Morph: A Fast and Scalable Cloud Transcoding System

Guanyu Gao
School of Computer Science and Engineering
Nanyang Technological University

ggao001@ntu.edu.sg

ABSTRACT

Morph is an open source cloud transcoding system. It can
leverage the scalability of the cloud infrastructure to encode
and transcode video contents in fast speed, and dynamically
provision the resources in cloud to accommodate the work-
load. The system is composed of a master node that per-
forms the video file segmentation, concentration, and task
scheduling operations; and multiple worker nodes that per-
form the transcoding for video blocks. Morph can transcode
the video blocks of a video file on multiple workers in paral-
lel to achieve fast speed, and automatically manage the data
transfers and communications between the master node and
the worker nodes. The worker nodes can join into or leave
the transcoding cluster at any time for dynamic resource
provisioning. The system is very modular, and all of the
algorithms can be easily modified or replaced. We release
the source code of Morph under MIT License, hoping that
it can be shared among various research communities.

Keywords

Video transcoding; cloud computing; distributed system;
task scheduling; resource provisioning;

1. INTRODUCTION

Video transcoding is a popular solution for content adap-
tation [8]. It is commonly used in adaptive bitrate (ABR)
streaming to encode video contents into multiple representa-
tions in different bitrates and resolutions. Particularly, with
the rapid growth of mobile devices and global mobile data
traffic, transcoding has become a must for content adapta-
tion to ensure that the source content can be viewed on any
device and in any network conditions. However, transco-
ding is a complicated signal conversion procedure [8], which
consumes massive computing resource and incurs excessive
processing delays. Moreover, the traditional in-house trans-
coding methods, which maintain a fixed number of servers,
typically need to over-provision the computing resource by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MM 16, October 15-19, 2016, Amsterdam, Netherlands
© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. .. $15.00
DOL http://dx.doi.org/10.1145/2964284.2973792

1160

Yonggang Wen
School of Computer Science and Engineering
Nanyang Technological University

ygwen@ntu.edu.sg

at least 30% to meet the peak workload [4]. This creates a
resource wastage when the workload is low.

A new trend for transcoding is to adopt the cloud infras-
tructure to provide transcoding as a cloud service. Specifi-
cally, the cloud transcoding system can use many VM in-
stances or Containers to transcode the video contents in
parallel to achieve fast speed. Meanwhile, by leveraging the
elasticity of the cloud infrastructure, the system can dy-
namically provision the resource to adapt to the workload,
avoiding excessive processing delays or resource wastage.

Seeking to address the transcoding demand for the fast
growing volume of video contents, many online cloud trans-
coding services have emerged in recent years. Bitcodin [3, 7]
is capable of encoding up to 100x faster than real time. Ama-
zon Elastic Transcoder is designed to be scalable and cost-
effective for developers to transcode the video files [1]. Zen-
coder can encode high-definition (HD) quality video faster
than real time. The content delivery network service provider
Akamai also launched cloud-based transcoding service So-
la Vision for adaptive media delivery [2]. Encoding.com
can automatically scale the computing resource to achieve
a level of computation efficiency. For managing the multi-
ple versions of the video content in ABR cost-efficiently, we
implemented the video content management system in our
previous work [6] for reducing the operational cost.

Many commercial cloud transcoding services are available
online, however, we observe there is still a lack of mature
open source software projects for cloud transcoding. This
paper presents the design and implementation of our cloud
video transcoding system Morph, which is a well document-
ed open source project. We believe it can be used in the re-
search area of transcoding, distributed system, task schedul-
ing, resource provisioning, etc. The system is reliable even
under heavy workload, and we provide multiple types of ser-
vice interfaces so that it can be easily deployed in a produc-
tion environment. We release the source code of Morph on
Github under MIT License. We are still developing new fea-
tures for Morph, and we welcome suggestion and contribu-
tion from communities. The source code and documentation
are available at the following links:

Source Code: https://github.com/cap-ntu/Morph
Project Page: http://morph.aidynamic.com/

2. FEATURES

Morph can transcode the video files in fast speed; schedule
the tasks according to their Qos profiles; and dynamically

|

1
[] o o]
=Nz | | | [T
: N~ o]
T 1

1

Scheduling 1

=)

&

Provisioning

Figure 1: System architecture.

provision the computing resource to accommodate the work-
load. Specifically, it has the following main features:

Block level parallelism: Each video file is segmented in-
to many equal-size video blocks, and the video blocks can
be transcoded on multiple workers in parallel. Compared
with the file level parallelism, this can greatly improve the
transcoding speed for the large video files if the number of
available transcoding workers in the system is large.

