
Joint Graph Learning and Video Segmentation via Multiple
Cues and Topology Calibration

Jingkuan Song
University of Trento

Trento, Italy
jingkuan.song@unitn.it

Lianli Gao
University of Electronic

Science and Technology
of China, Chengdu, China

lianli.gao@uestc.edu.cn

Mihai Marian Puscas
University of Trento

Trento, Italy
mihaimarian.puscas@unitn.it

Feiping Nie
Northwestern Polytechnical

University
Xi’an, China

feipingnie@gmail.com

Fumin Shen
University of Electronic

Science and Technology
of China, Chengdu, China
fshen@uestc.edu.cn

Nicu Sebe
University of Trento

Trento, Italy
niculae.sebe@unitn.it

ABSTRACT
Video segmentation has become an important and active research
area with a large diversity of proposed approaches. Graph-based
methods, enabling top performance on recent benchmarks, usually
focus on either obtaining a precise similarity graph or designing ef-
ficient graph cutting strategies. However, these two components are
often conducted in two separated steps, and thus the obtained sim-
ilarity graph may not be the optimal one for segmentation and this
may lead to suboptimal results. In this paper, we propose a novel
framework, joint graph learning and video segmentation (JGLVS),
which learns the similarity graph and video segmentation simul-
taneously. JGLVS learns the similarity graph by assigning adap-
tive neighbors for each vertex based on multiple cues (appearance,
motion, boundary and spatial information). Meanwhile, the new
rank constraint is imposed to the Laplacian matrix of the similarity
graph, such that the connected components in the resulted similar-
ity graph are exactly equal to the number of segmentations. Fur-
thermore, JGLVS can automatically weigh multiple cues and cali-
brate the pairwise distance of superpixels based on their topology
structures. Most noticeably, empirical results on the challenging
dataset VSB100 show that JGLVS achieves promising performance
on the benchmark dataset which outperforms the state-of-the-art by
up to 11% for the BPR metric.
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•Computing methodologies→ Video segmentation;
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1. INTRODUCTION
Video segmentation can be defined as partitioning a video into

several disjoint spatial-temporal regions such that each region has
consistent appearance and motion. In the last few years, it has
achieved an extraordinary success and has become a fundamen-
tal problem in a wide range of applications, such as object track-
ing, activity recognition and video summarization [15, 34, 31, 17].
Segmenting general and unconstrained videos is a challenging re-
search problem due to existent scene and scale ambiguities of the
segments [40] as well as the temporal-consistency constraints [14].
Different types of video segmentation algorithms have been re-
cently introduced, from ones based on clustering [30, 9], to graph-
based processing [14, 19, 10, 41] and tracking [3, 32, 34].

Among the existing video segmentation techniques, many suc-
cessful ones benefit from mapping the video elements onto a graph
which pixels/superpixels are nodes and edge weights measure the
similarity between nodes. Cutting or merging is then applied on
this graph to generate the video segments. Most of the existing
graph-based methods focus on (i) what features to extract from each
node; (ii) how to define a precise similarity graph and (iii) how to
cut/merge the nodes effectively.

Meaningful features are necessary for good video segmentation.
Previous work has extracted a variety of features [9, 40] from su-
perpixels. To get the similarity graph, a graph topology is firstly
designed according to the spatio-temporal neighborhood of the su-
perpixels and the extracted features are used to weigh their edges.
While standard similarity measures on the extracted features pro-
vide the basic way to calculate the similarity graph [30, 9], more
recent work introduces learning a more precise similarity graph in
either a supervised [19] or an unsupervised manner [20]. While su-
pervised video segmentation methods [19, 40] can generally achieve
better performance, the human annotation is time-consuming and
the inherent video object hierarchy may be highly subjective. In
contrast, a group of methods improve on cutting techniques [41, 10,
30, 14], which explicitly organize the image elements into mathe-
matically sound structures based on the optimization of the pre-
defined cutting loss function. One representative criterion is the
normalized cut [14]. By minimizing a cutting cost objective func-
tion, the best segmentation can be obtained. This objective func-
tion is further proved to be equivalent to the generalized eigenvalue
decomposition problem and a number of follow-ups proposed effi-
cient solutions for this problem [23]. To reduce the computational
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cost, in [41, 10], fast partitioning methods that identify and remove
between-cluster edges to form node clusters are proposed.

Graph cut methods provide well-defined relationships between
the segments, but the problem of finding a cut in an arbitrary graph
may be NP-hard. More importantly, because the graph similarity
learning [13, 33, 35, 12, 25, 26] and the graph cutting are con-
ducted in two separated steps, the learned graph similarity matrix
may not be the optimal one for cutting, leading to suboptimal re-
sults. To tackle this problem, in this paper we propose a novel
video segmentation framework: Joint Graph Learning and Video
Segmentation (JGLVS), which learns the similarity graph and seg-
mentations simultaneously. To summarize, the main contributions
of this paper are:

• Our unsupervised video segmentation framework learns the
similarity graph and cutting structure simultaneously to achieve
the optimal segmentation results. We derive a novel and effi-
cient algorithm to solve this challenging problem.

• We utilized multiple cues of the superpixels and the weights
of different cues are automatically learned. Furthermore, we
calibrate the similarity of different superpixels based on their
topology structures to make them comparable.

