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ABSTRACT
Knowledge representation learning (KRL) encodes enormous struc-
tured information with entities and relations into a continuous
low-dimensional semantic space. Most conventional methods solely
focus on learning knowledge representation from single modality,
yet neglect the complementary information from others. The more
and more rich available multi-modal data on Internet also drive
us to explore a novel approach for KRL in multi-modal way, and
overcome the limitations of previous single-modal based methods.
This paper proposes a novel multi-modal knowledge representation
learning (MM-KRL) framework which attempts to handle knowl-
edge from both textual and visual modal web data. It consists of
two stages, i.e., webly-supervised multi-modal relationship mining,
and bi-enhanced cross-modal knowledge representation learning.
Compared with existing knowledge representation methods, our
framework has several advantages: (1) It can e�ectively mine multi-
modal knowledge with structured textual and visual relationships
from web automatically. (2) It is able to learn a common knowledge
space which is independent to both task and modality by the pro-
posed Bi-enhanced Cross-modal Deep Neural Network (BC-DNN).
(3) It has the ability to represent unseen multi-modal relationships
by transferring the learned knowledge with isolated seen entities
and relations into unseen relationships. We build a large-scale multi-
modal relationship dataset (MMR-D) and the experimental results
show that our framework achieves excellent performance in zero-
shot multi-modal retrieval and visual relationship recognition.

KEYWORDS
Webly-supervised, relationship mining, multi-modal, knowledge
representation learning

1 INTRODUCTION
Knowledge representation learning (KRL), which originates from
structured text representation, has been successfully utilized in var-
ious �elds such as knowledge graph construction [22] and knowl-
edge inference [39]. Typical knowledge graph usually provides a
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Figure 1: Illustration of the di�erence of conventional tex-
tual KRL, visual KRL and the Multi-modal KRL (MM-KRL).

huge amount of structured information with triple facts represented
as (head entity, relation, tail entity), which are also abridged as (h,r,t).
To model them, most previous textual KRL methods [4] [18] [34]
focus on textual modality and utilize translation-based technique
which projects both entities and relations into a continuous low-
dimensional semantic space, with relations considered as translat-
ing operations between head and tail entities. Inspired by textual
KRL, visual KRL methods presented in [19] [27] [38] [42] focus
on analyzing each image by detecting two objects as well as their
intersection and encoding them into a semantic space. The objects
and their intersection are corresponding to entities and relation
in textual KRL respectively. However, all the existing visual KRL
methods can only handle the prede�ned visual relationships and
the data need to be annotated with bounding boxes. This puts a
very high requirement on the data acquisition, and also restricts
their applications, e.g. zero-shot multi-modal retrieval.

We extend single modal KRL into multi-modal KRL (MM-KRL),
in which each relationship has two modalities, that is texts and
images. Multi-modal KRL is �rstly proposed by Xie et al. [37]. As a
typical multi-modal KRL work, the textual and visual modalities we
consider are usually globally labeled with only one relationship for
less manual labor and wider applications. Figure 1 illustrates the
di�erence of conventional textual KRL, visual KRL and MM-KRL.
The advantages of MM-KRL are as follows. Firstly, MM-KRL can
reveal the comprehensive semantics by utilizing the complemen-
tary information from multiple modalities. For example, given two
textual relationships "man rides bike" and "cyclist is on bicycle",
conventional textual KRL method would deem them as not similar.
However, their knowledge is extremely similar while we consider
their corresponding images. Secondly, MM-KRL is bene�cial for
many downstream multi-modal tasks, such as cross-modal retrieval,

Session: Fast Forward 2 MM’17, October 23–27, 2017, Mountain View, CA, USA

411



visual relationship recognition and image/video captioning. With
the learned common space and extracted uni�ed representation,
the gap between text and image can be bridged easily. Finally, a
good MM-KRL could implicitly link visual modality with textual
modality on entities and relations respectively, which can be further
applied to zero-shot tasks. For example, given "man rides cow" and
"horse eats grass", the learned knowledge representation can im-
plicitly project textual and visual modalities of "cow" into a uni�ed
representation in the common space, and so do "eat" and "grass".

Learning a good knowledge representation on multiple modali-
ties is not a trivial matter and obviously faces several challenges,
which lead to few works focus on MM-KRL. Multi-modal training
data with structured relationships are hard to obtain. There is no
existing large scale multi-modal relationship dataset including tex-
tual modality in (h,r,t) form and their corresponding images with
globally annotated. Therefore, we have to mine structured relation-
ship sentences and their corresponding images directly from web
data. The method design is even more challenging, as the learned
knowledge representation needs to be independent to task and
modality, and also locally consistent cross the modalities. First of
all, di�erent from some task-dependent learning methods, which
train CNN and RNN end-to-end respectively for textual relationship
or sentence classi�cation [40] [41], we need learn the knowledge
only from data themselves instead of any task-driven one. More-
over, we need to seek a common knowledge space which is beyond
textual and visual spaces, and extract the representation by taking
cross-modal relevance into consideration. Last but not the least, the
designed method should have the ability to project image region
(e.g. object/intersection) and its corresponding textual word (e.g.
entity/relation) into a uni�ed representation especially from the
globally annotated images and holistically structured texts, as it is
a huge amount of work to annotate objects and their intersection
into image regions manually.