Scheduling to meet QoS requirements: The video contents
may have different QoS requirements for transcoding. We
implement many scheduling algorithms in our system for
meeting the QoS profiles of the transcoding tasks. It is easy
to modify or extend the scheduling algorithms in our system.

Elasticity for resource provisioning: The master node of
Morph can work with an arbitrary number of transcoding
workers. The workers can dynamically joint in or leave the
cluster to accommodate the time-varying workload. The
system can activate more workers when the transcoding work-
load is high, and turn off some workers when the workload
decreases to achieve dynamic resource provisioning.

3. DESIGN

We first present the architecture of Morph, and then we
introduce the workflow for fulfilling transcoding requests.

3.1 Architecture

We illustrate the system architecture of Morph in Fig. 1.
The system is composed of the following layers:

Interface layer: It interacts with the users for process-
ing the transcoding requests and preprocessing the video
contents. The system provides three types of service inter-
faces, namely, command line interface (CLI), remote proce-
dure call (RPC), and Restful API. The users can submit the
transcoding tasks and query the transcoding progress via the
service interfaces. For each of the user submitted transco-
ding tasks, it will estimate the required computing time for
the task and segment the video files into video blocks for
transcoding in parallel on the workers.

Scheduling layer: The user submitted transcoding tasks
will be put into the scheduling queue. The task scheduler
sequences the pending tasks in the queue according to the
scheduling policy and the QoS profiles of the tasks. When-
ever the master node receives a transcoding request from
the worker, the task scheduler will select a video block from
the pending tasks for dispatching by applying the scheduling
policy. The transcoded video blocks on the worker will be
sent back to the master for video concentration.

Provisioning layer: It manages the transcoding workers
for dynamic resource provisioning. Our system can adopt
the virtual machines (e.g., KVM) or containers (e.g., Dock-
er) for resource virtualization. Each VM instance or con-
tainer runs a worker. The worker will request a video block
from the master node whenever it is idle. The worker will

1161

Source content

/ \ Target representation

-l — 00— -
Segmentation \ . / Concentration

Transcoding in parallel

Figure 2: Workflow for a transcoding task.

transcode the video block into the target representations,
which will be sent back to the master node.

3.2 Workflow

We illustrate the workflow for transcoding a video content
in Fig. 2. The user submit a transcoding task by upload-
ing a video file and specifying the transcoding parameters.
The video content will be segmented into independent video
blocks according to the group of pictures (GOP) structure.
The video block information of the task will be then put
into the scheduling queue. When an idle worker requests a
video block from the master node, the scheduler determines
which video block in the scheduling queue will be select-
ed for dispatching by applying the scheduling policy. The
worker will transcode the video block into the target repre-
sentation, and then send back the target representation to
the master node. Because the system may have many avail-
able workers, the video blocks in the scheduling queue can
be requested and transcoded by the workers in parallel. The
master node continuously checks the transcoding status of
the video blocks of each task. If all the video blocks of a
task have been successfully completed, the master node will
concentrate the video blocks into one video file. Then, the
transcoding task is finished and the target representations of
the video content are ready to be downloaded by the users.

4. IMPLEMENTATION

In this section, we present the system implementation.
The main components of the system are illustrated in Fig.
3. The components of the interface, segmenter, scheduler,
data transfer, and concentrater, are implemented as inde-
pendent threads in the master node. Each worker is an
independent progress running on a VM instance or contain-
er. The resource controller is an independent progress for
managing the status of the workers. We adopt the FFmpeg
for the transcoding operations. We discuss the details of the
implementation for each part in the following subsections.

4.1 Interface

We provide three types of interfaces for the users to ac-
cess the transcoding service, namely, CLI, RPC, and Restful
API. When the user submits a task, the system will return a
key. The user can use the key for querying the transcoding
progress of the task. We adopt the SimpleXMLRPCServer
for implementing the XML-RPC servers in Python.

