for image retrieval. However, little work has been done on using
these local deep descriptors in BoW models, especially in the case
of large visual vocabularies.

In this paper, we provide the key ingredients to build an e�ective
BoW model using deep descriptors. Speci�cally, we show how to
use the CNN as a combination of local feature detector and ex-
tractor, without the need of feeding multiple image patches to the
network. Moreover, we revisit the classic issues of BoW – including
the burstiness and quantization error – in our scenario and improve
the retrieval accuracy by addressing these problems. Lastly, we
demonstrate that our model can scale up to large visual vocabular-
ies, enjoying the advantages of both the sparseness of visual word
histogram and the discriminative power of deep descriptor. Experi-
ments show that our model achieves state-of-the-art performance
on di�erent datasets without re-ranking.

CCS CONCEPTS
• Information systems → Image search; Multimedia and mul-
timodal retrieval;
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1 INTRODUCTION
Content-based image retrieval (CBIR) has been an active research
topic since the seminal work of Sivic and Zisserman [38], which is
based on the Bag-of-Words (BoW) model using local descriptor SIFT
[22]. The general work�ow of BoW is that �rst a visual vocabulary
(or codebook) is learned on a set of local descriptors, and each image
is quantized to a visual word histogram. The classic weighting
schemes such as TF-IDF and the inverted index are incorporated for
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retrieval. The naive model is further enriched by using better feature
detectors and descriptors [23, 27, 36], large visual vocabularies
[24, 26, 29], spatial veri�cation [29, 35] and query expansion [10].

Recently, the successes of the convolutional neural network
(CNN) [19] in large scale image classi�cation [34] and many other
computer vision problems attract a lot of attention. Several works
[1, 5, 11, 18, 31, 33, 40] show that the convolutional feature maps
(CFMs) extracted from the CNN can be viewed as a set of local
descriptors, which are able to be aggregated into powerful global
features for image retrieval. Compared to the conventional descrip-
tors, these local deep descriptors are learned by training a CNN on
large labeled image datasets [34] and/or �ne-tuning a pre-trained
CNN on task-speci�c datasets. The state-of-the-art performances
achieved by these works suggest that the local deep descriptors are
much more discriminative.

Di�erent from compact image descriptors, the BoW model de-
composes an image into a bag of visual elements, providing “word”-
level granularity representations. This is a desired property when
searching small instances or multiple objects in a large image cor-
pus. Equipped with large visual vocabularies, the BoW features
become very sparse and therefore the inverted index can be in-
corporated for e�cient storage and retrieval. Previous success of
the SIFT base BoW models and the emerging trends of local deep
descriptors motivate us to design methods to combine the best of
both worlds. Little works [20, 25] have been done on this direc-
tion, and further investigations are required for the retrieval model
and codebook construction. In this paper, we answer the following
question: How to e�ectively apply the local deep descriptors in the
BoW models with large codebooks?

We make the following contributions:
(1) For feature extraction, we replace the conventional a�ne

region detector and descriptor with a pre-trained CNN. An
e�ective method, namely high-norm selection, is proposed
(section 4.1) to select the most discriminative local deep
descriptors according to their neuron activations. Di�er-
ent from previous works, dividing the image into multiple
patches before feeding to the network is not required in
our model. The full-size image goes through the network
only once, which speeds up the feature extraction. More-
over, di�erent deep descriptor pre-processing methods are
evaluated (section 4.2).

(2) Two classic issues of the BoW models: burstiness [14] and
quantization error [30] are revisited in section 4.3 and sec-
tion 4.4 respectively. We show that despite of the di�erent
behaviors of the CNN features and handcraft descriptors,
these issues still persist in our scenario. Addressing these
problems further improves the retrieval accuracy by 10%
relatively on average.
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(3) Our model uses a large visual vocabulary (up to 1 million),
which results in sparse BoW histograms as image features.
Inverted index is adopted for e�cient storage and fast
retrieval. The discriminative deep descriptors allow us to
obtain better initial retrieval results, providing a good start-
ing point for re-ranking methods. The e�ects of di�erent
settings during codebook construction are also evaluated.