• The proposed JGLVS achieves up to 11% improvement over
the state-of-the-art baselines on the largest public dataset VSB100,
which validates the effectiveness and efficiency of our ap-
proach.

The remainder of this paper is organized as follows. Section 2
discusses some related works. The details of JGLVS are introduced
in section 3. Section 4 illustrates the experiments results and we
draw a conclusion in section 5.

2. RELATED WORK
The relevant state-of-the-art methods on video segmentation are

reviewed in this section. The problem definitions for video seg-
mentation have been diverse.

Motion segmentation focuses on separating point trajectories from
an image sequence with respect to their motion [24, 18, 29, 4]. In
[29, 4], the segmentation is based on pairwise affinities, while in
[28] third order terms are employed to explain not only translational
motion but also in-plane rotation and scaling, and [42] models even
more general 3D motions using group invariants. The actual group-
ing in these methods is done using spectral clustering. Differently,
in [18], they formulate the segmentation of a video sequence based
on point trajectories as a minimum cost multicut problem. Unlike
the commonly used spectral clustering formulation, the minimum
cost multicut formulation gives natural rise to optimize not only
for a cluster assignment but also for the number of clusters while
allowing for varying cluster sizes. Similarly, in [5], they utilize im-
proved point trajectories to segment moving object in video by a
graph-based segmentation method. And in [8], motion trajectory
grouping in a setup similar to [4] is used to perform tracking. Al-
though the grouping in [8] is computed using spectral clustering,
repulsive weights computed from segmentation topology are used
in the affinity matrix. In [24], they introduced minimal supervision,
which is shown to be helpful to improve the performance of motion
segmentations. In [22], they propose a framework to segment the
objects in relative video shots, while discarding the irrelative video
shots.

On the other hand, [41, 20, 9, 10] seek to construct full pixelwise
segmentation, where every pixel (not only the moving objects) is
assigned one of several labels. They can generally be divided into
unsupervised and supervised methods.

A large body of literature exists on unsupervised video segmen-
tation, with methods that leverage appearance [3, 14, 32, 38], mo-
tion [3, 16], or multiple cues [41, 20, 9, 10]. Unsupervised super-
voxel generation [9, 2] has been widely accepted as a valuable pre-
processing step for various techniques, such as graph-based meth-
ods [10, 9, 41, 14], hierarchical methods [14, 27, 38] and streaming
methods [10, 38, 20]. Graph-based methods map the video ele-
ments onto a graph in which pixels/superpixels are nodes, and edge
weights measure the similarity between them. Galasso et al. [9]
proposed a frame-based superpixel segmentation approach (VSS)
by extending the ultra-metric contour map [1] to combine with
motion-cues and appearance-based affinities for obtaining better
video segmentation performance. To deal with the high compu-
tational costs of spectral techniques, Galasso et al. [10] proposed
a spectral graph reduction (SGR) method for video segmentation.
They assumed that all pixels within a superpixel are connected by
must-link constraints, and then reduced the original graph to a rela-
tive small graph such that a density-normalized-cut was preserved.
Yu et al. [41] proposed an efficient and robust video segmentation
framework based on parametric graph partitioning, resulting in a
fast and almost parameter free method. On the other hand, hierar-
chical video segmentation provides a rich multi-scale decomposi-
tion of a given video. Grundmann et al. [14] proposed a hierar-
chical graph-based (HGB) video segmentation approach by firstly
over-segmenting a volumetric video graph into space-time regions
grouped by appearance, and then constructing a “region graph”
over the obtained segmentation. Iteratively repeating this process
over multiple levels results in a a tree of spatio-temporal segmen-
tations. In order to process long videos, Xu et al. [38] proposed a
streaming hierarchical video segmentation framework by integrat-
ing a graph-based hierarchical segmentation method with a data
streaming algorithm (SHGB). This method leveraged ideas from
data streams and enforced a Markovian assumption on the video
stream to approximate full video segmentation. Li et al. [20] pro-
posed a Sub-Optimal Low-rank Decomposition (SOLD) method,
which defines a low-rank model based on very generic assump-
tion that the intra-class supervoxels are drawn from one identical
low rank feature subspace, and all supervoxels in a period lie on
a union of multiple subspaces, which can be justified by natural
statistic and observations of videos. In addition, this method adopts
the Normalized-Cut (NCut) algorithm with a solved low-rank rep-
resentation to segment a video into several spatio-temporal regions.
To tackle the lack of a common dataset with sufficient annotation
and the lack of an evaluation metric, a united video segmentation
benchmark was provided by Galasso et al. [11] to effectively eval-
uate the over- and under-segmentation performance of video seg-
mentation methods.

Supervised video segmentations [19, 21] can achieve better per-
formance, but the human annotation is time-consuming and the in-
herent video object hierarchy may be highly subjective. In [21],
they address the problem of integrating object reasoning with su-
pervoxel labeling in multiclass semantic video segmentation. They
first propose an object augmented dense CRF in spatio-temporal
domain, which captures long-range dependency between supervox-
els, and imposes consistency between object and supervoxel la-
bels. Then, they develop an efficient mean field inference algo-
rithm to jointly infer the supervoxel labels, object activations and
their occlusion relations for a moderate number of object hypothe-
ses. While in [19], they propose to combine features by means of
a classifier, use calibrated classifier outputs as edge weights and
define the graph topology by edge selection. Learning the topol-
ogy provides larger performance gains and benefits efficiency due
to a sparser structure of the constructed graph. On the other hand,
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lots of supervised image segmentations have been proposed [37].
In [39], they propose a novel discriminative deep feature learn-
ing framework based on stacked autoencoders (SAE) to tackle the
problem of weakly supervised semantic segmentation. In [37], they
use CNN to train images most only with image-level labels and
very few with pixel-level labels for semantic segmentation.