4.2 Segmenter

The video segmenter determines the duration of each video
block when segmenting the video files. The video block du-
ration impacts the transcoding performance of the system.
Specifically, if the duration of each video block is short, a
video file is to be segmented into more blocks, and it would
incur more communication overhead among the master and

block info

requiests
r \ o _E_ -)
RPC (—-D[Interface] \‘é « Scheduler :
\ J oal" 7 XS i
i S 7 \ @)
N T 5= /s :
y REST | | .8 |& ideo |7 gy ; g
& «>| App f"@ Segmenter] Block]% P m(_) 6;
__— " A :
i (Task status | Task info ‘ \ i S
CLI <—> Concentrater | <= | Data Transfer N:

transcoded block bloéf:k data

Figure 3: The system implementation of Morph.

the workers. On the other hand, if the duration of each
video block is very long, a video file is to be segmented into
fewer blocks, it cannot take the advantage of the large num-
ber of workers for parallel transcoding the video file. Our
system provides the two following methods for determining
the duration of the video block for a task:

1) Predefined: The system can read a predefined value
from the configuration file when starting. With this method,
the video blocks of all tasks have the same duration.

2) Dynamically determined: The duration of a video block
for a specified task can be determined on the fly when seg-
menting the video file by applying a segmentation algorithm.

4.3 Scheduler

The system maintains a queue for the pending transc-
oding tasks, and the scheduler sequences the tasks in the
queue periodically according to the scheduling algorithms.
The scheduling algorithms are implemented as an indepen-
dent module in the source file of ’algorithms/scheduling.py’.
Each scheduling algorithm is implemented as a function. It
is easy to modify or extend the scheduling algorithms with-
out affecting the other modules of the system. We have
implemented the following scheduling algorithms in the sys-
tem: 1) FIFO: First In First Out. 2) LIFO: Last In First
Out. 3) EDF': Earliest Deadline First. 4) HPF: Highest Pri-
ority First. 5) HVS: Highest Value First. The scheduling
algorithms affect the QoS of the transcoding service. The
system operator can set the scheduling algorithm in the con-
figuration file based on the QoS considerations of the service.
For instance, one can set sch_alg = "hpf’ in configuration for
scheduling the tasks with the highest priority first.

4.4 Transfer

The data transfer interacts with the workers to send the
video blocks and receive the transcoded video blocks from
the workers. The video block data will be packed with the
transcoding parameters and MD5 checksum of the data, and
then sent to the worker for transcoding. The format for
packing and unpacking the video block data is defined in
the file ‘common.py’. The data transfer uses multithreading
mechanism for sending and receiving the data, and it can
communicate with multiple workers at the same time.

4.5 Worker

The worker requests the video block for transcoding from
the master whenever it is idle. After receiving the video
block data from the master, it will check the validity of the
data and transcode it into the target representations. If the

1162

transcoding for the video block is finished successfully, it will
pack the video data with the transcoding information and
send it to the master. Otherwise, it will notify the master
of the failure of the task.

4.6 Concentrater

The concentrater is implemented as a thread for checking
and updating the status of each transcoding task. If all the
video blocks of a task have been transcoded successfully, it
will concentrate the video blocks of the task into one video
file and update the status of the task as success. If any video
block of a task is transcoded unsuccessful, it will update the
status of the task as fail.

4.7 Controller

The controller determines which worker should be activat-
ed. It reads the pending tasks information from the system
database for calculating the workload, and makes the con-
trol decisions by applying the provisioning policy. In our
implementation, the control of the status of the workers is
independent of starting or stopping the VMs or Containers.
We create a field for each worker in the database to rep-
resent the status of the workers, where 1 represents active
and 0 represents sleep. The controller updates the values ac-
cording to the control decisions. The worker determines its
own working status by accessing the value of this field. The
API for starting or stopping a VM or container depends on
the specific resource virtualization software. Each software
provides its own version of interfaces (e.g., the remote API
for Docker). We did not cover the control for the VM and
Container in our implementation due to the dependence on
the API interface of the specific virtualization software.

5. DEPLOYMENT

In this section, we present the system deployment in the
real environment. We also discuss the potential system bot-
tleneck in large scale deployments and the possible solutions.

5.1 Software Stack

We illustrate the software stack of Morph in Fig. 4. The
master and worker depend on ffmpeg for video transcoding.
Therefore, each VM or Container that runs the master or
worker needs to install ffmpeg. We adopt MySQL database
for storing the task information. The master, workers, and
controller should all can connect to the MySQL server for ac-
cessing the information. If one needs to use the Restful API
to access, the Apache HTTP webserver should be installed
and configured for processing the HT'TP requests.

- Apache

Master Worker

NN E NSNS sE s NN NN NNEESNEENUEENNEENNNEEEEEENEEEOEE

%5 FFMPEG

Figure 4: The software stack of Morph.

