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ABSTRACT
This paper presents the initial findings of our efforts to build
an unsupervised multimodal vocabulary learning scheme in
a realistic scenario. For this purpose, a new multimodal
dataset, called Musti3D, has been created. The Musti3D
database contains episodes from an animation series for tod-
dlers. Annotated with audiovisual information, this database
is used for the investigation of a non-negative matrix factor-
ization (NMF)-based audiovisual learning technique. The
performance of the technique, i.e. correctly matching the au-
dio and visual representations of the objects, has been eval-
uated by gradually reducing the level of supervision starting
from the ground truth transcriptions. Moreover, we have
performed experiments using different visual representations
and time spans for combining the audiovisual information.
The preliminary results show the feasibility of the proposed
audiovisual learning framework.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning-knowledge acquisition, language ac-
quisition; I.2.m [Artificial Intelligence]: Miscellaneous

General Terms: Algorithms, Languages, Experimentation

Keywords: Audiovisual learning, non-negative matrix fac-
torization, multimodal dataset, discriminative patches, his-
togram of acoustic co-occurrences

1. INTRODUCTION
In their first few years of life, children learn to name the

objects they are confronted with in their environment. To
mimic that process with a machine requires learning from
at least two modalities, in this case the auditory and the
visual, to create a crossmodal model that links the learned
object representations in both domains and so establishes
the grounding process.

In this work, the task of learning the relation between vi-
sual and auditory description of words is formulated as an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM’14, November 3–7, 2014, Orlando, Florida, USA.
Copyright 2014 ACM 978-1-4503-3063-3/14/11 ...$15.00.
http://dx.doi.org/10.1145/2647868.2655036.

unsupervised learning problem. Unsupervised learning is an
important technique to build truly artificially intelligent sys-
tems: systems that learn from observing their environment.

While there is a body of work that investigates the unsu-
pervised multimodal analysis of images and text [2,3,7,16],
the combination of continuous speech and tags [13] or im-
ages and continuous speech [4, 11] are far less studied. In
earlier work, visual objects are presented in isolation or on
a clean background and the audio is often recorded on pur-
pose for the specific task of teaching a robot the semantics
of the visual objects [5, 10,15].

Both in vision as well as in speech processing, it has been
shown that adding a limited amount of weak supervision sig-
nificantly improves the pattern discovery capabilities. We
investigate whether the same benefits of weak supervision
can be obtained in an unsupervised setting, replacing the
tags by multimodal information, using a non-negative ma-
trix factorization approach for learning from multiple asyn-
chronous input streams [14]. The key assumption is that
co-occurrences over different modalities provide a strong cue
for semantics or relevance. In particular, we relate proper-
ties of objects in images and audio. The described learning
task is shown in Figure 1.

Our main contributions can then be summarized as fol-
lows: i) we have created and annotated a new multimodal
dataset. Our main research question investigates whether
it is possible to learn visual and audio representations for
objects from watching a television series for toddlers, where
the audio describes the visual scene, but at the same time
exhibits a large degree of complementarity. ii) we gradually
reduce the level of supervision, starting from ground truth
transcriptions for both domains to only using segmentation
info (bounding boxes and audio word delineations) without
grounding. iii) we compare two different visual represen-
tations in this context: bag-of-visual-words, which capture
relatively low-level image characteristics, and discriminative
patches, which can be seen as an example of more mid-level
features.

The remainder of this paper is organized as follows. Sec-
tion 2 details the audio and video features used in the pro-
posed learning scheme. The NMF-based audiovisual learn-
ing framework is discussed in Section 3. The experimental
setup is explained and the results are presented in Section
4. Section 5 discusses the results and Section 6 concludes
the paper.
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Figure 1: An audiovisual learning example - linking
the audio keywords with the visual counterparts.

2. AUDIOVISUAL REPRESENTATIONS
The NMF-based learning framework described in Section

3 can learn object representations from multiple information
streams, here the auditory and visual modality and possibly
supervisory tags. It requires each learning example to be
represented as a vector of non-negative values, feature oc-
currence counts, of a fixed dimension. A learning example
accumulates feature counts over a time span in which one
expects there would be a relation between the different in-
formation streams. In this work, we investigate two choices:
the utterance level and the shot level accumulation. A shot
is the basic component of a video and commonly defined as
an uninterrupted sequence of frames.