This paper proposes a novel MM-KRL framework which attempts
to extract knowledge from both textual and visual modalities. To
tackle the challenges in data acquisition and method design, the
framework consists of webly-supervised multi-modal relationship
mining and multi-modal knowledge representation learning, as
shown in Figure 2. The �rst stage, webly-supervised multi-modal
relationship mining, aims to mine a large-scale multi-modal rela-
tionship dataset from web data. At this stage, we �rstly mine textual
relationship candidates from a given text corpus and re�ne them
by discarding the illogical and un-visualized ones, then enrich the
textual relationships with images through visual representativeness
quali�cation and noisy image �ltering. At the second stage, we pro-
pose a Bi-enhanced Cross-modal Deep Neural Network (BC-DNN)
to collaboratively learn textual and visual knowledge representa-
tions iteratively, and �nally achieve a uni�ed representation which
is independent to both task and modality. The learned knowledge
representation is supervised by the constructed knowledge triplets
which jointly utilize intra-similarity and inter-di�erence on single
modality as well as cross-modal relevance.

In the experiments, the qualitative and quantitative results on
zero-shot multi-modal relationship retrieval clearly demonstrate
that our framework can successfully mine the multi-modal relation-
ships from un-annotated web data, and is able to project knowledge

vector learned from di�erent modalities into a common space as
well as represent unseen multi-modal relationships. Moreover, we
demonstrate the superiority of obtained visual relationship repre-
sentation model from our framework on public visual relationship
recognition dataset.

The main contributions of our work are summarized as follows:
• This is a pioneer study on multi-modal knowledge repre-

sentation learning directly from web data, which is chal-
lenging on both data acquisition and method design. The
proposed MM-KRL framework has great potential for ongo-
ing multi-modal knowledge graph construction and knowl-
edge driven cross-modal tasks.

• We propose BC-DNN method to project di�erent modali-
ties into a common knowledge vector space for a united
knowledge representation. The learned representation is
independent to task and modality, and also locally consis-
tent cross the modalities. The code and obtained textual
and visual knowledge representation models are released
at project page (http://nlpr-web.ia.ac.cn/mmc/homepage/
bkbao/publications/MM-KRL.html).

• We construct a large-scale muti-modal relationship library,
called MMR-D, by utilizing the proposed webly-supervised
multi-modal relationship mining method. The dataset is
released at project page for academic use. Experimental
results on both public and constructed datasets validate
the e�ectiveness of the proposed MM-KRL framework.

The rest of the paper is organized as follows. In Section 2, the
related work is reviewed. Section 3 introduces the details of the pro-
posed approach. Implementation details are described in Section 4.
In Section 5, we report and analyze extensive experimental results.
Finally, we conclude the paper with future work in Section 6.

2 RELATEDWORK
In this section, we brie�y review the related work about textual
KRL, visual KRL, and multi-modal learning.

2.1 Textual KRL
Textual knowledge representation learning is a traditional topic
in information extraction and knowledge construction. Recently,
many methods have been proposed based on translation scheme.
Bordes et al. [4] propose a TranE model which interprets relation as
translating operations between head and tail entities. It is straight-
forward and e�ective, but it cannot model 1-to-N, N-to-1 and N-to-N
relations. To address it, Wang et al. [34] introduce a TransH model
to translate on relation-speci�c hyperplanes. Beyond modeling enti-
ties and relations into a common space, TransR [18] interprets enti-
ties and relations in di�erent semantic spaces, and sets a projection
matrix to project entities into relation space. Besides translation
model, there are some techniques utilizing deep learning. Zeng
et al. [40] exploit a convolutional deep neural network to extract
lexicon and sentence level features. Zhang et al. [41] propose a
simple framework based on recurrent neural networks to do full
supervised sentence classi�cation. Unlike their methods which only
learn knowledge from textual modality, we focus on knowledge
representation from both textual and visual modalities, and our
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Figure 2: Proposed framework of multi-modal knowledge learning.