Controller

MysoL

5.2 Potential Bottleneck

We design and implement the system in a simple and reli-
able way, however, it still have some potential performance
bottleneck. The main performance bottleneck is from the
master node, which is a single point of failure. One concern
is that the master node will have more overhead for transfer-
ring and processing the video data with more active workers
in a cluster. However, the video data transferring and pro-
cessing (segmentation and concentration) time in the master
node is relatively small compared with the transcoding time
in the worker node. In our experiment, the workload of the
master node is very small when the system has 30 active
workers that work at the full capacity. If the number of pro-
visioned workers in the system is very large, the performance
bottleneck of the master node will become significant. An-
other concern is that the single point failure of the master
node will make the transcoding service unavailable, while
the system reliability is critical for the online service.

One effective solution for the above discussed problems is
to introduce a load balancer into the system, as illustrat-
ed in Fig. 5. A load balancer has daemon processes and
can recover itself from failure very fast if it collapses on its
own. We can divide the system into smaller groups, and each
group consists of a master node and many workers. Normal-
ly, the balancer balances the workload among the groups. If
the balancer detects the failure of one master node, it will
direct the transcoding requests to the other active groups
until the broken-down master node recovers.

6. PERFORMANCE

Testbed: The duration of the test video file is 138 min-
utes. The resolution is 1920x1080, and the bitrate is 2399
kb/s. The video data is encoded in H.264, and the audio da-
ta is encoded in AAC. The CPU frequency is 2.10GHz. The
master node is allocated with 8 CPU cores, and the memory
size is 8GB. The worker node is allocated with 4 CPU cores,
and the memory size is 2GB. We use the Docker to build
the cloud platform. The video block duration is 2 minutes.
The target resolution of the transcoding is 480x360. Trans-
coding time: We measure the transcoding time using Morph
with different number of active workers, and compare it with
the standalone FFmpeg method. The transcoding time and
the speedup ratio compared with the standalone FFmpeg
method are illustrate in Table 1. The transcoding time for
using a standalone FFmpeg on a single server is 1775 second-
s. With one active worker, the transcoding time for Morph
is 1843 seconds, larger than the standalone ffmpeg method.
The overhead comes from the video segmentation, transmis-
sion, and concentration operations. Specifically, the video
segmentation time is 46 seconds, and the video block con-

1163

Load ,
i
N

Figure 5: Load balancing for large scale deployment.

centration time is 13 seconds. With more active workers,
the transcoding time for Morph decreases, because it can
transcode the video blocks in parallel with more workers.

Table 1: Transcoding time comparison

Worker Num | FFmpeg | 1 5 10 | 20 |30
Time (s) 1775 1843 | 605 | 369 | 213 | 181
Speed-up (x) | 1 0.96 |29 [48 |83 |98

Task scheduling and resource provisioning: We have also
designed some task scheduling and resource provisioning al-
gorithms based on Morph, and evaluated the performances
in our previously work [5].

7. CONCLUSION

This paper presents the design and implementation of our
open source cloud transcoding system Morph. We aim to de-
sign a cloud transcoding system that can achieve fast trans-
coding speed and elastic system scaling. The system is use-
ful for the research and system development in the field of
video transcoding, distributed system, task scheduling, and
resource provisioning. The project is open sourced and well
documented. In the future, we will continue to maintain
and develop new features and functions to extend the sys-
tem. We hope it can be easy for the researcher to verify the
algorithms on it, and we also expect that it can be used as
an efficient software for transcoding in a cloud environment.

8. REFERENCES

[1] http://aws.amazon.com/elastictranscoder/.

[2] http://www.beet.tv/2012/09/akamaicloud.html.

[3] Bitcodin. https://www.bitmovin.com/encoding/.

[4] J. Careless. Cloud video encoding: When to go online
and when to stay in-house. Streaming Media, 2012.

G. Gao, Y. Wen, and C. Westphal. Resource
provisioning and profit maximization for transcoding in
information centric networking. Infocom Workshop on
Muisc, 2016, http://arxiv.org/abs/1605.05758.

G. Gao, Y. Wen, W. Zhang, and H. Hu. Cost-efficient
and qos-aware content management in media cloud:
Implementation and evaluation. In IEEFE International
Conference on Communications (ICC). IEEE, 2015.
C. Timmerer, D. Weinberger, M. Smole, R. Grandl,

C. Miiller, and S. Lederer. Cloud-based transcoding
and adaptive video streaming-as-a-service. E-letter.

A. Vetro, C. Christopoulos, and H. Sun. Video
transcoding architectures and techniques: an overview.
Signal Processing Magazine, IEEE, 20(2):18-29, 2003.

5]

(6]