Extensive experiments show that our model achieves state-of-
the-art performance (section 4.6) without using re-ranking methods,
e.g., spatial veri�cation and query expansion. Related work will be
discussed in section 2 and the paper is concluded in section 5.

2 RELATEDWORK
In the past decade, image retrieval is mainly handled by the meth-
ods using local invariant descriptors, such as SIFT [22]. Previous
work can be roughly divided into two categories: 1) methods that
encode local descriptors into large visual codebooks and sparse
representations, namely Bag-of-Words (BoW) [13, 24, 29, 38, 39];
and 2) methods that aggregate local descriptors into dense and
compact features [4, 15, 16, 28]. Due to the loss of spatial informa-
tion and the degradation of discriminative power of the descriptor
after visual word quantization, BoW models are usually followed by
some post-processing steps, e.g., spatial veri�cation [29] or query
expansion [9], in order to eliminate false positive results. A dif-
ferent strategy is to aggregate the local descriptors into compact
representations, e.g., compressed Fisher Vector [28], VLAD [4, 15]
and T-embedding [16]. However, recent studies [5, 6, 18, 32, 33, 40]
show that the neuron activations extracted from CNN serve as good
image representations, which surpass conventional features in low
dimensionality settings.

CNNs are widely used in computer vision since the success
of “AlexNet” [19] in large-scale image classi�cation [34]. Recent
studies [6, 32, 42] show that the neuron activations of CNNs can be
used as generic features for image retrieval, where the features are
from the fully-connected layers. However, these layers are trained on
labeled objects to facilitate image classi�cation and hence might not
generalize to some instance types. These methods usually require
�ne-tuning the CNN on the target (or visually similar) datasets
[6, 7, 42] to obtain satisfactory retrieval performance.

Besides of the fully-connected layers, there is an emerging trend
[1, 5, 11, 18, 31, 33, 40] toward using the activations of the con-
volutional layers, named as convolutional feature maps (CFMs), as
image features which shows superior performance. Speci�cally,
Razavian et al. [33] propose to segment the image into multiple
square patches and extract patch descriptors using CNN. During
searching, they cross-match all the patches to obtain the best match
results. Obviously, this method cannot handle large-scale datasets
due to the high computational cost. Babenko et al. [5] propose a sim-
ple but e�ective CFMs aggregation method based on sum-pooling,
which generates compact global representations (256 dimensions)
for retrieval. But their performance still lags behind the traditional
methods. Tolias et al. [40] propose an aggregation method which
�rst decomposes the CFMs into multiple regions at di�erent scales
and then aggregates them via sum-pooling. This method outper-
forms [5] in most cases. Both Radenovic et al. [31] and Gordo et

Table 1: Characteristics of the benchmark datasets.

# images # queries # descriptors
Ox5k 5,063 55 15.1M
Pa6k 6,392 55 18.8M
Scu. 3,170 70 8.6M
Hol. 1,491 500 4.3M

al. [11] show that �ne-tuning the CNNs can further improve the
performance of CFMs-based features.

3 FRAMEWORK AND EVALUATION
We �rst introduce the basic settings of our baseline framework,
including the feature extraction process, the BoW model, and the
benchmark datasets for testing. Improvements of di�erent parts in
our framework will be provided in the following sections.

For image features, we use VGG19 [37] provided by Ca�e [17]
and extract the CFMs from the last convolutional layer as in [5,
18, 40]. The original image sizes are kept during feature extrac-
tion. All the input images are zero-centered by RGB mean pixel
subtraction [12]. The output CFMs X ∈ RH×W ×D of an image can
be equivalently represented as a set of local descriptors X = {xi ∈
RD |i ∈ {1, . . . ,H ×W }}, where H andW are height and width of
each feature map, and D denotes the number of feature maps (or
channels) in that layer (D = 512 in our case). Finally, we perform
L2-normalization for all the local descriptors.