data are mined via webly-supervised method rather than annotated
text triplets.
2.2 Visual KRL
This section reviews visual KRL for visual relationship, which aims
to understand the interaction between two objects in an image.
The existing work can be generally categorized into four classes
according to interaction types: (1) Object co-occurrence. Early
work, e.g. [7] [10], leverages object co-occurring statistics to mea-
sure whether two objects are appeared in an image simultane-
ously. (2) Spatial interactions. To estimate the relative location
between two object classes, Galleguillos et al. [12] use a condi-
tional random �eld (CRF) model and Gould et al. [13] propose a
two-stage image segmentation approach for incorporating global
information into local features. (3) Human-object interactions.
Ramanathan et al. [24] identify interactions between people and
objects by a neural network framework. Chao et al. [6] propose
a Human-Object Region-based Convolutional Neural Networks
(HO-RCNN) for human-object interactions detection. (4) General
interactions between objects. Sadeghi et al. [27], Lu et al. [19],
Li et al. [17] and Zhang et al. [42] detect and localize pairs of objects
in an image, and also classify the predicate/interaction between
each pair.

All the existing visual KRL methods only focus on visual modal-
ity and the data need to be locally annotated with prede�ned ob-
jects/interactions by bounding boxes. Our work aims at general in-
teraction with the advantages on that 1) we focus on multiple modal-
ities, and 2) the data are from web rather that the pre-de�ned visual
relationships and do not need time-consuming bounding boxes an-
notation. Speci�cally, in terms of the interaction type, our work is
related to [17] [19] [27] [42]. Unlike our work, [27] only handles the
small-scale visual relationship detection, and does not touch multi-
ple modalities and semantic representation learning. [17] [19] [42]
improve to study large-scale case, e.g. [42] successfully learns visual
knowledge representation by extending textual TransE model [4]
to visual TransE. However, the above work limits on the locally
annotated data and single modality relationship learning.
2.3 Multi-Modal Learning
Generally, multi-modal learning methods aim to project hetero-
geneous data into a latent space. The most widely used feature
subspace methods on multiple modalities are canonical correlation
analysis (CCA) [33], Partial Least Squares (PLS) [8] and Bilinear
Model (BLM) [28] [32]. Recently, some methods based on deep
learning are also proposed for multi-modal learning tasks. Srivas-
tava et al. [29] propose a deep multi-modal restricted boltzmann

machines (RBM) to model the cross-modal consistency. Feng et
al. [11] propose a correspondence autoencoder via constructing
correlations between hidden representations of two uni-modal deep
autoencoders. In [20] and [35], the deep matching-based methods
are used to do multi-modal learning. However, all above methods
depend on fully supervised information including annotations on
both modalities and the within-modality similarities, and do not
emphasize on relationship representation learning.

Multi-modal knowledge representation learning is �rstly pro-
posed by Xie et al. [37]. In this type of work, e.g. [23] [36], text
and image are consistent based on isolate text/visual concept (from
WordNet or visual tags), which neglect the structured textual/visual
information. Di�erent from these researches, we aim to learn knowl-
edge from structured textual/visual relationship data, which main-
tain the consistent of data structure (text triplets) used in typical
knowledge graphs.
3 OUR APPROACH
Our proposed MM-KRL framework is illustrated in Figure 2, which
contains two key stages: webly-supervised multi-modal relation-
ship mining and bi-enhanced cross-modal knowledge representa-
tion. In this section, we �rstly de�ne the problem and then present
the details of the proposed framework.
3.1 Problem De�nition
Knowledge exists in the form of relationship implicitly. We de�ne a
multi-modal relationship sample Ri (i is the index) with two modal-
ities: (Ti ,Vi ). Here Ti is the i-th structured textual relationship,
which is regarded as a holistic one and does not split into entities
and relation in our work. Vi = {vik : k = 1 : Ni } is the i-th visual
relationship set including corresponding Ni images. Our purpose
is to mine Ri from web data and learn multi-modal relationship
projection f (Ri ) for knowledge representation, which consists of
textual relationship projection h(Ti ) and visual relationship projec-
tion д(Vi ).
3.2 Webly-supervised Multi-modal

Relationship Mining
As there are no available public datasets with multi-modal rela-
tionships, we need to mine them from web data, which are easy to
obtain but contain huge noises in both textual and visual modalities.
Considering that mining textual relationships is easier than mining
visual ones, we attempt to get textual relationships ready �rst, then
enrich them with corresponding images.

3.2.1 Textual Relationship Mining. Given an arbitrary web text
corpus, we �rstly utilize Stanford OpenIE toolkit [1] to extract
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candidate textual relationships. The resultant textual relationships
are then normalized into the lower case and constituted into the
raw textual relationship set. Furthermore, we delete the numeral
words (e.g. two, three, many) and replace the personal pronouns
with its general gender appellation (e.g. he→ man, she→ woman).
Considering that the textual relationship should be short in length
as it is structured with triple facts represented as (h,r,t), we remove
those with more than eight words (e.g. "Major League Baseball game
with player from Pittsburgh Pirates crossing").