Unsupervised full pixelwise segmentation is the research focus
of this paper. A substantial difference between our approach and
previous unsupervised work is that, instead of separately obtaining
a graph and finding a cut in it, we propose a joint graph learning
and video segmentation method by assigning adaptive neighbors
for each superpixel and imposing a rank constraint on the Lapla-
cian matrix of the similarity graph, such that the learned graph has
exactly K connected components, representing K segmentations.

3. OUR APPROACH
In this section, we first introduce our JGLVS framework, and

then elaborate on the details of each component.

3.1 The framework
In our JGLVS framework (see Fig. 1), we propose a novel per-

spective in solving the graph-based video segmentation problem.
Our model makes use of superpixels instead of pixels for two rea-
sons: a great decrease in the number of graph nodes that need to be
processed, and an initial, accurate frame-level segmentation.

Firstly, in each temporal sliding window of the video, we extract
N superpixels from M successive frames by setting a specific hi-
erarchical level of an image segmentation algorithm [2]. Note that
a too small value of N leads to large superpixels, and more under-
segmentation errors, while a large value of N is computationally
expensive. Then, for each superpixle, a set of features (e.g., ap-
pearance, motion and shape features) are extracted. Using these
features and the predefined topology structure, our JGLVS frame-
work can learn a similarity graph of superpixels which has exactly
K connected components.

3.2 Feature extraction and graph topology con-
struction

For each superpixel, we follow [2, 9] to extract LAB, boundary,
motion and shape features, and use them to calculate the distance
between two superpixels. However, not all of the superpixels are
connected. By allowing different edge connections between neigh-
bors, different graph topologies are constructed. Following [14,
19], edges may connect neighbors: within frame (if two superpix-
els share a common part of their contour or are close by in the spa-
tial domain of the frame); across 1 frame (connected by coordinate
correspondences over time); across 2 frames (connected by across-
1 correspondences, further propagated over one more frame) and
across > 2 frames (linked if overlapping with common long-term
point trajectories).

We refer to these four types of neighbours as different topolog-
ical structures (1, 2, 3, 4) and record the topological structure of
each pair of superpixels in a N ×N matrix W. Based on these
features and topological structures, we can have the following pair-
wise distances between superpixels: common boundary strength
(cbs), LAB (lab), boundary optical flow (bof ), superpixel optical
flow (sof ), superpixel shape distance (ssd) and superpixel trajec-
tory intersection (sti) (See Section 4 for details).

As shown in Table 1, different topological types have different
distances. We further define a set of most-likely-linked superpixels
M1,M2,M3 and M4 for each topological structure. More specif-
ically, for the case of within frame, we decrease the number of
superpixels by changing the threshold of superpixel generation al-

Table 1: The corresponding distances for different topological
structures

Topology type Distances
Within frame lab, sof, cbs, bof

Across 1 frame lab, sof, ssd, sti
Across 2 frames ssd, sti

Across > 2 frames sti

gorithm, and some similar superpixels will merge into one super-
pixel. These similar superpixels will be selected as the within frame
most-likely-linked superpixels. For the case of across 1 or 2 frame,
if two superpixels’ ssd distance is less than a threshold, they will
be selected as a pair of across 1 or 2 frame most-likely-linked su-
perpixels. Similarly, if two superpixels’ sti distance is less than a
threshold in the case of across > 2 frame, they will be selected as a
pair of across > 2 frame most-likely-linked superpixels.

3.3 Joint graph learning and video segmenta-
tion

Let Dt = {Dtij}Ni,j=1 denote the t-th distance matrix of a set
of N superpixels, where t ∈ {1, ..., T}. Y = {y1, y2, ...,yN} is
the average location information for the superpixels. The goal is to
learn the similarity matrix S between superpixels by using different
distances as well as existent spatial information, and that all the
superpixels have exact K connected components.

An optimal graph S should be smooth on different features as
well as on the spatial information distribution, which can be for-
mulated as:

min
S,α

g (Y, S) + µ
∑T

t=1
αth

(
Dt, S

)
+ βr (S, α) (1)

where g (Y, S) is the penalty function that measures the smoothness
of S on the spatial information Y and h

(
Dt, S

)
is the loss function

that measures the smoothness of S on the feature Dt. r (S, α) is a
regularizer defined on the target S and α. µ and β are balancing
parameters, and αt determines the importance of each feature.

