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ABSTRACT
In present object detection systems, the deep convolutional
neural networks (CNNs) are utilized to predict bounding
boxes of object candidates, and have gained performance ad-
vantages over the traditional region proposal methods. How-
ever, existing deep CNN methods assume the object bounds
to be four independent variables, which could be regressed
by the ℓ2 loss separately. Such an oversimplified assumption
is contrary to the well-received observation, that those vari-
ables are correlated, resulting to less accurate localization.
To address the issue, we firstly introduce a novel Intersection
over Union (IoU) loss function for bounding box prediction,
which regresses the four bounds of a predicted box as a whole
unit. By taking the advantages of IoU loss and deep fully
convolutional networks, the UnitBox is introduced, which
performs accurate and efficient localization, shows robust to
objects of varied shapes and scales, and converges fast. We
apply UnitBox on face detection task and achieve the best
performance among all published methods on the FDDB
benchmark.
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1. INTRODUCTION
Visual object detection could be viewed as the combina-

tion of two tasks: object localization (where the object is)
and visual recognition (what the object looks like). While
the deep convolutional neural networks (CNNs) has wit-
nessed major breakthroughs in visual object recognition [3]
[11] [13], the CNN-based object detectors have also achieved
the state-of-the-arts results on a wide range of applications,
such as face detection [8] [5], pedestrian detection [9] [4] and
etc [2] [1] [10].
Currently, most of the CNN-based object detection meth-

ods [2] [4] [8] could be summarized as a three-step pipeline:
firstly, region proposals are extracted as object candidates
from a given image. The popular region proposal methods
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Figure 1: Illustration of IoU loss and ℓ2 loss for pixel-wise
bounding box prediction.

include Selective Search [12], EdgeBoxes [15], or the early
stages of cascade detectors [8]; secondly, the extracted pro-
posals are fed into a deep CNN for recognition and cate-
gorization; finally, the bounding box regression technique
is employed to refine the coarse proposals into more accu-
rate object bounds. In this pipeline, the region proposal
algorithm constitutes a major bottleneck in terms of local-
ization effectiveness, as well as efficiency. On one hand, with
only low-level features, the traditional region proposal algo-
rithms are sensitive to the local appearance changes, e.g.,
partial occlusion, where those algorithms are very likely to
fail. On the other hand, a majority of those methods are
typically based on image over-segmentation [12] or dense
sliding windows [15], which are computationally expensive
and have hamper their deployments in the real-time detec-
tion systems.

To overcome these disadvantages, more recently the deep
CNNs are also applied to generate object proposals. In the
well-known Faster R-CNN scheme [10], a region proposal
network (RPN) is trained to predict the bounding boxes
of object candidates from the anchor boxes. However, since
the scales and aspect ratios of anchor boxes are pre-designed
and fixed, the RPN shows difficult to handle the object can-
didates with large shape variations, especially for small ob-
jects.

Another successful detection framework, DenseBox [5],
utilizes every pixel of the feature map to regress a 4-D dis-
tance vector (the distances between the current pixel and
the four bounds of object candidate containing it). How-
ever, DenseBox optimizes the four-side distances as four in-
dependent variables, under the simplistic ℓ2 loss, as shown
in Figure 1. It goes against the intuition that those variables
are correlated and should be regressed jointly.

Besides, to balance the bounding boxes with varied scales,
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DenseBox requires the training image patches to be resized
to a fixed scale. As a consequence, DenseBox has to perform
detection on image pyramids, which unavoidably affects the
efficiency of the framework.
The paper proposes a highly effective and efficient CNN-

based object detection network, called UnitBox. It adopts a
fully convolutional network architecture, to predict the ob-
ject bounds as well as the pixel-wise classification scores on
the feature maps directly. Particularly, UnitBox takes ad-
vantage of a novel Intersection over Union (IoU) loss func-
tion for bounding box prediction. The IoU loss directly
enforces the maximal overlap between the predicted bound-
ing box and the ground truth, and jointly regress all the
bound variables as a whole unit (see Figure 1). The Unit-
Box demonstrates not only more accurate box prediction,
but also faster training convergence. It is also notable that
thanks to the IoU loss, UnitBox is enabled with variable-
scale training. It implies the capability to localize objects
in arbitrary shapes and scales, and to perform more efficient
testing by just one pass on singe scale. We apply UnitBox
on face detection task, and achieve the best performance on
FDDB [6] among all published methods.