However, due to shortcomings of the OpenIE algorithm, the raw
textual relationship set contains amount of illogical relationships
and non-visualized entities. For example, "altitude house looking
over herd" is an illogical textual relationship. Another example is,
there is no corresponding images to describe "Europe". Due to these
observations, two steps, text representativeness quanti�cation and
visual entity identi�cation, are employed to construct the �nal
textual relationship set. In text representativeness quanti�cation,
we assume that a representative textual relationship should be used
commonly, that is, we can �nd it from web. Hence, we utilize Google
Text Search Engine to �lter non-representative relationships which
do not receive any returned web links. In visual entity identi�cation,
we utilize WordNet [21], which is a lexical database for the English
language that groups English words into sets of synonyms. It is
congenial with reason and common sense that word belonging to
"animal", "person", "plant", "artifact", "natural object", "substance",
"body", "food", "group" can be well visualized by image.

3.2.2 Visual Relationship Enrichment. To enrich the textual rela-
tionships with visual modality, we retrieve the top returned images
from Google Image Search Engine individually. Figure 3(a) is the de-
sired returned images which can constitute into a good relationship
dataset. By observing the returned images, we �nd that there are
two more tasks that need to be done to obtain a good dataset. One is
to remove the returned images and their descriptions which have no
common semantics, as shown in Figure 3(b). The other is to remove
noisy returned images which are irrelevant to the corresponding
relationship, like the images in red boxes in Figure 3(c).

VisualRepresentativenessQuali�cation: Inspired by tag rep-
resentativeness [30], we de�ne visual representativeness of relation-
ship to remove the non-visualized relationships with the following
assumptions:

1. If a relationship is visual representativeness, then most of its
retrieved images are semantically related to the corresponding textual
relationship. In other words, most images should be semantically
similar to each other.

2. Distance derived from image representations re�ects visual se-
mantic similarity. That is, distance between images sharing similar
visual semantic content is smaller than distance between images not
sharing similar visual semantic content.

The representativeness of visual relationship is computed as in
Eq. (1).

Φ(Vi ) =
1
Ni

Ni∑
k=1

dist (vik ,Cent (Vi )) (1)

where,Vi is the image set corresponding to the i-th relationship,
Ni is the number of these images andCent (Vi ) is the centroid ofVi .
We remove relationships whose Φ() are greater than a threshold.

(a) (b) (c)

Figure 3: Illustration of three types of images returned by
searching textual relationships with Google Image.
Distance function dist () can be computed using deep semantic fea-
tures. For pretrained CNN model, we �ne-tune the ResNet-152 [14]
parameters of the released CNN model on ImageNet with the im-
ages from Visual Genome [19]. The reason of introducing Visual
Genome for �ne-tuning is that images of our dataset are multi-
object and some objects are not listed in ImageNet. Considering
that images in Visual Genome are multi-object and the class num-
ber is large, we utilize cross entropy as the loss function during
�ne-tuning.

Noisy Images Filtering: We follow the observation that if the
relationship’s visual modality is representativeness, most images
are desired and only a few are noisy. As there are at least two visual
objects contained in each image, the conventional image �ltering
method, exemplar-LDA based concept detectors [7], is not suitable
for our case. Thus, we �lter noisy image by its noisy score, which
is calculated by summarizing the distances of this image with all
others, as shown in Eq. (2).

S
noisy
ik =

Ni∑
j=1, j,k

dist (vik ,vi j ) (2)

where, Snoisyik is the noisy score of the k-th image in the Vi rela-
tionship image set, dist () is the distance of an image pair (vik ,vi j )
computed by low level visual features. The image is regarded as
noisy image if its Snoisyik is greater than a threshold. Inspired by [26],
we use the distance measurement method through Fourier trans-
formation. We denote the feature vector of the k-th image in theVi
relationship image set as xik , which is obtained using Bag-of-word
(BOW) and Spatial Pyramid Matching (SPM). As shown in Eq. (3),
we use the 1-dimensional circulate encoding method to achieve the
visual distance of an image pair (vik ,vi j ).

dist (vik ,vi j ) =
1

F −1 (
F (xik )∗�F (xi j )
F (xik )∗�F (xik )+λ

)
(3)

where ∗ denotes the conjugation, � denotes the element-wise
multiplication, F is the 1D discrete fourier transformation, F −1
is its inverse, xik and xi j are the feature vectors of image pair
(vik ,vi j ), and λ is the regularization coe�cient which ensures the
stability of the �lter.

