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ABSTRACT

Video question answering is a challenging task in visual information

retrieval, which provides the accurate answer from the referenced

video contents according to the given question. However, the

existing visual question answering approaches mainly tackle

the problem of static image question answering, which may be

ineffectively applied for video question answering directly, due to

the insufficiency of modeling the video temporal dynamics. In this

paper, we study the problem of video question answering from the

viewpoint of hierarchical dual-level attention network learning.

We obtain the object appearance and movement information in

the video based on both frame-level and segment-level feature

representation methods. We then develop the hierarchical dual-

level attention networks to learn the question-aware video

representations with word-level and question-level attention

mechanisms. We next devise the question-level fusion attention

mechanism for our proposed networks to learn the question-

aware joint video representation for video question answering.

We construct two large-scale video question answering datasets.

The extensive experiments validate the effectiveness of our method.
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1 INTRODUCTION

Visual question answering is the visual information delivery

mechanism that enables users to issue their queries and then

collect the answers from the referenced visual contents [8].

Video question answering is the essential problem of visual

question answering, which automatically returns the relevant

answer from the referenced video contents according to the given

question. Currently, most of the existing visual question answering

approaches mainly focus on the problem of static image question

answering [2, 15, 18, 20, 21, 27, 36, 42]. Several efficient binary

image representations have been proposed [25, 26]. Although the

existing proposed methods have achieved promising performance

in the image question answering task, they may still be ineffectively
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Question: What is the woman slicing?    Answer: Fish

Figure 1: Example of Video Question Answering

extended to the problem of video question answering due to the

lack of modeling the temporal dynamics of video contents [33].

The visual video contents often contain the evolving complex

object interactions such as object appearance and its movement

information. The question-aware video information is usually

scattered among the critical frames. Furthermore, a number of

video frames are redundant and irrelevant to the given question. We

illustrate a simple example of video question answering in Figure 1.

We show that in order to provide the right result for answering

the question “What is the woman slicing?”, the collective visual

information from multiple video frames is required for answer

inference. Thus, the simple extension of the existing image question

answering approaches for video question answering is difficult to

provide the satisfactory results [43]. We note that the question-

aware visual information is always contained in the critical frames.

It is thus natural to employ the temporal attention mechanism [43]

to localize the targeted video frames according to the given question

and learn the effective question-aware video representations. On

the other hand, we notice that the video contents often contain

different information such as the object appearance from its

frames and its movement in the form of motion across the frames.

Fortunately, the segment-level video representation has been shown

its effectiveness on the content understanding for object motion

across the frames [28]. Therefore, leveraging both frame-level and

segment-level feature representations is important to the effective

question-aware video representation learning for video question

answering.

Currently, the existing video-based question answering

approaches [22, 53] mainly focus on the fill-in-the-blank task, which

is to complete the missing entry in the video description by ranking

candidate answers based on both visual content and contextual

video description. On the other hand, the movie question answering

approach [32] provide the answer ranking based on the textual

movie plots. However, the video question answering based on the

visual contents only may still not be well explored.
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In this paper, we study the problem of video question answering

based on the visual contents from the viewpoint of hierarchical

dual-level attention network learning, named as DLAN, as textual

information is critical to image and video [6, 41], just like auxiliary

information for recommendation tasks [9, 10]. Specifically, we

first obtain the object appearance information based on frame-

level feature representation by 2D-ConvNet [17] and its movement

information based on segment-level features representation by

3D-ConvNet [33] from the video, respectively. We then employ

the word-level attention mechanism for the frame-level and

segment-level features to learn the augmented word-level attended

representations based on the given question. We next learn the

question-aware video representations with question-level temporal

attention mechanism from both the frame-level and segment-level

video representations. We finally learn the question-aware joint

video representation for video question answering with question-

level fusion attention mechanism on the both frame-level and

segment-level attended video representations. When a certain

question is issued, DLAN can return the relevant answer for it

based on the referenced video content. The main contributions of

this paper are summarized as follows:

• Unlike the previous studies, we study the problem of video

question answering from the viewpoint of hierarchical dual-

level attention network learning. We introduce both word-

level frame/segment attention mechanisms to learn the

augmented word-level attended representations based on the

given question. We then employ the question-level temporal

attention mechanism to learn the question-aware video

representations.