2. IOU LOSS LAYER
Before introducing UnitBox, we firstly present the pro-

posed IoU loss layer and compare it with the widely-used ℓ2
loss in this section. Some important denotations are claimed
here: for each pixel (i, j) in an image, the bounding box of
ground truth could be defined as a 4-dimensional vector:

x̃i,j = (x̃ti,j , x̃bi,j , x̃li,j , x̃ri,j ), (1)

where x̃t, x̃b, x̃l, x̃r represent the distances between cur-
rent pixel location (i, j) and the top, bottom, left and right
bounds of ground truth, respectively. For simplicity, we omit
footnote i, j in the rest of this paper. Accordingly, a pre-
dicted bounding box is defined as x = (xt, xb, xl, xr), as
shown in Figure 1.

2.1 L2 Loss Layer
ℓ2 loss is widely used in optimization. In [5] [7], ℓ2 loss is

also employed to regress the object bounding box via CNNs,
which could be defined as:

L(x, x̃) =
∑

i∈{t,b,l,r}

(xi − x̃i)
2, (2)

where L is the localization error.
However, there are two major drawbacks of ℓ2 loss for

bounding box prediction. The first is that in the ℓ2 loss,
the coordinates of a bounding box (in the form of xt, xb, xl,
xr) are optimized as four independent variables. This as-
sumption violates the fact that the bounds of an object are
highly correlated. It results in a number of failure cases in
which one or two bounds of a predicted box are very close
to the ground truth but the entire bounding box is unac-
ceptable; furthermore, from Eqn. 2 we can see that, given
two pixels, one falls in a larger bounding box while the other
falls in a smaller one, the former will have a larger effect on
the penalty than the latter, since the ℓ2 loss is unnormal-
ized. This unbalance results in that the CNNs focus more on
larger objects while ignore smaller ones. To handle this, in
previous work [5] the CNNs are fed with the fixed-scale im-
age patches in training phase, while applied on image pyra-

mids in testing phase. In this way, the ℓ2 loss is normalized
but the detection efficiency is also affected negatively.

2.2 IoU Loss Layer: Forward
In the following, we present a new loss function, named

the IoU loss, which perfectly addresses above drawbacks.
Given a predicted bounding box x (after ReLU layer, we
have xt, xb, xl, xr ≥ 0) and the corresponding ground truth
x̃, we calculate the IoU loss as follows:

Algorithm 1: IoU loss Forward

Input: x̃ as bounding box ground truth
Input: x as bounding box prediction
Output: L as localization error
for each pixel (i, j) do

if x̃ ̸= 0 then
X = (xt + xb) ∗ (xl + xr)

X̃ = (x̃t + x̃b) ∗ (x̃l + x̃r)
Ih = min(xt, x̃t) +min(xb, x̃b)
Iw = min(xl, x̃l) +min(xr, x̃r)
I = Ih ∗ Iw
U = X + X̃ − I

IoU =
I

U
L = −ln(IoU)

else
L = 0

end

end

In Algorithm 1, x̃ ̸= 0 represents that the pixel (i, j) falls
inside a valid object bounding box; X is area of the predicted

box; X̃ is area of the ground truth box; Ih, Iw are the height
and width of the intersection area I, respectively, and U is
the union area.

Note that with 0 ≤ IoU ≤ 1, L = −ln(IoU) is essentially
a cross-entropy loss with input of IoU : we can view IoU
as a kind of random variable sampled from Bernoulli distri-
bution, with p(IoU = 1) = 1, and the cross-entropy loss of
the variable IoU is L = −pln(IoU)− (1− p)ln(1− IoU) =
−ln(IoU). Compared to the ℓ2 loss, we can see that instead
of optimizing four coordinates independently, the IoU loss
considers the bounding box as a unit. Thus the IoU loss
could provide more accurate bounding box prediction than
the ℓ2 loss. Moreover, the definition naturally norms the
IoU to [0, 1] regardless of the scales of bounding boxes. The
advantage enables UnitBox to be trained with multi-scale
objects and tested only on single-scale image.