For the BoW framework, we follow the standard model described
in [29]. Approximate K-means1 is applied to generate the visual
codebook with the size of 500,000 words2. The local descriptors
of each image are then hard assigned to their closest words using
approximate nearest neighbor method. We use the standard tf-idf
weighting scheme and compute the image similarity by L2 distance.
The image similarities are computed e�ciently using an inverted
index. Note that in this baseline, the visual codebooks are learned
on the target datasets respectively.

Four datasets are chosen for evaluation in the experiments: Ox-
ford5k [29], Paris6k [30], Sculptures [2] and INRIA Holidays [13].
These datasets have diverse types of images: Oxford5k and Paris6k
are landmarks related, while Sculptures focuses on textureless sculp-
tures, and INRIA Holidays contains a variety of scenes/objects. The
diversity of image types help us to better evaluate the performance
of di�erent methods. The query bounding boxes are used for crop-
ping out the target objects during retrieval when provided. The
evaluation metric is the mean average precision (mAP) for all the
datasets. The characteristics of these datasets are summarized in
table 1. The baseline results are shown in table 2.

4 IMPROVING THE NAIVE BOWMODEL
4.1 Descriptor selection
In our baseline approach, all the local descriptors of given a database
image are used when generating its BoW histogram representa-
tion. However, in previous literatures, the keypoints (or interest
points) of an image are �rst detected by feature detectors (e.g.,

1The VLFeat [41] library is used for implementations.
2Various codebook sizes will be evaluated in section 4.5.
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Table 2: The mAPs of baseline on four datasets with di�er-
ent feature selection methods. “+ keypoints”: baseline with
keypoints selection and “+ high-norm”: baseline with high-
norm selection (60% selection rate).

Ox5k Pa6k Scu. Hol.
baseline 0.656 0.739 0.402 0.774
+ keypoints 0.718 0.785 0.219 0.770
+ high-norm 0.762 0.816 0.472 0.814

Di�erence-of-Gaussians (DoG) [22], Hessian-A�ne [23]), which
are then described by SIFT descriptors. The keypoint detection
reduces the number of unnecessary local descriptors in order to
provide better image representations. Here we propose two novel
descriptor selection strategies for the CFMs local descriptors, as
illustrated in �gure 1.

• Keypoints selection: we apply the covariant region detec-
tors (e.g., DoG [22]) to obtain a set of keypoints for an
image. Given the spatial shape of CFMs is H ×W , we use
a uniform square mesh to evenly divide the image into
H ×W patches, each of which corresponds to one local de-
scriptor. We select the descriptors that are with at least one
keypoint inside their patches. Note that the local descrip-
tor’ receptive �eld on the image might be di�erent from
the assigned patch. We empirically �nd that this simple
strategy produce reasonable results;

• High-norm selection: the CFMs local descriptors with large
norms (| |xi | |1) are more discrimiantive [5]. Inspired by
this observation, for the second method, we extract a cer-
tain percentage of descriptors that are with the largest
L1-norms.

During the BoW histogram generation, instead of using all the
local descriptors, we apply the proposed selection methods to �lter
out unwanted descriptors. The results of these two methods are
shown in table 2 and �gure 2. From table 2 we see that keypoint
selection increases the mAPs of two landmark datasets. However,
there is a large accuracy drop on the Sculptures dataset. The reason
is that the DoG detector is inappropriate for detecting keypoints
from smooth objects.

For the high-norm selection, the results of various selection rate
on Oxford5k in �gure 2 show that �ltering out low-norm descriptors
signi�cantly improves the accuracy. This observation is consistent
with Babenko and Lempitsky’s �ndings [5]. It is interesting to
see that the accuracy is still higher that the baseline even 80%
of the descriptors are discarded. In general, the average selected
percentage of keypoints selection is around 42 - 60%. Table 2 shows
that the high-norm selection consistently improves the performance
on all datasets. Besides of the robust improvements, another merit is
that we only need one CNN for both feature extraction and selection
without using any external detectors.

Therefore, we use the high-norm selection with 60% selection
rate for all datasets without further �ne-tuning this parameter in
our experiments.