• We learn the frame-level and segment-level video represen-

tations to obtain both the object appearance information and

its movement information. We then propose the question-

level fusion attention mechanism to learn the joint video

representation for video question answering.

• We construct two large-scale datasets for video question

answering. The extensive experiments validate the effective-

ness of our method.

The rest of this paper is organized as follows. In Section 2,

we introduce the problem of video question answering from the

viewpoint of hierarchical dual-level attention network learning

method. A variety of experimental results are presented in Section 3.

We provide a brief review of the related work about visual question

answering and video representation learning in Section 4. Finally,

we provide some concluding remarks in Section 5.

2 VIDEO QUESTION ANSWERING VIA
ATTENTION NETWORKS

In this section, we first present the problem of video question

answering from the viewpoint of hierarchical dual-level attention

network learning framework. We then propose the question-

aware video representations based on the object appearance

information and its movement information with hierarchical dual-

level attention networks. We next learns the question-aware joint

video representation based on both frame-level and segment-

level representations with question-level fusion attention attention

mechanism for video question answering.

2.1 Problem Formulation

Before presenting ourmethod, we first introduce some basic notions

and terminologies. We denote the question by q ∈ Q , the video
by v ∈ V and the answer by a ∈ A, respectively. The word-level
representation of question q is given by q = (q1, q2, . . . , qN ), where

N is the length of question q and qi is the embedding for the i-th
word in the question.We then denote the frame-level representation

for video v by v(f ) = (v
(f )
1 , v

(f )
2 , . . . , v

(f )

M (f )
), where M(f ) is the

number of frames in video v(f ), and v
(f )
j is the embedding of the

j-th frame by pre-trained 2D-ConvNet.We next denote the segment-

level representation of video v by v(s) = (v
(s)
1 , v

(s)
2 , . . . , v

(s)

M (s )
),

where M(s) is the number of segments in video v(s), and v
(s)

k
is

the embedding of the k-th segment by pre-trained 3D-ConvNet.

Since the textual question, the frame-level and the segment-level

video representations are sequential data with variant length, it is

natural to choose the variant recurrent neural network called Long-

Short Term Memory network (LSTM) [12] to learn their feature

representations, given by

ft = δд(Wf xt + Uf ht−1 + bf )

it = δд(Wixt + Uiht−1 + bi )

ot = δд(Woxt + Uoht−1 + bo )

ct = ft ⊗ ct−1 + it ⊗ δh (Wcxt + Ucht−1 + bc )

ht = ot ⊗ δh (ct ), (1)

whereWs and Us are the parameter matrices, and bs are the bias

vectors. The xt , ht and ct are input vector, output vector and cell

state vector, respectively. The activation δд(·) and δh (·) are the

sigmoid function and hyperbolic tangent function, respectively.

The ⊗ denotes the element-wise product operator. The gates in

LSTM cell can modulate the interactions between the memory cell

itself and its environment. The architecture structure of LSTM can

be found in [12].

We thus denote the output states of frame-level video

representations by h(f ) = (h
(f )
1 , h

(f )
2 , . . . , h

(f )

M (f )
) where h

(f )
i is the

output state of the i-th frame in video v. We then consider the

output states of segment-level video representations by h(s) =

(h
(s)
1 , h

(s)
2 , . . . , h

(s)

M (s )
) where h

(s)
j is the output state of the j-th

segment in video v. Thus, the output states for dual-level video

representation based on the first-level LSTM encoding networks

is denoted by h(v) = (h(f ), h(s)). We then represent the output

states of question representation by h(q) = (h
(q)
1 , h

(q)
2 , . . . , h

(q)
N

),

where h
(q)

k
is the output state of the k-th word in question

q. We next denote the output states of the second-level LSTM

encoding networks by z(f ) = (z
(f )
1 , z

(f )
2 , . . . , z

(f )

M (f )
) for frame-level

augmented video representations and z(s) = (z
(s)
1 , z

(s)
2 , . . . , z

(s)

M (s )
)

for segment-level augmented video representations, respectively.