The penalty function g (F, S) should be defined in a way such
that close superpixels have high similarity and vice versa. In this
paper, we define it as follows:

g (Y, S) =
∑

ij

∥∥yi − yj
∥∥2
2
sij (2)

where yi and yj are the locations of the superpixels xi and xj . Sim-
ilarly, h

(
Dt, S

)
is defined as:

h
(
Dt, S

)
=
∑

ij
dtijsij (3)

The regularizer term r (S, α) is defined as:

r (S, α) = ‖S‖2F + γ ‖α‖22 (4)

If there is no regularizer on S (same for α), S has a trivial solution.
Only the nearest data point can be the neighbor of xi with the prob-
ability of 1. We further introduce the following constraints: S ≥ 0,
S1 = 1, α ≥ 0 and αT 1 = 1, where 1 is a column vector with
all 1s. This is because that the similarity and weights should be
positive, and the sum of similarity and weights is set to be 1.

We can then obtain the objective function for learning the opti-
mal graph by replacing g (Y, S), h

(
Dt, S

)
and r (S, α) in (1) using
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Figure 1: The overview of JGLVS. Superpixels are firstly generated from the overlapping sliding windows, based on which the
features and distances are computed. Then, JGLVS is applied to learn the similarity matrix and video segmentations.

(2), (3) and (4), as follows:

min
S,α

∑
ij

∥∥yi − yj
∥∥2
2
sij + µ

∑
tij

(
αtdtijsij

)
+β ‖S‖2F + βγ ‖α‖22
s.t., S ≥ 0, S1 = 1, α ≥ 0, αT 1 = 1

(5)

One limitation for this model is that it assumes that all the su-
perpixels have the same types of distances, which conflicts with
the video segmentation application where different topologies have
different distances. For example, if superpixels (i, k) are across
> 2 frames neighbors and (i, j) are within frame neighbors, the
similarity between (i, k) are determined by sti but the similarity
between (i, j) are determined by lab, sof, cbs and bof. Their dis-
tances are not comparable to each other, and we need to calibrate
them. Based on the topology type wij ∈ [1, 2, 3, 4] of superpixels
i and j, we define a calibration function

cz(x) = (x− τz)/(maxz − τz), z ∈ [1, 2, 3, 4], (6)

where τz is the threshold for z-th topology type determined by the
mean distance of the set Mz . Then, the objective function becomes:

min
S,α

∑
ij

‖yi − yj‖22 sij + µ
∑
ij

cwij

(∑
t

αtdtij

)
sij

+β ‖S‖2F + βγ ‖α‖22
s.t., S ≥ 0, S1 = 1, α ≥ 0, αT 1 = 1

(7)

Forcing the number of connected components to be exactly K
seems like an impossible goal since this kind of structured con-
straint on the similarities is fundamental but also very difficult to
handle. In this paper, we will propose a novel but very simple
method to achieve this goal.

The matrix S ∈ RN×N obtained in the neighbor assignment
can be seen as a similarity matrix of the graph with the N data
points as the nodes. For a nonnegative similarity matrix S, there is
a Laplacian matrix L associated with it. According to the definition
of Laplacian matrix, for any values of fi ∈ RK×1, L of a similarity
matrix S can be calculated as:∑

ij
‖fi − fj‖22 sij = 2tr

(
FTLF

)
(8)

where F ∈ RN×K with the i-th row formed by fi, L = D −
ST+S

2
is called the Laplacian matrix in graph theory, the degree

matrix D ∈ RN×N is defined as a diagonal matrix where the i-
th diagonal element is

∑
j (sji + sij) /2. The Laplacian matrix L

has the following property.

THEOREM 1. The number K of the eigenvalue 0 of the Lapla-
cian matrix L is equal to the number of connected components in
the graph with the similarity matrix S if S is nonnegative.

Theorem 1 indicates that if rank(L) = N − K, then the su-
perpixels have K connected components based on S. Motivated by
Theorem 1, we add an additional constraint rank(L) = N − K
into the (7). Thus, our new similarity graph learning model is to
solve:

min
S,α

∑
ij

∥∥yi − yj
∥∥2
2
sij + µ

∑
ij

cwij

(∑
t

αtdtij

)
sij

+β ‖S‖2F + βγ ‖α‖22
s.t.

{
S ≥ 0, S1 = 1, α ≥ 0, αT 1 = 1
rank (L) = N −K

(9)

It is difficult to solve the problem (9). Because L = D−(ST+S)/2
and D also depends on S, the constraint rank(L) = N −K is not
easy to tackle. In the next subsection, we will propose a novel and
efficient algorithm to solve this challenging problem.

3.4 Iterative optimization
Suppose ei is the i-th smallest eigenvalue of L, we know ei ≥ 0

since L is positive semi-definite. It can be seen that the problem (9)
is equivalent to the following problem for a large enough value of
ρ:

min
S,α

∑
ij

∥∥yi − yj
∥∥2
2
sij + µ

∑
ij

cwij

(∑
t

αtdtij

)
sij

+β ‖S‖2F + βγ ‖α‖22 + 2ρ
K∑
i=1

ei

s.t., S ≥ 0, S1 = 1, α ≥ 0, αT 1 = 1

(10)
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When ρ is set to a large enough value 1,
∑K
i ei will be imposed to

be close to 0, which results in rank (L) = N −K.
According to the Ky Fan’s Theorem [7], we have:

K∑
i=1

ei = min
F∈RN×K ,FT F=I

tr
(

FTLF
)

(11)

Therefore, the problem (10) is further equivalent to the following
problem:

min
S,F,α

∑
ij

∥∥yi − yj
∥∥2
2
sij + µ

∑
ij

cwij

(∑
t

αtdtij

)
sij

+β ‖S‖2F + βγ ‖α‖22 + 2ρtr
(
FTLF

)
s.t.,

{
S ≥ 0, S1 = 1, α ≥ 0, αT 1 = 1
F ∈ RN×K ,FTF = I

(12)

Compared with the original problem (9), (12) is much easier to
solve. We propose an iterative method to minimize the above ob-
jective function (12).