(a) (b)

Figure 1: Di�erent feature selection strategies: (a) keypoints
selection; and (b) high-norm selection. The grids over the
images denote H ×W patches. The green dots in (a) are the
detected keypoints. The warmer areas in (b) represent local
descriptors with larger norms. The red boxes denote the se-
lected local descriptors. (Best viewed in color.)
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Figure 2: The mAPs of di�erent high-norm selection rates
on Oxford5k.

4.2 Descriptor pre-processing
Previously, the local descriptors are L2-normalized after extraction.
In this section, we evaluate three other pre-processing methods:

• L1-normalization;
• RootCFM: inspired by RootSIFT [3], we pre-process the

CFMs local descriptor by taking the square root of each
element and L2-normalization. When comparing the pro-
cessed descriptors, namely RootCFM, using Euclidean dis-
tance, it is equivalent to using the Hellinger kernel to com-
pare the original descriptors;

• L2-PCAw-L2: similar to [5, 25, 40], the descriptors are
processed with L2-normalization, PCA-whitening, and L2-
normalization at last.

The results are shown in table 3. The RootCFM generally achieves
the best performance among the four methods. The e�ectiveness
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Table 3: ThemAPs of di�erent pre-processingmethods. The
retrieval model is the baseline with high-norm descriptor
selection (c.f. section 4.1).

Ox5k Pa6k Scu. Hol.
L2-norm 0.762 0.816 0.472 0.814
L1-norm 0.741 0.823 0.424 0.808
RootCFM 0.788 0.820 0.498 0.843
L2-PCAw-L2 0.748 0.770 0.417 0.845

of RootCFM on other tasks (e.g. image classi�cation) will be in-
vestigated in future work. In the following sections, RootCFM pre-
processing is applied.

4.3 Burstiness
Visual word burstiness [14] is a phenomenon that certain words
appear many times in an image due to the repetitive of visual
elements. The bursty features will dominate the similarity measure
and therefore compromise the image retrieval accuracy. In this
section, we show that burstiness still persists in our case and a
word weighting normalization is performed to tackle the problem.

Figure 3 shows the top �ve busty words (the ones with highest
term frequencies) of di�erent images. Obviously, burstiness occurs
when there are repetitive structures or similar textures. Due to the
overlaps of receptive �elds in convolutional �lters, nearby local
descriptors are usually assigned to the same words and therefore
the bursty words appear in groups.

To quantitatively measure burstiness, we plot the visual word
distribution in �gure 4. For each visual word k , its term frequency
(TF) in image i is denoted as vi,k . We count its maximum TF Mk
across the image collection, i.e., Mk = max

i
vi,k . The number of

words with certain value of Mk is shown in �gure 4a. Similarly, we
denote the maximum TF in image i as Ni (i.e., Ni = max

k
vi,k ), and

the number of images with certain value of Ni is shown in �gure 4b.
Figure 4a shows that a majority of words maximally appear three
times at most in an image. Meanwhile, in �gure 4b, most images
have a maximum TF larger than 10. The above observations sug-
gest the prevalent existence of burstiness in general images, which
violates the assumption in the BoW models that visual words are
emitted independently in the image.

Our solution to tackle the burstiness problem is given below. The
similarity of two images’ BoW represenations can be interpreted as
a voting score of their matched local descriptors [13]. Speci�cally,
given the query image Q and its local descriptors {q1, q2, ..., qm },
the database image D and its descriptors {d1, d2, ..., dn }. The tf-idf
weighting similarity between Q and D is measured by:

Stf-idf(Q,D) =
K∑
k=1

∑
(qi ,dj )

qi ∈Q,dj ∈D
w (qi )=w (dj )=k

idf2(k), (1)

where k denotes the k-th visual word, K is the codebook size,
w(qi ) = w(dj ) = k means qi and dj are both assigned to word
k , and idf(k) is the inverse document frequency (IDF) of word k .

Table 4: The mAPs of di�erent scoring strategies. The re-
trieval model is the baseline with high-norm descriptor se-
lection and RootCFM.

Ox5k Pa6k Scu. Hol.
Stf-idf 0.788 0.820 0.498 0.843
Sburst 0.818 0.838 0.535 0.847

Note that this score will be normalized by the L2-norms of Q and
D’s BoW histograms at last [13].