Note that we use low level features here instead of �ne-tuned
CNN feature introduced in the previous section with the following
two reasons. One is that the computation of measuring distance
on Fourier transformation with low level features is much faster
than that on L2 distance with CNN features. The other is that it
is more welcomed to use local feature, e.g. SPM, than the global
CNN one, as the visual relationship may only occupy a region of
an image. The result of noisy image �ltering using the proposed
method is shown in Figure 3(c), two images with blue boundingbox
are regarded as noisy images by our method.
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3.3 Bi-enhanced Cross-modal Knowledge
Representation

This section aims to fuse textual and visual modalities to enhance a
comprehensive knowledge representation. We propose a Bi-enhanced
Cross-modal Deep Neural Network (BC-CNN) to learn a common
knowledge space beyond task and modality by introducing the su-
pervised information from visual/textual modality to textual/visual
network. That is, as shown in Figure 4, the knowledge learned from
textual modality is supervised by a relationship triplet measured by
visual similarity, while the knowledge learned from visual modality
is supervised by the belonging textual relationship.

3.3.1 Textual Knowledge Representation Enhanced by Visual
Modality. Di�erent from previous texture knowledge learning work
depending on the tasks, we target to construct a general knowl-
edge learning method that adapts to any cross-modal relationship
tasks. The supervised information on textual knowledge represen-
tation utilizes the similarities between the corresponding visual
relationships. Speci�cally, we employ deep neural network (espe-
cially, RNN), and introduce relationship triplet measured by visual
similarity as the supervised information.

The overall architecture of the textual network is a LSTM based
recurrent neural network which obtains a learned �xed-length
knowledge representation vector at the last hidden state. The super-
vised information is constructed with a set of relationship triplets
as follows. Given an anchor relationship Sai , the rest relation-
ships are regarded as positive relationship S

p
i which have similar

visual content with Sai , and negative relationship Sni which is
not similar to Sai in the corresponding visual modality. The learned
representation should maintain all the relationship triplets, that is,

‖h(Sai ) − h(S
p
i )‖

2
2 + α < ‖h(S

a
i ) − h(S

n
i )‖

2
2 (4)

∀((Sai ), (S
p
i ), (S

n
i )) ∈ Ω

where α is a margin that is enforced between positive and negative
pairs, h(Si ) is knowledge representation of textual relationship
Si , Ω is the set of all possible triplets in the training set and has
cardinality C .

Then the loss is de�ned as

LT r ipleti

= [‖h(Sai ) − h(S
p
i )‖

2
2 − ‖h(S

a
i ) − h(S

n
i )‖

2
2 + α]+ (5)

Considering that two visually similar relationships (e.g. “man
riding bike" and “man is on bike") impossibly have the same text
appearance, we need to avoid the trivial solution thath(Sai ) = h(S

p
i ).

Therefore, we add an additional classi�cation loss to force h(Sai ) ,
h(S

p
i ) , h(S

n
i ) in Eq. (6):

LSof tmaxi = − log
e
(W T

ya+bya )+(W
T
yp +byp )+(W

T
yn+byn )

(
∑C
c=1 e

CT
c +bc )3

(6)

where,W and b are parameters in softmax layer.
Combining Eq. (5) and Eq. (6), the �nal optimization problem is

given by Eq. (7):

min
C∑
i=1

(LT r ipleti + LSof tmaxi ) (7)

Here, we use Adaptive Moment Estimation (Adam) to optimize
Eq. (7).

For generating (h(Sai ),h(S
p
i ),h(S

n
i )), we calculate the L2 distance

between centroid of two visual relationship sets to measure the
similarity between them. Ideally, we should utilize visual relation-
ship knowledge representation vector as image feature. However,
visual relationship knowledge learning network is not trained at
present. Therefore, we utilize the �ne-tuned CNN features extracted
in Section 3.2.2 as visual features, and then update the relationship
triplet after visual relationship knowledge network is trained. In
addition, note that three LSTM networks shown in Figure 4 are
sharing parameters.

3.3.2 Visual Knowledge Representation Enhanced by Textual
Modality. This part is to learn knowledge from visual modality and
ensure knowledge learning from di�erent modalities in a common
space. The supervised information is chosen as textual relationship.