Firstly, we initialize αt = 1/T and then S by the optimal solu-
tion to the problem (7). Once these initial values are given, in each
iteration, we first update F given S and α, and then update S and α
by fixing the other parameters. These steps are described below:
Update F: By fixing S and α, the problem (12) is equivalent to
optimizing the following objective function:

min
F∈RN×K ,FT F=I

tr
(

FTLF
)

(13)

The optimal solution F to the problem (13) is formed by the K
eigenvectors of L corresponding to the K smallest eigenvalues.
Update S: By fixing F and α, we can obtain S by optimizing (12).
It is equivalent to optimize the following objective function:

min
S≥0,S1=1

∑
ij

∥∥yi − yj
∥∥2
2
sij + ρ

∑
ij

‖fi − fj‖22 sij

+β ‖S‖2F + µ
∑
ij

cwij

(∑
t

αtdtij

)
sij

(14)

It can be reformulated as:

min
S≥0,S1=1

∑
i

(
βsisiT + (ai + µbi + ρci) siT

)
⇒ min

S≥0,S1=1

∑
i

(
sisiT + ai+µbi+ρci

β
siT
) (15)

where ai = {aij , 1 ≤ j ≤ n} with aij =
∥∥yi − yj

∥∥2
2
, bi =

{bij , 1 ≤ j ≤ n} with bij=
∑
t α

tdtij and ci={cij , 1 ≤ j ≤ n}∈
R1×n with cij = ‖fi − fj‖22. It is further equivalent to:

min
S≥0,S1=1

∑
i

(
si + ai+µbi+ρci

2β

)2
2

(16)

Then each si can be efficiently solved by using a quadratic pro-
gramming solver, which will be introduced in the next subsection
(solution for problem (16)).
Update α: By fixing F and S, we can obtain α by optimizing (12).
It is equivalent to optimize the following objective function:

min
α≥0,αT 1=1

µ
∑
ij

cwij

(∑
t

αtdtij

)
sij + βγ ‖α‖22

⇒ min
α≥0,αT 1=1

µ
∑
t

αt
∑
ij

dtijsij/ (maxwij−τwij)+βγ ‖α‖22
⇒ min

α≥0,αT 1=1
µdα+ βγ ‖α‖22

(17)

1In the real implementation, we initialize ρwith 1000, and increase
ρ to ρ × 2 if the current number of connected components is less
than K, and decrease rho to ρ/2 if the current number of connected
components is larger than K

where d =
{
dt
}T
t=1

, dt =
∑
ij d

t
ijsij/ (maxwij − τwij ) and

maxwij is the max value of S with the topological structure wij .
Then we can use a quadratic programming solver to obtain α.

We update F, S and α iteratively until the objective function (7)
converges, as shown in Algorithm 1.

Algorithm 1 Solution for JGLVS
Input: Initialized α, segmentation number K, topology structure

matrix W, most-likely-linked sets M, parameters β, γ, µ, a
large enough ρ;

Output: S ∈ RN×N with exact K connected components, α;
1: Initialize cz(x) using α, W and M;
2: Initialize S by the optimal solution of 7;
3: repeat
4: Fix S and α, calculate F according to the solution of prob-

lem (13);
5: Fix F and α, update S by solving the problem (16);
6: Fix F and S, update α by solving the problem (17);
7: Update cz(x) using α, W and M;
8: until convergence or max iteration is reached.
9: return S, α;

3.4.1 Solution for problem (16)
In this subsection, we introduce an efficient solution for problem

(16) for determining the regularization parameter β, so that we have
fewer parameters to tune. The Lagrangian function of problem (16)
is:

` (si, η, εi) = 1
2

∑
i

∥∥∥si + ai+µbi+ρci
2β

∥∥∥2
2

−η(sTi 1− 1)− sTi εi
(18)

where η, εi ≥ 0 are the Lagrangian multipliers, and β is the reg-
ularization parameter for each si. Let dij=aij+µbij+ρcij . Ac-
cording to the KKT condition, it can be verified that the optimal
solution si should be:

sij =

(
−aij + µbij + ρcij

2β
+ η

)
+

(19)

By replacing η and εi according to the KKT condition, we obtain
the optimal si. However, in practice, we usually could achieve bet-
ter performance if si is sparse, i.e., only the P nearest neighbors of
xi could have chance to connect to xi. Another benefit of learning
a sparse similarity matrix S is that the computational burden can be
largely alleviated for subsequent processing. With this motivation,
we determine the parameter β.