The output states of dual-level video representation based on

the second-level LSTM encoding networks is denoted by z(v) =

(z(f ), z(s)). We present the details of the hierarchical dual-level

attention network learning framework in Figure 2.

Using the notations above, the problem of video question

answering is formulated as follows. Given the set of videos V ,
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Figure 2: The Overview of Video Question Answering via Hierarchical Dual-Level Attention Network Learning. (a) We

obtain the object appearance information and its movement information based on the frame-level and segment-level video

representations using 2D/3D-ConvNet. (b) We learn the question-aware joint video representation based hierarchical dual-

level attention network and question-level fusion attention mechanism. (c) We learn the answer prediction model based on

softmax loss and question-aware joint video representation for video question answering.

questions Q and the associated answers A, our goal is to learn

the hierarchical dual-level attention network such that when a

certain question is issued, DLAN can return the relevant answer

for it based on the reference video content.

2.2 Hierarchical Dual-Level Attention Network
Learning

In this section, we present the hierarchical dual-level attention

network learning framework to obtain the question-aware video

representation for video question answering.

We first propose the dual-level video feature extraction methods

for video representations, named as frame-level feature extraction

and segment-level feature extraction. We extract the frame-level

feature using 2D-ConvNet [17] by v(f ) = (v
(f )
1 , v

(f )
2 , . . . , v

(f )

M (f )
)

and the segment-level feature using 3D-ConvNet [33] by v(s) =

(v
(s)
1 , v

(s)
2 , . . . , v

(s)

M (s )
), respectively. Thus, the dual-level video

features consists of frame-level and segment-level features

expressed as v = (v(f ), v(s)). We then learn the dual-level video

representation using LSTMnetworks, denoted by h(v) = (h(f ), h(s)),

where vector h(f ) = (h
(f )
1 , h

(f )
2 , . . . , h

(f )

M (f )
) is composed of all

the output states for frame-level features, and vector h(s) =

(h
(s)
1 , h

(s)
2 , . . . , h

(s)

M (s )
) consists of all the output states for segment-

level features.

We next develop the hierarchical dual-level attention networks

to learn the question-aware joint video representation based on

the dual-level video representations and the given question. We

first employ the word-level frame attention networks to learn

the augmented video frame representations. Given the question

representation h(q) = (h
(q)
1 , h

(q)
2 , . . . , h

(q)
N

), the word-level frame

attention score s
(f ,w )

ik
for the k-th question word and the i-th video

frame is given by

s
(f ,w )

ik
= P(f ,w )tanh(W

(f ,w )

hs
h
(f )
i +W

(w )
qs h

(q)

k
+ b

(w )
s ), (2)

where W
(f ,w )

hs
, W

(w )
qs are parameter matrices and b

(w )
s is the bias

vector. The P(f ,w ) is the parameter vector for computing the word-

level frame attention score. The h
(f )
i is the output state of the i-th

frame in video v and h
(q)

k
is the output state of the k-th word in

question q. For each word qk in question q, its activation for the
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i-th frame by the softmax function is given by α
(f )

i,k
=

exp(s
(f ,w )

ik
)

∑
k exp(s

(f ,w )

ik
)
,

which is the normalization of the word-level frame attention scores.