2.1 Audio features
The audio information is represented as weighted phone

lattice transition probabilities yielding a fixed-length repre-
sentation of any speech segment with possibly different dura-
tion [12]. These features are obtained by labeling the acous-
tic content of a speech segment with the help of an automatic
speech recognizer and accumulating the co-occurrences of
each acoustic unit in a histogram.

Using a conventional HMM-based speech recognizer, the
network of most probable phone strings (henceforth the phone
lattice) is determined. The phone lattice is an acyclic di-
rected graph where the arcs correspond to phones and the
nodes mark their start and end times. Every arc is also as-
sociated with the acoustic score of the corresponding phone.

The audio features are extracted by transforming this
acoustic score into a posterior probability and accumulat-
ing the probability of every two consecutive phones φ and ψ
over the complete phone lattice

c(φ, ψ) =
∑

{α:h(α)=φ}

∑
{β:h(β)=ψ}

p(α) p(β) ∆αβ (1)

in which h(α) and h(β) return the phone identity, and p(α)
and p(β) the posterior probability of the arcs α and β, re-
spectively. If the start node of β is equal to the end node of
α, then ∆αβ is the inverse of the probability of the common
node, otherwise it is equal to zero. This node probability is
given by the sum of the posterior probabilities of the incom-
ing (or outgoing) arcs of the corresponding node.

MrDog MrsHedgehog Horse Musti

Figure 2: Examples of DPs, together with their
(positive) learned weights. Note how the learning
focuses on gradients that discriminate the object.

The c(φ, ψ) values for each speech segment are vectorized
and stacked in the columns Va of size PxT , in which P is
equal to the square of the number of available phones in the
alphabet and T is the number of utterances in the database.

2.2 Visual features
2.2.1 Visual words

One of the standard approaches to represent images is
the Bag of Visual Words (BOW). First, we extract SIFT
features from a set of images and we cluster them using k-
means; the centers of the resulting clusters are considered as
the visual words of a visual vocabulary Vvis of size k, with k
the predefined number of clusters. Next, for every image we
extract dense SIFT and we assign each SIFT descriptor to its
closest visual word. By applying sum pooling we generate a
histogram representation for the image. Images containing
the same object are expected to have overlap in their BOW
histograms (similar visual word distribution).

2.2.2 Discriminative patches
We additionally consider discriminative patches (DP), a

method where each patch captures an aspect of the appear-
ance of specific objects. Following the approach of [1] we
want an object specific patch p to be highly activated when
the object is present and have low score when other objects
or background appears. Therefore we consider a detection
task where we train a model wp for every DP and we use it
as a linear classifier to the patches x of a test image:

fp(x) = h(wTp x), (2)

with h(y) = y if y > 0 and 0 otherwise. Both patches p
and x are represented as Histograms of Oriented Gradients
(HOG). The weights wp are learned as an exemplar clas-
sifier [9] but instead of a Support Vector Machine we use
Linear Discriminant Analysis (LDA) [6]. Assuming that the
positive and the negative data come from Gaussian distri-
butions with means µp and µn and same covariance matrix
Σ, the model weights for a patch p are learned:

wp = Σ−1(p− µn). (3)

As positive we consider only the HOG features of the patch
p, while for estimating µn and Σ we use background patches.

The above approach results in one classifier for every sam-
pled patch. However, not all of the patches are suitable for
separating the different objects. We select the most discrim-
inative by considering the Mahalanobis distance of a patch
to the negative distribution. During testing we scan the im-
age or the bounding box in a sliding window fashion for all
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DPs and we keep the score of the maximum activation for
each of them (max pooling).

3. NMF-BASED AUDIOVISUAL LEARNING
The links between the audio keywords and video objects

are learned by applying non-negative matrix factorization
(NMF). The NMF algorithm approximates a non-negative
data matrix V of size MxN as a multiplication of two non-
negative matrices W and H of dimensionality MxR and
RxN respectively. Here, R is chosen so that R << M and
R << N in order to obtain a low-rank approximation, i.e. V
is expressed as an approximate linear combination of basis
audiovisual vectors (columns of W) scaled by the weights
stored in H.