Considering that CNN has been successfully applied to advanced
and semantic visual perception tasks, we design a CNN model to
learn knowledge from image as shown in Figure 4. It contains �ve
convolution layers and four fully connected layers. The dimension

Session: Fast Forward 2 MM’17, October 23–27, 2017, Mountain View, CA, USA

415



vase full of flowers

male in brown shirt

person riding bike

cow is on beach

Figure 5: Illustration for a part of the constructed multi-
modal relationship dataset (MMR-D).

of the last fully connected layer is equal to the dimension of knowl-
edge learning from textual modality and we deem the output of
the last fully connected layer as visual knowledge. Hence, the com-
plicated problem of knowledge learning from visual modality is
converted to a multivariate regression issue. To optimize the model
in Figure 4, we have objection function in Eq. (8):

min
W ,b

M∑
i=1

Ni∑
k=1
‖д(vik ) − h(Ti )‖ + λ‖W ‖

2 (8)

where, M is the number of multi-modal relationships in training
set, vik is the k-th image in relationship i , Ni is the number of
image in multi-modal relationship i , д() is image’s visual knowl-
edge representation, h(Ti ) is the textual knowledge representation
learning from the i-th textual relationship,W and b are parameters
in proposed CNN model, and λ‖W ‖2 is regularization term. When
Eq. (8) reaches an optima, we obtain the visual knowledge, mean-
while, knowledge representations learning from textual and visual
modalities are in a common space. We use Mini-batch stochastic
gradient descent (SGD) to optimize Eq. (8).

3.3.3 Multi-modal knowledge representation Optimization. Re-
calling the triple ((Sai ), (S

p
i ), (S

n
i )) selected method in Section 3.3.1,

the visual features we used are CNN pre-trained on Visual Genome.
However, the data content and distribution on Visual Genome are
signi�cantly di�erent from our multi-modal relationship dataset.
Thus, we need to process the previous two steps with the learned
visual knowledge representation. Naturally, we utilize visual knowl-
edge learning from Section 3.3.2 as image feature to measure the
similarity between di�erent visual relationships and further select
new triple ((Sai ), (S

p
i ), (S

n
i )) to re-optimize Eq. (7). Then we utilize

the new output of our textual knowledge representation learning
network to re-optimize Eq. (8). Based on the above analysis, in or-
der to enhance the knowledge learning from textual modality, the
learned knowledge from visual modality is utilized to modify triple
samples. In order to enhance the visual knowledge learning from
visual modality, the new textual knowledge is utilized to re-train
our visual knowledge representation learning network.

For unseen visual relationship, as we utilize RNN to learn tex-
tual knowledge representation, every word in a textual relationship
could be converted to a �xed length vector by the gates of the LSTM
unit. Naturally, our model could represent unseen textual relation-
ship while we replace one word (may correspond to di�erent entity
or relation) to another. Meanwhile, since our textual and visual
knowledge representation models are bi-enhanced, the proposed
visual knowledge representation model can also represent unseen
visual relationships.
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Figure 6: Visualization of training characteristics in ourMM-
KRL model.

4 DATASET CONSTRUCTION AND
IMPLEMENTATION DETAILS

For raw textual relationship discovery, the text corpus consists of
all sentences on MSCOCO dataset. All text preprocessing steps are
based on Python API in NLTK [3]. The �rst 50 images are retrieved
from Google Image search engine for each textual relationship
query to construct raw image dataset. To obtain deep semantic
image feature extractor for quantifying visual representativeness
of relationship, we adopt pre-train ResNet-152 model and utilize
Ca�e for �ne-tuning. Examples of the constructed multi-modal
relationship dataset are shown in Figure 5, where each multi-modal
relationship contains one textual relationship instance and many
visual relationship instances. The statistics of the dataset is as fol-
lows: 20726 multi-modal relationships (20726 textual relationship
instances and 687784 visual relationship instances).

To optimize Eq. (7), we use Theano framework. To optimize
Eq.(8), we use Ca�e framework. The learning rate is set to 1e − 3
initially and reduced 30% for each 10 epochs, the momentum is
set to 0.9, and the weight decay is set to 5e − 4. The dimension d
of our multi-modal knowledge representation vector is set to 128.
Figure 6(a) and Figure 6(c) show the convergence of our textual and
visual knowledge representation model respectively. We also use
LargeVis [31] to visualize the textual knowledge representation in
training set. As shown in Figure 6(b), the learned textual knowl-
edge representation is discriminative and similar knowledge are
clustered together. This phenomenon clearly indicates the e�ective
of our MM-KRL model.

5 EXPERIMENTS
This section demonstrates the e�ectiveness of the learned multi-
modal knowledge. As knowledge is a high abstracted concept, it is
di�cult to verify directly. Therefore, we employ zero-shot multi-
modal retrieval to demonstrate that our method can project di�erent
modalities into a common knowledge space, and the learned knowl-
edge can represent unseen relationships. Additionally, we employ
a public visual relationship dataset to show the superiority of our
method on visual relationship recognition.