Thus, the word-level frame attended representation is then given

by h
(f ,w )
i =

∑
k α

(f )

i,k
h
(q)

k
. Therefore, the augmented frame-level

representation of the i-th frame is given by the concatenation

between the i-th output state by LSTM network and the output

states of relevant words in question by ĥ
(f )
i = (h

(f )
i , h

(f ,w )
i ).

Similarly, the word-level segment attention vector score for the j-th
segment is given by

s
(s,w )

jk
= P(s,w )tanh(W

(s,w )

hs
h
(s)
j +W

(w )
qs h

(q)

k
+ b

(w )
s ), (3)

where P(s,w ) is the parameter vector for computing the word-level

segment attention score. The activation for the j-th segment with

the k-th question word is given by α
(s)

j,k
=

exp(s
(s,w )

jk
)

∑
k exp(s

(s,w )

jk
)
. The word-

level segment attended representation for the j-th segment is then

given by h
(s,w )
j =

∑
k α

(s)

j,k
h
(q)

k
. Thus, the augmented representation

for the jth segment is given by ĥ
(s)
j = (h

(s)
j , h

(s,w )
j ).

On the other hand, a number of video frames/segments

are redundant and irrelevant to the given question. It is

thus important to learn the targeted frames/segments with

question-level temporal attention mechanism. We first encode

the frame-level and segment-level augmented representations

by the second-level LSTM networks, and then learn the

question-aware video representations with question-level temporal

attention mechanism. Given the frame-level augmented video

representations ĥ(f ) = (ĥ
(f )
1 , ĥ

(f )
2 , . . . , ĥ

(f )

M (f )
) and the segment-

level augmented video representations ĥ(s) = (ĥ
(s)
1 , ĥ

(s)
2 , . . . , ĥ

(s)

M (s )
),

the output states of the second-level LSTM encoding networks

by z(f ) = (z
(f )
1 , z

(f )
2 , . . . , z

(f )

M (f )
) for frame-level augmented video

representations and z(s) = (z
(s)
1 , z

(s)
2 , . . . , z

(s)

M (s )
) for segment-

level augmented video representations, respectively. Given the

encoded frame-level augmented video representations z(f ) =

(z
(f )
1 , z

(f )
2 , . . . , z

(f )

M (f )
) and the last output state of given question

h
(q)
N

, the question-level frame temporal attention score for the i-th

encoded augmented frame s
(f ,q)
i is given by

s
(f ,q)
i = P(f ,q)tanh(W

(f ,q)
zs z

(f )
i +W

(q)
qs h

(q)
N
+ b

(q)
s ), (4)

where W
(f ,q)
zs , W

(q)
qs are parameter matrices and b

(q)
s is the bias

vector. The P(f ,q) is the parameter vector for computing the

question-level frame temporal attention score. We choose the non-

linear function tanh that controls the amount of information from

each frame. For each encoded frame z
(f )
i , its activation in temporal

dimension by the softmax function is given by β
(f )
i =

exp(s
(f ,q)
i )

∑
i exp(s

(f ,q)
i )

,

which is the normalization of the question-level frame attention

scores. Thus, the question-level frame attended representation

is given by z(f ,q) =
∑
i β

(f )
i z

(f )
i . Similarly, given the segment-

level augmented representations z(s) = (z
(s)
1 , z

(s)
2 , . . . , z

(s)

M (s )
), the

question-level segment temporal attention score for the j-th

Table 1: Summary of YouTube2Text Dataset

Data Question Type
Total

Splitting Object Count Location Person

Train 13,766 758 99 9,686 24,309

Valid 4,220 169 45 3,200 7,634

Test 8,966 573 88 6,562 16,189

encoded augmented segment s
(s,q)
j is given by

s
(s,q)
j = P(s,q)tanh(W

(s,q)
zs z

(s)
j +W

(q)
qs h

(q)
N
+ b

(q)
s ), (5)

where P(s,q) is the parameter vector for computing the question-

level segment temporal attention score. Therefore, the activation of

the j-th segment is given by β
(s)
j =

exp(s
(s,q)
j )

∑
j exp(s

(s,q)
j )

. The question-level

segment attended representation is given by z(s,q) =
∑
j β

(s)
j z

(s)
j .