To handle the burstiness, the new scoring function is:

Sburst(Q,D) =
K∑
k=1

∑
(qi ,dj )

qi ∈Q,dj ∈D
w (qi )=w (dj )=k

idf2(k)
tfD(k)

, (2)

where tfD(k ) = vD,k denotes the TF of word k in image D. This is a
normalization term to reduce the impact of the bursty word in the
same image. There is no further normalization for the �nal score.
The results of these two scoring strategies are shown in table 4, and
Sburst consistently outperforms Stf-idf. Unlike [14] where normaliz-
ing the score directly by the number of occurrences of the visual
word is found too hard, our experiments demonstrate that this sim-
ple normalization method is better. It might due to the di�erences
between burstiness patterns of the CFMs local descriptors and the
ones of SIFT. Note that there is no modi�cation required for the
other parts of the retrieval model, both scoring functions can be
computed e�ciently using the inverted index.

4.4 Soft-assignment
With a learned codebook, the local descriptor is quantized to its
nearest visual word. This “hard”-assignment might lead to large
quantization error because of the information loss and the visual
word ambiguity. In [21, 30], “soft”-assignment (SA) is proposed
to alleviate this drawback by assigning each local descriptor to n
nearest visual words instead of one, and the weight to each word is
proportional to exp(−βd2), where d is the distance of the descriptor
to the assigned word.

We evaluate the e�ectiveness of SA in our case and the results are
shown in �gure 5. Here we assign each descriptor to its three nearest
neighbors (i.e. n = 3, β = 0) for all datasets without �ne-tuning
this parameters. As expected, SA further improves the retrieval
accuracies on most of the datasets. Since the average list length of
the inverted �le becomes n times longer and there are up to n times
more visual words need to be evaluated for the query, SA takes n
times higher memory consumption and requires n2 times longer
query time.

Finally, we summarize the improvements obtained when all the
proposed methods are employed in �gure 5. Compared with the
baseline, there are 27%, 18%, 42% and 9% relative increases in terms
of mAP for the Oxford5k, Paris6k, Sculptures, and INRIA Holidays
respectively. These results are promising especially when consider-
ing no post-processing steps (e.g., spatial ver�cation [29] and query
expansion [3, 10]) are required.
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Figure 3: Illustration of burstiness. Di�erent colors and markers denote di�erent visual words.

(a)

(b)

Figure 4: (a) Histogram of visual words with di�erent maxi-
mum term frequencies; (b) Histogram of images with di�er-
ent maximum term frequencies. The data is evaluated on
all 16,116 images of the four datasets, and the codebook is
learned on collected Flickr images and its size is 1 million
(See section 4.5 for details).

4.5 Codebook construction
There are two major concerns when constructing the visual code-
book: where is the codebook learned from and what is the proper
codebook size. So far, the visual codebook is learned on the target
dataset. Previous studies [3, 30] show that learning the visual code-
book on an independent dataset will diminish the performance. On
the other hand, the optimal size of codebook varies in di�erent
scenarios [24, 29]. In this section, we study the e�ects of these two
factors.

Following [13], we retrieve around 109,000 images from Flickr,
namely Flickr109k, for codebook learning. We use the same feature
extraction and codebook construction pipeline on this dataset. The
codebook sizes ranging from 25K to 1M are evaluated. The results
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0.847

Figure 5: The improvements over the baseline.

are shown in �gure 6. When the codebooks are learned on the
target datasets, the performance curves are quite �at for all datasets
except the Sculptures as shown in �gure 6a. As the codebook size
marginally changes the retrieval performance, we stop testing larger
codebook size for this case. Similar behaviors can be observed when
the codebooks are learned on an independent dataset (see �gure 6b).
Comparing �gure 6a and 6b, the accuries degrade on all datasets,
which is consistent with previous �ndings [3, 30].