Without loss of generality, suppose di1, di2, ..., diN are ordered
from small to large. If the optimal si has only P nonzero elements,
then according to (19), we know siP > 0 and si,P+1 = 0. There-
fore, we have:

− diP
2βP

+ η > 0, − di,P+1

2βP+1
+ η ≤ 0 (20)

and

sTi 1 =
P∑
j=1

(− dij
2βi

+ η) = 1

⇒ η = 1
P
+ 1

2Pβi

P∑
j=1

dij

(21)
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By replacing η in (20) using (21), we have the following inequal-
ity for βi:

P

2
dip −

1

2

P∑
j=1

dij < βi ≤
P

2
di,P+1 −

1

2

P∑
j=1

dij (22)

Therefore, in order to obtain an optimal solution si to the problem
(16) that has exact P nonzero values, we set

βi =
P

2
di,P+1 −

1

2

∑P

j=1
dij (23)

The overall β is set to the mean of β1, β2, ..., βn. That is, we set β
to be

β =
1

N

∑N

i=1

(
P

2
di,P+1 −

1

2

∑P

j=1
dij

)
(24)

The number of neighbors P is much easier to tune than the regular-
ization parameter β since P is an integer and has explicit meaning.

3.5 Streaming video segmentation
An effective streaming algorithm can enable us to process an

arbitrary long video with limited memory and computational re-
sources, and thus is essential in video segmentation. We propose
a simple yet effective clip-based segmentation method that scales
well while maintaining temporal coherence, without processing the
entire volume at once.

1
1L

1
2L

1
3L 2

1L

2
2L

2
3L

1L

Figure 2: The segmentation labels L1, L2 of the overlapping
frame f . L1 denotes the segmentation of the overlapping in the
previous clip, and provides some constraints to the segmenta-
tion of L2, which is the segmentation in the current clip.

We start by partitioning the video into equally sized clips of n
frames (n = 6 in our experiments), and one frame f is overlapped
between neighboring clips. The temporal consistent constraints are
introduced by properly propagating solutions from previous tempo-
ral window to the current window. Given the previous and current
segmentation labels L1, L2 of the overlapping frame f , we first
compute the similarity matrix O of different segments. The simi-
larity of the i-th segment iL1 in the previous segmentation and the
j-th segment jL2 in the current segmentation is defined as:

o(iL1 , jL2) = |miL1
∩mjL2

|/min
(
|miL1

|, |mjL2
|
)
, (25)

where miL1
and mjL2

are masks to indicate which pixels belong
to the segments iL1 and jL2 . After obtaining the similarity matrix
O, we can assign new segmentation ids to the segments in L2. In-
tuitively, two segments with the highest similarity should have the
same segment id. However, there are three special cases to con-
sider, which are illustrated in Fig. 2. The first case is that a segment
(e.g., 3L2 ) has no overlapping in the previous segment. Then a new
segment id should be assigned to 3L2 . The second case is that two
segments (e.g., 1L2 and 2L2 ) are included by one previous segment
(1L1 ). Then the one (2L2 ) with larger size will be assigned the id

Algorithm 2 The algorithm for generation of the temporal consis-
tent constraints between previous and current segmentation labels
L1, L2 of the overlapping frame f .
Input: Previous and current segmentation labels L1 and L2,

threshold threshold;
Output: Refined segmentation labels L′2, mapping;
1: Get number of segments num1 and num2 in L1 and L2;
2: Computer O by Eq.(25);
3: Assign mapping the ids with the largest similarity to L2 by

[value,mapping] = max(O);
4: for i = 1 : num2 do
5: if value(i) is smaller than threshold, then
6: Updating mapping(i) with a new id;
7: end if
8: if mapping(i) is used by a previous segment, then
9: Assign a new id to the segment with a smaller size;

10: end if
11: if Another segment in L1 has the same similarity to segment

i as mapping(i), then
12: Updating mapping(i) with the id of a larger segment;
13: end if
14: Refine L2 to L′2 based on mapping;
15: end for
16: return L′2,mapping;

(1) of overlapping segment (1L1 ), and the one (1L2 ) with smaller
size will be assigned a new id. Lastly, if one segment (e.g., 4L2 )
includes two previous segments (2L1 and 3L1 ), this segment will
be assigned the id (2) of a larger segment (2L1 ). The algorithm for
generating temporal consistent constraints is given in Algorithm 2.
It takes previous and current segmentation labels L1 and L2, and
similarity threshold threshold as input. And it calculates which
segment id in L1 corresponds to each segment in L2. Algorithm 2
outputs the refined segmentation labels L′2 as well as the segment
id mapping mapping.

4. EXPERIMENTS
In this section, we evaluate our JGLVS on the standard bench-

mark VSB100 [11]. First, we compare our method with other
state-of-the-art methods. Then, we further analyze the effective-
ness of our main components. Finally, we report the efficiency of
our method.

4.1 Experimental Settings
We give the details of dataset selection, feature extraction and

evaluation metrics in this subsection.

4.1.1 Dataset:
The selected VSB100 [11] is a very challenging dataset used for

empirical evaluation. It is the largest video segmentation dataset
with high definition frames, and consists of four difficult sub-datasets:
general, motion segmentation, non-rigid motion segmentation and
camera motion segmentation. Following the setting in [11, 20], we
regard the general sub-dataset (60 video sequences) as our test set
for all the approaches.

To make the comparison comprehensive, we set {µ, γ} = {1000, 1},
{ρ} = {1000} and {iteration} = {30} in the experiment. β is
automatically determined by the algorithm. In addition, the num-
ber of frames per window is set to be 6, and 1 frame is overlapped
between neighboring windows.
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(a) Images (b) HGB (c) SHGB (d) SOLD (e) Ours (f) GT

Figure 3: Qualitative comparisons with the state-of-the-art video segmentation methods HGB, SHGB and SOLD. We can see that
our method substantially outperforms the algorithms of HGB, SHGB and SOLD.