We then consider the question-aware dual-level temporal attended

video representation by (z(f ,q), z(s,q)).

We then learn the question-aware joint representation for

video question answering with question-level fusion attention

mechanism. Given the dual-level temporal attended video

representation z = (z(f ,q), z(s,q)), the question-level fusion

attention score for frame-level representations s(f ) is given by

s(f ) = ptanh(W
(f )
zs z

(f ,q) +W
(q)
qs h

(q)
N
+ bs ), (6)

and the fusion attention score for segment-level representations

s(s) is given by

s(s) = ptanh(W
(s)
zs z

(s,q) +W
(q)
qs h

(q)
N
+ bs ), (7)

where W
(f )
zs , W

(s)
zs , W

(q)
qs are parameter matrices and bs is the bias

vector. p is a parameter vector for computing the fusion attention

score. Therefore, the question-aware joint video representation

based on dual-level attended representations (z(f ,q), z(s,q)) with

fusion attention mechanism is given by

z =
exp(s(f ))

exp(s(f )) + exp(s(s))
z(f ,q) +

exp(s(s))

exp(s(f )) + exp(s(s))
z(s,q). (8)

Following the existing visual question answering models [2,

18], we model the problem of video question answering as a

classification task with pre-defined classes. Given the question-

aware joint video representation z, a softmax function is employed

to classify z into one of the possible answers as

pa = so f tmax(Wzz + bz ),

where Wz is the parameter matrix and bz is the bias vector. We

note that instead of using softmax function for answer prediction,

it is also possible to utilize LSTM, taking the question-aware joint

video representation z as input, to generate the free-form answers.

3 EXPERIMENTS

In this section, we first construct two video question answering

datasets, and then conduct several experiments on them, to

show the effectiveness of our approach DLAN for video question

answering.
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Table 2: Summary of VideoClip Dataset

Data Question Type
Total

Splitting Object Count Color Location

Train 18,951 7,278 10,676 2,479 39,384

Valid 3,972 1,597 2,698 675 8,942

Test 2,540 961 1,376 332 5,209

3.1 Data Preparation

We construct two video question answering datasets from the

YouTube2Text data [7] and the VideoClip data [19] with natural

language descriptions. The YouTube2Text data consists of 1,987

videos and 122,708 natural language descriptions. The videoclip

data is composed of 201,068 video clips and 287,933 descriptions.

Following the state-of-the-art question generation method [11], we

generate the question-answer pairs from the video descriptions.

Following the existing visual question answering approaches [2,

15, 20], we first generate four types of questions for YouTube2Text

data, which are related to the Object, Count, Location and Person

queries for the video, and then generate four types of questions

for VideoClip data, which are about the Object, Count, Color and

Location queries. We split the generated dataset into three parts:

the training, the validation and the testing sets. The four types

of video question-answering pairs based on YouTube2Text data

is summarized in Table 3 and the question-answering pairs based

on VideoClip data is illustrated in Table 2. The video question

answering datasets will be provided later.

We preprocess the video question answering datasets as follows.

We sample 60 frames from each video in YouTube2Text data and

20 frames from each video in VideoClip data for frame-level video

representation. For both dataset, we resize each frame to 224 × 224

and extract the frame representation by the pretrained VGGNet [29],

and take the 4,096-dimensional feature vector for each frame. To

obtain the segment-level video representation, we employed the

pretrained C3DNet [33] to obtain 45 segments from each video in

YouTube2Text data and 20 segments from each video in VideoClip

data. Each segment contains 16 frames for both datasets. We employ

the pretrained word2vec model to learn the semantic representation

of questions and answers. Specifically, the size of vocabulary set

is 6,500 and the dimension of word vector is set to 256. Following

the existing approaches [2, 20], we set the number of pre-defined

answer classes to 300 in VideoClip data and 500 in YouTube2Text

data.