5.1 Zero-shot Multi-modal Retrieval
In this section, we employ three zero-shot multi-modal retrieval
applications on our multi-modal relationship set, including text-
text retrieval, image-image retrieval and text-image retrieval. We
adopt 18000 multi-modal relationships (18000 textual relationship
instances and 597299 visual relationship instances) as training data
to learn multi-modal knowledge representation, and the remaining
2726 textual relationships and their corresponding 90690 visual
relationships constitute test set. Noted that all test multi-modal
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Figure 7: Comparison of zero-shot multi-modal retrieval in
terms of precision and recall.
relationships, including texts and images, are not appeared in train-
ing set, it means that we are doing zero-shot multi-modal retrieval
experiments.

5.1.1 Text-Text Retrieval. All textual relationship knowledge
vectors are extracted from the textual knowledge representation
model trained on Section 3.3.1, and the similarity is measured by
L2 distance.

We evaluate the e�ectiveness of our method by comparing it with
Word2Vec based textual relationship representation technique [15],
which uses word2vec to convert each word in a textual relationship
to a 300-dimensional vector, then removes stop words and averages
the remaining words to get a vector representation of the whole
textual relationship.

5.1.2 Image-Image Retrieval. An important task in computer
vision is image retrieval. An improved retrieval model should be
infer to the knowledge expressed by images. Recall that our test set
contains 90690 visual relationship instances corresponding to 2726
multi-modal relationship types. For each multi-modal relationship
we random select one visual relationship as query and rank the
remaining 90689. All visual relationship knowledge vectors are
extracted from the visual knowledge representation model trained
on Section 3.3.2.

For comparison, we use three image descriptors that are com-
monly used in image retrieval: 1) GIST. The GIST descriptor was
initially proposed in [16]. The idea is to develop a low dimensional
representation of the scene, which does not require any form of
segmentation. We use the Douze’s implementation [9] to extract im-
ages’ GIST descriptors. 2) CNN (Ca�eNet). We directly use Ca�eNet
which pre-trained on ImageNet2012 as image feature extractor that

was �rst utilized in [2]. Same as [2], we deem the output of fc7 layer
in Ca�eNet as image descriptor. 3) CNN (Ca�eNet Fine-tune). [2]
also introduces a method to improve the retrieval accuracy by re-
training the CNN on the data corresponding to test set. Thus, we
�ne-tune the Ca�eNet on our training dataset. The only di�erence
is that we use relationship classes to replace the original 1000-class
softmax layer in Ca�eNet and the output of fc7 layer in the �ne-
tune Ca�eNet is deemed as image descriptor. We rank results for a
query using the L2 distance from the query image.

5.1.3 Text-Image Retrieval. Recall that each relationship has two
modalities on MMR-D, that is each textual relationship contains
many visual relationships representing common knowledge as in
training set. Every query uses 1 of these 2726 textual relationships
and ranks all 90690 images. The textual and visual descriptors
are knowledge extracted from model trained on Section 3.3.1 and
Section 3.3.2 respectively.

We evaluate the e�ectiveness of our method by comparing it
with three typical cross-modal retrieval methods: 1) CCA. Canonical
Correlation Analysis (CCA) is a way of making sense of cross-
covariance matrices. Refer to the framework proposed in [25], we
use CNN feature (Ca�eNet pre-trained on ImageNet2012) and the
average word2vec feature [15] as inputs to calculate the projection
matrices. In the latent space, we use L2 distance to measure the
similarity between two modalities. 2) Corr-AE. Correspondence
autoencoder (Corr-AE) is proposed in [11]. Two autoencoders are
used to reconstruct the input hand-crafted features. Each auto-
encoder in this method is for single modality. The middle layer
is used for features in latent space, and the modality similarity
is measured by L2 distance. 3) Deep-SM. [35] proposes a simple
but e�ective deep-SM method to address the cross-modal retrieval
problem with respect to samples which are annotated with one or
multiple labels.

5.1.4 �antitative Evaluation. To conduct quantitative evalua-
tion of zero-shot multi-modal retrieval, Recall@k and Precision@k
are used as the evaluation metrics which are standard quantitative
measures in information retrieval literature. Nine annotators were
asked to rank results for each of the queries on all experiments.

Denote Ok (i ) as the top k returned results of query i in test
multi-modal relationship set, Q as the set of query relationships,
and Otruth (i ) as the ground-truth annotated by annotators. The
evaluation metrics are calculated by

Precision@k =
1
|Q |

∑
i ∈Q

|Ok (i ) ∩Otruth (i ) |

k
(9)

Recall@k =
1
|Q |

∑
i ∈Q

|Ok (i ) ∩Otruth (i ) |

|Otruth (i ) |
(10)

The results for all above methods are shown in Figure 7. Based on
the results we can make the following conclusions: (1) The MM-KRL
model achieves superior performance on all tasks. (2) The superior
performance on text-text and image-image retrieval demonstrates
the knowledge learned from proposed MM-KRL model is able to
represent unseen multi-modal relationships e�ectively. (3) The
proposed MM-KRL model achieves better performance than CCA,
Corr-AE, Deep-SM on text-image relationship retrieval task, which
shows that MM-KRL model can project the knowledge learned from
di�erent modalities into a common space.
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Figure 8: Illustration of sample results of zero-shot multi-
modal relationship retrieval (wrong results are annotated in
red font or by red bounding boxes).