Table 2: Comparison of state-of-the-art video segmentation algorithms with our proposed method on the test set of VSB100.
BPR VPR

Algorithm ODS OSS AP ODS OSS AP
BMC [6] 0.47 0.48 0.32 0.51 0.52 0.38
VSS [9] 0.51 0.56 0.45 0.45 0.51 0.42
HGB [14] 0.47 0.54 0.41 0.52 0.55 0.52
SHGB[38] 0.38 0.46 0.32 0.45 0.48 0.44
SOLD [20] 0.54 0.58 0.40 0.53 0.60 0.46
Ours−calibration 0.64 0.64 0.45 0.53 0.58 0.49
Ours−consistency 0.65 0.65 0.50 0.51 0.53 0.47
Ours 0.65 0.65 0.48 0.55 0.61 0.51
Human 0.81 0.81 0.67 0.83 0.83 0.70

4.1.2 Features and Distances:
Common boundary strength [cbs]. This measures distance in the

close vicinity of the common boundary between two superpixels
if and jf by averaging the common boundary strength. We take
vijf the average UCM of [2] as a measure of the boundary strength
between i and j and define: cbs(if , jf ) = vijf .
Lab [lab]. This uses the distance between the median brightness
and color of a superpixel in Lab-color-space as a measure of the
overall distance among two superpixels i and j, from the same or
different frames f and f ′: lab(if , jf ′) = ‖LABif − LABjf′ ‖2.
Boundary optical flow [bof ]. We consider an optical flow estima-
tion [9]. The resulting uf (x) allows to compute the motion dis-
tance in the vicinity of the boundary between two superpixels by
averaging their uf across the common boundary ϕijf : bof(if , jf )=(∑

(xmi ,x
m
i )∈ϕij

f
‖uf

(
xmi
)
−uf

(
xmj

)
‖
2

)
/|ϕijf |.

Superpixel optical flow [sof ]. This measures the overall motion
distance between two superpixels if and jf ′ based on their median
optical flow u: sof(if , jf ′) = ‖uif − ujf′ ‖2.
Superpixel shape distance [ssd]. We measure the shape distance by
comparing mjf′ the shape of a superpixel j at frame f ′ with the
shape of if propagated with optical flow to frame f ′ (its projected
mask mf ′

if
). ssd is given by the Dice coefficient between the true

mjf′ and optical-flow-projected mf ′

if
binary mask: ssd(if , jf ′ ) =

1− 2|mf ′

if
∩mjf′ |/

(
|mf ′

if
|+ |mjf′ |

)
.

Superpixel trajectories intersection [sti]. It measures the distance
between superpixels if and jf ′ which belongs to frames poten-
tially further in time from each other f ′ = f + m,m > 2. We
consider the dense point trajectories of [36] as a measure of the
shape (binary mask) projection. Let φ(if ) be the subset of tra-
jectories intersecting superpixel if . The distance is the Dice mea-
sure between the intersection sets φ(if ) and φ(j′f ): sti(if , jf ′) =
1− 2|φ(if ) ∩ φ(j′f )|/

(
|φ(if )|+ |φ(j′f )|

)
.

4.1.3 Evaluation Metrics:
Following [11, 20], we use two evaluation metrics: 1) Bound-

ary Precision-Recall (BPR), which casts the boundary detection
problem as one of classifying boundary from nonboundary pix-
els and measures the quality of a segmentation boundary map in
the precision-recall framework; and 2) Volume Precision-Recall
(VPR), which optimally assigns spatio-temporal volumes between
the computer generated segmentation and the human annotated seg-
mentations and then measures their overlap. For both BPR and
VPR, we report average precision (AP), optimal dataset scale (ODS),
and optimal segmentation scale (OSS).
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Figure 4: Comparison curves of our framework with the state-
of-the-art video segmentation approaches BMC [6], VSS [9],
HGB [14], SHGB [38] and SOLD [20].

4.2 Comparison with state-of-the-art video seg-
mentation methods

We compare our approach with the following five state-of-the-
art video segmentation algorithms: BMC [6], VSS [9], HGB [14],
SHGB [38] and SOLD [20]. We also report our method without
calibration (Ours−calibration) and our method without temporal
consistency (Ours−consistency). Table 2 illustrates a summary of
the aggregate evaluation performance, including ODS, OSS and AP
of both BPR and VPR. Fig.4 shows the BPR and VPR curves of the
comparisons on the VSB100 dataset. From Table 2 and Fig.4, we
have the following observations:

• Our approach outperforms the state-of-the-art methods (BMC,
VSS, HGB, SHGB and SOLD) in both BPR and VPR on the
VSB100 dataset. Specifically, our proposed method outper-
forms the currently best performance (SOLD [20]) on both
BPR and VPR by a large margin, as it appears both in the Ta-
ble 2 and Fig.4 (11%, 7% and 8% in BPR, 2%, 1% and 5%
in VPR). Our AP in VPR is slightly lower than HGB. But we
can alleviate it by simply increasing the superpixels number,
as shown in Table 3.