The factorization is achieved by minimizing the general-
ized Kullback-Leibler divergence (KLD) between V and its
approximation WH through multiplicative updates [8]. In
the proposed framework, the data matrix V is comprised of
two submatrices Va representing the audio features and Vv

representing the video features.[
Va

Vv

]
≈
[

Wa

Wv

]
H (4)

Defining the audio grounding matrix Vag as

V ijag =

{
1 if an audio keyword i is in utterance j
0 otherwise,

(5)

the unimodal associations are learned by performing the fac-
torization [

Vag

Va

]
≈
[

Wag

Wa

]
H (6)

where the Wag is initialized as Wag = [IK |Wgbg]. IK is a
KxK identity matrix where K is the number of audio key-
words. Wgbg is a Kx(R −K) matrix with random positive
values much smaller than 1.

This setup leads to solutions where each of the K audio
keywords is assigned to a single column in Wa. The re-
maining (R − K) columns, Wgbg, are called the garbage
columns which model other factors like non-keywords or
background music. Similarly, the crossmodal associations
can be learned by concatenating the audio grounding ma-
trix Vag with the video features Vv and following the same
procedure as above.

4. EXPERIMENTS
4.1 Dataset

For the audiovisual learning experiments, we have created
a new realistic multimodal dataset, called Musti3D, a televi-
sion series for toddlers with 30 episodes each lasting 5 min-
utes. We have annotated 22 episodes with various audio and
video information such as the orthographic transcription of
the utterances, the occurrences of various audio keywords,
video objects and the shot boundaries.

We have chosen 12 characters from the series appearing
with different frequencies and perform the learning exper-
iments aiming to learn the audiovisual features belonging
to these characters. In practice, we have defined 12 video
objects and 13 audio keywords (one of the video objects is
associated with two audio keywords).

We pick 5 episodes as oracle for evaluation purposes con-
sidering the balanced occurrences of the target objects and

keywords in the training and test data. The training episodes
are used for extracting the reference representations of the
target objects and keywords. These reference representa-
tions are used to classify the learned audio and visual repre-
sentations. Due to the unbalanced number of occurrences,
we randomly select 10 reference BOW and DP representa-
tions for each object and 5 reference HAC representations
for each keyword.

4.2 Implementation details
The audio representations are extracted using the anno-

tated keyword boundaries extended with an offset of 0.1 sec-
onds. No additional precaution is taken against the back-
ground music. For the HAC feature extraction, phone lat-
tices are generated using a conventional HMM-based auto-
matic speech recognizer. A phonetic set consisting of 40
Dutch phones is used.

For the BOW features, we used dense SIFT at multiple
scales and a vocabulary of size 300. To obtain DPs, we sam-
pled approximately 15 patches per bounding box from the
training data at multiple scales and we extract features from
6x6 HOG cells. We consider the top 20 DPs per object based
on their distance from the negative distribution. For the fi-
nal image representation, we extract BOW or DP features
for each bounding box separately and sum the result.

The final recognition accuracies are obtained after av-
eraging the results of 10 independent trails of 100 NMF
iterations. In the experiments using grounding matrices,
3 garbage columns are used resulting in Rvg = 15 and
Rag = 16. The learned representations are classified ac-
cording to the label of the closest reference representation
with respect to the generalized KLD.

In the experiments without grounding information, each
column of the basis matrices Wa and Wv are classified as
the label of the closest reference representation. The W and
H matrices are initialized either in a supervised or unsuper-
vised manner. In the supervised initialization setting, the
initial W and H are obtained after a single NMF iteration
using the visual grounding information. On the other hand,
in the unsupervised case, W and H are randomly initialized
and R is set to 50. The recognition accuracy is obtained
as the ratio of the number of unique correct matches to the
number of video objects.