5.1.5 �alitative Evaluation. We qualitatively demonstrate the
e�ectiveness of our MM-KRL by illustrating the sample results
of zero-shot multi-modal retrieval. Figure 8 shows the zero-shot
multi-modal retrieval results of the proposed method and all base-
lines using three type queries. On text-text retrieval task, when the
query textual relationship is “person riding bike", Word2Vec-based
approach cannot return “person is on bike" and “boy holding bike"
though their knowledge is close to the same. The reason is that
Word2Vec only learns from text and does not consider the visual
information. On image-image retrieval task, results from baselines
only represent visual similar not knowledge similar. We can see that
when the query is the image containing a person riding bike, the
baselines return many images containing person and bike which
may be “person next the bike" or “person repairing the bike" while
no “riding" concept is described. On text-image retrieval task, we
can �nd that only the results of the proposed method are compact.
Moreover, we observe that GIST and Corr-AE techniques are not
suitable for large scale multi-modal retrieval tasks. In summary,
from the results, we can see that the multi-modal knowledge rep-
resentation learned from the proposed framework signi�cantly
improves the performance of zero-shot multi-modal relationship
retrieval. The major reason is that our knowledge is learned from
multi-modal data by jointly considering the intra-similarity, inter-
di�erence and inter-similarity of di�erent modalities.

5.2 Visual Relationship Recognition on
Existing Dataset

In this experiment, we aim to evaluate the generalization of the
learned knowledge on visual relationship recognition task. Two
of the most famous visual relationship datasets are Visual Phrases
and Visual Genome. Since we have utilized Visual Genome to �ne-
tune our image feature extractor in Section 3.2.2, we run additional
experiments on the Visual Phrases dataset to recognize visual rela-
tionships.

5.2.1 Setup. The Visual Phrase dataset contains 17 phrases.
However, several phrases are similar as “dog jumping", we eval-
uate the learned multi-modal knowledge for visual relationship
recognition on 12 of these phrases that can be represented as a <en-
tity1, relation, entity2> relationship. Noted that visual relationships
in Visual Phrases dataset are annotated by bounding boxes. Thus,
in order to do visual recognition, the input of this experiment is the
image region containing visual relationship and the output is its
relationship type. Speci�cally, we utilize the proposed knowledge

Methods CNN feature [16] Visual Phrases [27] MM-KRL
Accuracy 0.324 0.381 0.423

Table 1: Accuracy scores for recognizing all relationships on
Visual Phrases dataset.
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Figure 9: Detailed performance comparison for visual rela-
tionship recognition on Visual Phrases dataset.

representation model to extract all knowledge vectors from these
relationship regions and use multi-class SVM [5] to train the vi-
sual relationship recognition model. For comparison, we use Visual
Phrases [27] and Ca�eNet learning from scratch as two baselines.

5.2.2 Results. We use recognition accuracy as evaluation metric
and report the experiment results in Table 1 and Figure 9, from
which we have the following observations and conclusions: (1) Us-
ing proposed knowledge as feature descriptor signi�cantly outper-
forms all baselines. (2) Since Visual Phrases [27] employ elaborate
handcraft features, we mainly focus on the comparison between our
knowledge descriptor and the CNN learned from scratch. Table 1
shows that we get a gain of accuracy about 10%, and the detail per-
formance in Figure 9 shows that our method performs better than
CNN learned from scratch on 9 of 12 visual phrases signi�cantly
and performs similarly to the baseline on 3 visual phrases. It is
clear that the proposed multi-knowledge representation model has
well generalization performance on traditional visual relationship
recognition task.

6 CONCLUSION
In this paper, we have proposed a novel multi-modal knowledge
representation learning model via webly-supervised relationships
mining. To achieve this goal, we �rst do automatic multi-modal
relationship mining from web data. Then we propose a system-
atic solution jointly utilizing intra-similarity, inter-di�erence and
inter-similarity to learn multi-modal knowledge from multi-modal
relationships. In the experiments, the qualitative and quantitative
results clearly demonstrate that the proposed MM-KRL model is
able to represent unseen multi-modal relationships and has well
generalization performance. In the future, we will (1) extend the
raw relationship extraction step from user annotated sentences
to Google Books Corpora to obtain more general and wide rela-
tionships, (2) integrate the construction of multi-modal knowledge
graph.
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