2.3 IoU Loss Layer: Backward
To deduce the backward algorithm of IoU loss, firstly we

need to compute the partial derivative of X w.r.t. x, marked
as ∇xX (for simplicity, we notate x for any of xt, xb, xl, xr

if missing):

∂X

∂xt(or ∂xb)
= xl + xr, (3)

∂X

∂xl(or ∂xr)
= xt + xb. (4)
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Figure 2: The Architecture of UnitBox Network.

To compute the partial derivative of I w.r.t x, marked as
∇xI:

∂I

∂xt(or ∂xb)
=

{
Iw, if xt < x̃t(or xb < x̃b)

0, otherwise,
(5)

∂I

∂xl(or ∂xr)
=

{
Ih, if xl < x̃l(or xr < x̃r)

0, otherwise.
(6)

Finally we can compute the gradient of localization loss L
w.r.t. x:

∂L
∂x

=
I(∇xX −∇xI)− U∇xI

U2IoU

=
1

U
∇xX − U + I

UI
∇xI.

(7)

From Eqn. 7, we can have a better understanding of the
IoU loss layer: the ∇xX is the penalty for the predict
bounding box, which is in a positive proportion to the gra-
dient of loss; and the ∇xI is the penalty for the intersection
area, which is in a negative proportion to the gradient of
loss. So overall to minimize the IoU loss, the Eqn. 7 favors
the intersection area as large as possible while the predicted
box as small as possible. The limiting case is the intersection
area equals to the predicted box, meaning a perfect match.

3. UNITBOX NETWORK
Based on the IoU loss layer, we propose a pixel-wise ob-

ject detection network, named UnitBox. As illustrated in
Figure 2, the architecture of UnitBox is derived from VGG-
16 model [11], in which we remove the fully connected layers
and add two branches of fully convolutional layers to pre-
dict the pixel-wise bounding boxes and classification scores,
respectively. In training, UnitBox is fed with three inputs in
the same size: the original image, the confidence heatmap
inferring a pixel falls in a target object (positive) or not (neg-
ative), and the bounding box heatmaps inferring the ground
truth boxes at all positive pixels.
To predict the confidence, three layers are added layer-by-

layer at the end of VGG stage-4: a convolutional layer with
stride 1, kernel size 512×3×3×1; an up-sample layer which
directly performs linear interpolation to resize the feature
map to original image size; a crop layer to align the feature
map with the input image. After that, we obtain a 1-channel
feature map with the same size of input image, on which
we use the sigmoid cross-entropy loss to regress the gen-
erated confidence heatmap; in the other branch, to predict
the bounding box heatmaps we use the similar three stacked

layers at the end of VGG stage-5 with convolutional kernel
size 512 x 3 x 3 x 4. Additionally, we insert a ReLU layer to
make bounding box prediction non-negative. The predicted
bounds are jointly optimized with IoU loss proposed in Sec-
tion 2. The final loss is calculated as the weighted average
over the losses of the two branches.

Some explanations about the architecture design of Unit-
Box are listed as follows: 1) in UnitBox, we concatenate
the confidence branch at the end of VGG stage-4 while the
bounding box branch is inserted at the end of stage-5. The
reason is that to regress the bounding box as a unit, the
bounding box branch needs a larger receptive field than the
confidence branch. And intuitively, the bounding boxes of
objects could be predicted from the confidence heatmap. In
this way, the bounding box branch could be regarded as
a bottom-up strategy, abstracting the bounding boxes from
the confidence heatmap; 2) to keep UnitBox efficient, we add
as few extra layers as possible. Compared to DenseBox [5]
in which three convolutional layers are inserted for bound-
ing box prediction, the UnitBox only uses one convolutional
layer. As a result, the UnitBox could process more than 10
images per second, while DenseBox needs several seconds to
process one image; 3) though in Figure 2 the bounding box
branch and the confidence branch share some earlier layers,
they could be trained separately with unshared weights to
further improve the effectiveness.

With the heatmaps of confidence and bounding box, we
can now accurately localize the objects. Taking the face de-
tection for example, to generate bounding boxes of faces,
firstly we fit the faces by ellipses on the thresholded con-
fidence heatmaps. Since the face ellipses are too coarse to
localize objects, we further select the center pixels of these
coarse face ellipses and extract the corresponding bounding
boxes from these selected pixels. Despite its simplicity, the
localization strategy shows the ability to provide bounding
boxes of faces with high accuracy, as shown in Figure 3.