3.2 Performance Comparisons

We evaluate the performance of our proposed DLAN method using

the evaluation criteria of Accuracy. Given the testing question

q ∈ Qt and video v ∈ Vt with the ground-truth answer a, we

denote the predicted answer by our DLAN method by o. We then

introduce the evaluation criteria of Accuracy below:

Accuracy =
1

|Qt |

∑

q∈Qt ,v∈Vt

(1 − 1[a � o]),

where Accracy = 1 (best) means that the predicted answer and the

ground-truth ones are exactly the same, whileAccuracy = 0 means

the opposite. The 1[a � o] is the indicator function.

We extend the existing image question answering and video

caption methods as the baseline algorithms for the problem of

video question answering following the strategies in [45].

• VQA+method is the extension of image question answering

algorithm [2], where one-layer LSTM network is added

to encode the video. Both video and question features

are fused into the joint representation with element-wise

multiplication for answer prediction.

• SS+ method is the extension of sequence-to-sequence

algorithm [34], where the LSTM network first encodes the

video, and then encodes the question, finally predicts the

answer.

• SA+method is the extension of video caption algorithm [43],

where temporal attention mechanism is employed for

learning the question-aware video representation.

• MN+ method is the extension of end-to-end memory

network algorithm [31], where one-layer bi-LSTM network

is added to encode the sequence of video frames for answer

prediction.

Unlike the previous works, our DLAN method learns the

question-aware joint video representation with hierarchical dual-

level attention network learning for the problem of video question

answering. That is, the proposed DLANmethod learns the question-

aware joint video representation for video question answering

based on both frame-level and segment-level video features with

word-level and question-level attention mechanisms. To exploit the

effect of frame-level video representation and segment-level video

representation to the performance of video question answering, we

denote our method with frame-level video representation only by

DLAN(f ) and our method with segment-level video representation

by DLAN(s). The weights of LSTMs are randomly sampled by

a Gaussian distribution with zero mean. For other experiment

settings, we employed the initial learning rate of 1e-3, and a dropout

rate of 0.6 after every LSTM layer. The early stopping approach

with a limit of 5 iterations is also used for trainning. The batch size

is set to 100, and ADAM gradient descent is used [16].

Tables 3 and 2 show the overall experimental results of the

methods on all types of questions based on the evaluation criteria of

Accuracy using YouTube2Text data and VideoClip data, respectively.
The hyperparamters and parameters which achieve the best

performance on the validation set are chosen to conduct the testing

evaluation. We report the average value of all the methods on the

evaluation criteria of Accuracy.
The experimental results reveal a number of interesting points:

• The method based on temporal attention, SA+, outperforms

other baseline methods VQA+, SS+ andMN+, which suggests

that the temporal attention mechanism is critical for the

problem of video question answering.

• Our method DLAN(f ) achieves better performance than

other baselines. The method DLAN(f ) leverages both the

word-level frame attention and question-level temporal

attention to learn the question-aware video representation

for video question answering. This suggests that the

hierarchical dual-level attention mechanism can also

improve the performance for the problem.
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Table 3: Experimental results on YouTube2Text Dataset.

Model Overall Accuracy
Question Type Video Representation Level

Object Count Location Person Frame-Level Segment-Level

VQA+ 0.3139 0.1682 0.7661 0.2614 0.4675 �
SS+ 0.3147 0.1973 0.7714 0.1023 0.4313 �
SA+ 0.3203 0.1721 0.7853 0.1932 0.4776 �
MN+ 0.2944 0.1522 0.6911 0.0909 0.4541 �

DLAN(f ) 0.3265 0.1854 0.7976 0.1818 0.4738 �
DLAN(s) 0.3417 0.2129 0.7818 0.2955 0.4736 �
DLAN 0.3633 0.2308 0.8202 0.2617 0.4995 � �

Table 4: Experimental results on VideoClip Dataset.