4.6 Comparison with existing work
We compare our model with the state of the art in table 5. For all
the BoW, only methods without post re-ranking are considered.
According to whether the codebooks are learned on independent
datasets, we divide them into two di�erent groups. Our model
outperforms all the SIFT-based BoW methods [24, 27, 35, 43] on all
datasets except [27] on Oxford5k. These results are more notable
when considering no re-ranking methods are adopted. Both [25]
and [20] use CNN features as local descriptors in BoW models.
However, their codebook sizes are small compared to ours. In [20],
the features are extracted from multiple layers of the CNN in a
sliding windows fashion on a single image. In contrast, our model
only needs to feed the whole image into the network once, which
requires less computation e�orts.

For completeness, we summarize recent studies [1, 5, 11, 18, 31,
40] on aggregating the CFMs into a global descriptor for image
retrieval. The dimensionalities of the resulting global descriptors
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Figure 6: The mAPs of di�erent codebook size. (a) The codebooks are learned seperately on the target datasets; (b) The code-
books are learned on the Flickr109k dataset.

Table 5: Accuracy comparison with the state of the art. “Feature”: the feature detectors/extractors; “Words”: codebook size;
“Target”: codebook learned on the target datasets; “D”: Dimensionality; “FT”: �ne-tuning. Scores marked with a * manually
rotate Holidays images to up-right orientation.

Ba
g-

of
-W

or
ds

Method Feature Words Target Ox5k Pa6k Scu. Hol.
Shen et al. [35] Hesa� [27] 1M Y 0.752 0.741 - 0.762
Zheng et al. [43] DoGa� [36] 1M Y 0.744 0.759 - 0.654
Perdoch et al. [27] Hesa� [27] 1M Y 0.846 - - -
Mohedano et al. [25] VGG [37] 25K Y 0.738 0.820 - -
Li et al. [20] CNN-M [8] 20K Y - - - 0.858
Ours VGG [37] 500K Y 0.833 0.872 0.571 0.846
Perdoch et al. [27] Hesa� [27] 1M N 0.725 - - 0.769
Mikulik et al. [24] Hesa� [27] 16M N 0.742 0.749 - 0.749*
Ours (on Flickr109k) VGG [37] 1M N 0.792 0.843 0.441 0.818

G
lo

ba
ld

es
cr

ip
to

rs Method Feature D FT Ox5k Pa6k Scu. Hol.
Babenko & Lempitsky [5] VGG [37] 256 N 0.589 - - 0.802*
Tolias et al. [40] VGG [37] 512 N 0.669 0.830 - -
Kalantidis et al. [18] VGG [37] 512 N 0.708 0.797 - 0.851*
Arandjelovic et al. [1] VGG [37] 256 Y 0.634 0.715 - 0.768
Radenovic et al. [31] VGG [37] 512 Y 0.801 0.850 - 0.825*
Gordo et al. [11] VGG [37] 512 Y 0.831 0.871 - 0.867

are usually ranging from 256 to 512. For [5, 18, 40], features are
extracted using the pre-trained CNNs. Nevertheless, more recnet
studies [1, 11, 31] show that �ne-tuning the CNNs on task-speci�c
dataset (e.g., landmark retrieval) can provide further improvements.
Our method can also bene�t from the success of these methods. For
example, we can use the �ne-tuned CNN for feature extraction on
task-speci�c retrieval.

5 CONCLUSION
We propose an e�cient bag-of-words model using local deep de-
scriptors from the convolutional neural network. The high-norm
descriptor selection provides a simple and e�ective way to choose
the most discriminative local descriptors, which improves the re-
trieval accuracy signi�cantly. Di�erent descriptor pre-processing

methods are evaluated and the RootCFM is found to be the best. We
demonstrate that the problems of burstiness and quantization error
still persist in our scenario and addressing these issues provides
further improvements on accuracy. Our model uses a large visual
codebook combined with inverted index for e�cient storage and
fast retrieval.

The e�orts we have made suggest that the lessons learned from
the past SIFT-based methods can help us to better customize the
BoW model for deep features. There are several directions for the
future work, such as designing spatial veri�cation methods for
deep descriptors, utilizing di�erent layers’ features from a CNN,
encoding the spatial information of convolutional feature maps into
inverted index, combining SIFT and CNN features to enhance the
BoW model, and so on.
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