• Though VSS [9] and SOLD [20] exploits multiple cues as
well, our method performs better. This probably owes to
the proposed joint graph learning and video segmentation
framework, and the automatically learned weights for dif-
ferent cues.

• SOLD [20] is a strong competitor. The superior performances
over SOLD in both BPR and VPR demonstrate that our ap-
proach can not only effectively infer the spatial similarity
between superpixels within a frame, but also preserve the
longer-range temporal consistency in a streaming mode.

• Temporal consistency processing plays an important role for
VPR, as indicated in Table 2. An example is given in Fig.5
to illustrate the effect of temporal consistency processing. If
we do not constrain that the same object in the close frames
to have the same label, the performance on VPR metric will
decrease.

• Topology calibration improves the performance, especially
for VPR. This is due to that without calibration, the dis-
tances of different topological structures (especially for cross
frame) are not comparable.

We illustrate qualitative results in Fig.3, comparing our proposed
method to the state-of-the-art video segmentation algorithms in-
cluding HGB, SHGB and SOLD. Fig.3 shows consistent results to
the quantitative results. Our method is able to provide better distin-
guished visual objects with well-localized boundaries and limited
label leakage.

4.3 Component analysis
In this subsection, we study the effect of level and the different

types of distances on our proposed method.
As described in Section 3, our proposed algorithm is imposed

on the superpixels which are extracted from [2]. The number of
superpixels is determined by the value of level. From the Table
3, we can see that the level is important to the performance. In
general, when level = 75, the overall best performance is achieved
for both BPR (65%, 65% and 48%) and VPR (55%, 61% and 51%).
In addition, when level = 25, the AP for both BPR and VPR
reaches the peak values: 54% and 56% respectively. This is due to
that when level = 25, more superpixels are generated and over-
segmentation improves the precision but decreases the recall [2].

The effect of different distances is analyzed and the results are
shown in Table 4. As described in Section 3, our method uses
different types of pairwise distance between superpxiels for video
segmentation. From Table 4, we can see that distances have dif-
ferent impact on the performance, hence it is important to learn the
weights for different distances. Using a combined distances with
learned weight achieves better performance than using a single dis-
tance.

Table 3: The effect of level on our proposed method.
BPR VPR

Algorithm ODS OSS AP ODS OSS AP
Level = 25 0.59 0.59 0.54 0.54 0.58 0.56
Level = 50 0.64 0.65 0.53 0.55 0.57 0.51
Level = 75 0.65 0.65 0.48 0.55 0.61 0.51
Level = 95 0.64 0.64 0.47 0.55 0.59 0.46
Level = 125 0.61 0.61 0.41 0.53 0.58 0.40
Human 0.81 0.81 0.67 0.83 0.83 0.70
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Original frames Without Temporal consistency With Temporal consistency

Figure 5: Segmentations of a given sequence of video frames.
The left are the original frames, the middle lines are the seg-
mentations without temporal consistency, and the right lines
are the segmentations with temporal consistency processing. It
is clear that if no temporal consistency processing is applied,
the same object in the successive frames cannot be guaranteed
to have the same segment id (i.e., label). In this case, the VPR
will degrade.

Table 4: The effect of distances on our proposed method.
BPR VPR

Algorithm ODS OSS AP ODS OSS AP
CBS 0.64 0.64 0.46 0.43 0.46 0.38
BOF 0.64 0.64 0.44 0.43 0.44 0.37
LAB 0.64 0.65 0.45 0.51 0.53 0.43
SOF 0.64 0.64 0.47 0.42 0.45 0.37
SSD 0.64 0.64 0.44 0.51 0.56 0.45
STI 0.64 0.64 0.45 0.46 0.49 0.42
All 0.65 0.65 0.48 0.55 0.61 0.51

Human 0.81 0.81 0.67 0.83 0.83 0.70

4.4 Efficiency Analysis
In this subsection, we evaluate the time efficiency of our pro-

posed method. These experiments are carried out on a desktop with
an Intel(R) Core (TM)2 Duo CPU and 8GB RAM. Our method is
conducted on the features of the generated superpixels, which are
obtained in the preprocessing step. The computational cost for our
algorithm is O(N2) + O(N3). However, we do segmentation on
the N superpixels, which is usually 10-100s. Therefore, our method
can segment 1 frame within 0.2s on average, as indicated in Fig. 6.
Fig. 6 reports the running time corresponding to the number of seg-
mentations. In average, it costs 0.1895 seconds per frame for our
proposed method. Large number of segmentations does not neces-
sarily consume more time, because the optimization may terminate
in less iterations.

5. CONCLUSIONS
This paper proposes the JGLVS framework that simultaneously

learns the graph similarity matrix and video segmentation, instead
of first organizing the superpixels into graphs and then cutting the
generated graph for segmentation. Based on the spatial and vi-
sual information, each vertex is assigned with adaptive and optimal
neighbors for graph similarity learning. By imposing rank con-
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Figure 6: The running time (seconds per frame) vs. number of
segmentations (K) of our proposed method.

straints on the Laplacian matrix, the number of connected compo-
nents in the generated similarity graph are equal to the number of
segmentations, sidestepping the need for separate steps in similarity
computation and graph cutting. Experimental results show that the
proposed unsupervised JGLVS outperforms state-of-the-art video
segmentation algorithms by a large margin on the VSB100 dataset.
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