4.3 Results
We present the recognition accuracy results in Table 1

listing the experiments that are performed using the video
grounding matrix and audio grounding matrix in the upper
and middle panel respectively and the experiments with-
out using the grounding information in the lower panel.
Firstly, we will focus on the experiments with grounding.
The ground truth experiments which are given in the first
rows of the upper and middle panels yield that the proposed
method is able to find the correct crossmodal match of each
video object (audio keyword) with a recognition accuracy of
74% (66%) at utterance-level and 81% (77%) at shot-level.

In the second block of the upper and middle panel, the
unimodal learning accuracy of both sources are evaluated.
The learned visual representation for shot-level DP features
match the reference DP features for 84% of the video objects.
Only 24% of the shot-level BOW features match correctly
with the reference BOW features. Using utterance-level fea-
tures slightly improves the accuracy of BOW features to
35%, while it reduces the performance of DP features to
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55%. For HAC features, the recognition accuracy is around
71% and 76% for both levels.

In the third blocks, the results of a less supervised cross-
modal learning setting, i.e. using the grounding matrices
with the crossmodal features (rather than the ground truth
crossmodal features), are presented. For visual grounding,
both shot- and utterance-level features provide a similar
recognition accuracies of 59% and 56% respectively. For
audio grounding, the shot-level DP features provide consid-
erably higher performance with 69% compared to the 26%
of shot-level BOW features.

The lower panel summarizes the recognition results of the
learning experiments without using the grounding informa-
tion. The upper block shows the results where the basis ma-
trix W is initialized in a supervised manner. The shot-level
DP features provides 40% recognition accuracy compared
to the 29% of the shot-level BOW features. The utterance-
level features provide inferior performance for both DP and
BOW features. The results in the lower block are obtained
with unsupervised initialization of W. All features provide
around 30 % of recognition accuracy.

5. DISCUSSION
First, based on a set of experiments using ground truth

transcripts, we have shown that even though audio and video
show a high degree of complementarity, co-occurrence in-
formation can guide non-negative matrix factorization to a
meaningful solution. The appropriate temporal unit for cap-
turing such co-occurrences seems to be the shot-level.

While not yet fully unsupervised, our experiments are
encouraging as they show that data from a TV series for
toddlers shows sufficient temporal overlap between object
names in audio and occurrences of the corresponding ob-
jects in the visual stream to learn object semantics in an
unsupervised way. This is a leap forward compared to ear-
lier work, where objects are often shown in isolation or on
a clean background and the audio is often recorded on pur-
pose for the specific task of teaching a robot the semantics
of objects.

We have also compared two different visual representa-
tions: bag-of-visual-words, which capture relatively low-level
image characteristics, and DPs, which can be seen as an ex-
ample of mid-level features. While in the current version
the DPs are selected based on some supervision, the supe-
rior results obtained with these features clearly illustrate
that more powerful mid-level representations are critical for
learning in an unsupervised manner.

6. CONCLUSION
In this work, an NMF-based audiovisual learning tech-

nique has been described and applied to a realistic multi-
modal dataset containing episodes from a toddler TV series.
At several supervision levels, the performance of the tech-
nique has been investigated using different video features
and time spans for fusing the audio and visual information.
From the results, it can be concluded that the learning ap-
proach provided promising results on the task of learning the
relation between visual and auditory description of words.
Future work includes performing feature extraction in an un-
supervised manner rather than using the annotated informa-
tion and deeper investigation of the impact of background
music.

Visual grounding utt.-level shot-level

+GTvideo-GTaudio 74 81
+GTvideo-BOW feat. 35 24
+GTvideo-DP feat. 55 84
+GTvideo-HAC feat. 56 59

Audio grounding utt.-level shot-level

+GTaudio-GTvideo 66 77
+GTaudio-HAC feat. 76 71
+GTaudio-BOW feat. 19 26
+GTaudio-DP feat. 35 69

Learning w/o grounding utt.-level shot-level

+BOW feat.-HAC feat. (sup.) 17 29
+DP feat.-HAC feat. (sup.) 10 40
+BOW feat.-HAC feat. (unsup.) 31 25
+DP feat.-HAC feat. (unsup.) 28 30

Table 1: Recognition accuracy results in percentages
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