4. EXPERIMENTS
In this section, we apply the proposed IoU loss as well as

the UnitBox on face detection task, and report our exper-
imental results on the FDDB benchmark [6]. The weights
of UnitBox are initialized from a VGG-16 model pre-trained
on ImageNet, and then fine-tuned on the public face dataset
WiderFace [14]. We use mini-batch SGD in fine-tuning and
set the batch size to 10. Following the settings in [5], the
momentum and the weight decay factor are set to 0.9 and
0.0002, respectively. The learning rate is set to 10−8 which
is the maximum trainable value. No data augmentation is
used during fine-tuning.

4.1 Effectiveness of IoU Loss
First of all we study the effectiveness of the proposed IoU

loss. To train a UnitBox with ℓ2 loss, we simply replace
the IoU loss layer with the ℓ2 loss layer in Figure 2, and
reduce the learning rate to 10−13 (since ℓ2 loss is generally
much larger, 10−13 is the maximum trainable value), keeping
the other parameters and network architecture unchanged.
Figure 4(a) compares the convergences of the two losses, in
which the X-axis represents the number of iterations and
the Y-axis represents the detection miss rate. As we can
see, the model with IoU loss converges more quickly and
steadily than the one with ℓ2 loss. Besides, the UnitBox has

518



Figure 3: Examples of detection results of UnitBox on FDDB.

(a) Convergence (b) ROC Curves

Figure 4: Comparison: IoU vs. ℓ2.

a much lower miss rate than the UnitBox-ℓ2 throughout the
fine-tuning process.
In Figure 4(b), we pick the best models of UnitBox (∼

16k iterations) and UnitBox-ℓ2 (∼ 29k iterations), and com-
pare their ROC curves. Though with fewer iterations, the
UnitBox with IoU loss still significantly outperforms the one
with ℓ2 loss.

Figure 5: Compared to ℓ2 loss, the IoU loss is much more
robust to scale variations for bounding box prediction.

Moreover, we study the robustness of IoU loss and ℓ2 loss
to the scale variation. As shown in Figure 5, we resize the
testing images from 60 to 960 pixels, and apply UnitBox
and UnitBox-ℓ2 on the image pyramids. Given a pixel at
the same position (denoted as the red dot), the bounding
boxes predicted at this pixel are drawn. From the result we
can see that 1) as discussed in Section 2.1, the ℓ2 loss could
hardly handle the objects in varied scales while the IoU loss
works well; 2) without joint optimization, the ℓ2 loss may
regress one or two bounds accurately, e.g., the up bound in
this case, but could not provide satisfied entire bounding box
prediction; 3) in the x960 testing image, the face size is even
larger than the receptive fields of the neurons in UnitBox
(around 200 pixels). Surprisingly, the UnitBox can still give
a reasonable bounding box in the extreme cases while the
UnitBox-ℓ2 totally fails.

Figure 6: The Performance of UnitBox comparing with
state-of-the-arts Methods on FDDB.

4.2 Performance of UnitBox
To demonstrate the effectiveness of the proposed method,

we compare the UnitBox with the state-of-the-arts methods
on FDDB. As illustrated in Section 3, here we train an un-
shared UnitBox detector to further improve the detection
performance. The ROC curves are shown in Figure 6. As a
result, the proposed UnitBox has achieved the best detection
result on FDDB among all published methods.

Except that, the efficiency of UnitBox is also remarkable.
Compared to the DenseBox [5] which needs seconds to pro-
cess one image, the UnitBox could run at about 12 fps on
images in VGA size. The advantage in efficiency makes Unit-
Box potential to be deployed in real-time detection systems.

5. CONCLUSIONS
The paper presents a novel loss, i.e., the IoU loss, for

bounding box prediction. Compared to the ℓ2 loss used in
previous work, the IoU loss layer regresses the bounding box
of an object candidate as a whole unit, rather than four in-
dependent variables, leading to not only faster convergence
but also more accurate object localization. Based on the
IoU loss, we further propose an advanced object detection
network, i.e., the UnitBox, which is applied on the face de-
tection task and achieves the state-of-the-art performance.
We believe that the IoU loss layer as well as the UnitBox will
be of great value to other object localization and detection
tasks.
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