Model Overall Accuracy
Question Type Video Representation Level

Object Count Color Location Frame-Level Segment-Level

VQA+ 0.5061 0.41 0.7867 0.5218 0.3645 �
SS+ 0.4117 0.31 0.7476 0.396 0.2827 �
SA+ 0.5144 0.4233 0.7956 0.527 0.3464 �
MN+ 0.5015 0.4088 0.7749 0.5117 0.3727 �

DLAN(f ) 0.5446 0.4539 0.8044 0.556 0.4398 �
DLAN(s) 0.5208 0.435 0.795 0.5182 0.3946 �
DLAN 0.5506 0.4732 0.795 0.5509 0.4337 � �

• Our method DLAN obtains the best performance on the

evaluation criteria of overall accuracy. This fact shows

that the question-aware joint video representation learning

based on both frame-level and segment-level representations

can further improve the performance of video question

answering.

In our approach, there are two essential parameters, which are

the dimension of hidden states in the first-layer LSTMnetworks, and

the dimension of hidden states in the second-layer LSTM networks.

We employ the word-level attention mechanism for the output

states of the first-layer LSTM networks to learn the question-aware

frame/segment representations. We then leverage the question-

level attention mechanism for the output states of the second-layer

LSTM networks to learn the question-aware video representations.

We investigate the effect of the dimension parameters in ourmethod

by varying either the dimension of the first-layer LSTM hidden

states or the dimension of the second-layer LSTM hidden states

from 16 to 512, with another layer fixed to 256. We first illustrate

the performance of our method DLAN by varying the dimensions

of the first-layer LSTM hidden states and the second-layer LSTM

hidden states using YouTube2Text data in Figures 3(a) and 3(b). We

then show the performance of our method DLAN by varying the

dimensions of the first-layer LSTM hidden states and the second-

layer LSTM hidden states using VideoClip data in Figures 4(a)

and 4(b). The x-axis denotes the dimension of LSTM hidden states

and the y-axis show the accuracy of our method in all figures. Our

method achieves the stable performance when the dimension of

the first-layer LSTM hidden states is set to 256 and the dimension

of the second-layer LSTM hidden states is set to 256.

Figures 5(a) and 5(b) show the convergence of our method and

Figures 6(a) and 6(b) illustrate the running time of our method
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Figure 3: Effect of dimension of hidden LSTM state on

YouTube2Text data.
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Figure 4: Effect of dimension of hidden LSTM state on

VideoClip data.

using both datasets. The x-axis denotes the number of iterations in

all figures. The y-axis in Figures 5(a) and 5(b) shows the objective

value and the y-axis in Figures 6(a) and 6(b) illustrates the running

time of our proposed method. We report that the training time of
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Figure 5: Objective value versus iterations.
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Figure 6: Running time versus iterations.

our method is 8,108 seconds using YouTube2Text data and 7,015

seconds using VideoClip data. This study validates the efficiency of

our method.

To understand how the hierarchical dual-level attention network

learns the question-aware joint video representation for video

question answering, we present the attentional results of several

video question answering examples in Figures 7(a), 7(b), 7(c)

and 7(d). The set of video question answering examples covers

the questions of the Object, Count and Color types. We show the

attentional results of our method on these examples in Figure 8.

The segment-level temporal attentional results for all examples

are visualized using thermodynamic diagram [23]. The frame-

level and segment-level fusion attention scores for question-aware

joint video representation learning are shown by numerical scores.

We observe that both question-level temporal attention scores

and fusion attention scores vary according to different types of

questions and videos.

4 RELATEDWORK

In this section, we briefly review some related work on visual

question answering and video representation learning.

The existing approaches for visual question answering can be

categorized into image-based question answeringmethods [2, 15, 18,

20, 21, 27, 36, 42, 44] and video-based question answering ones [22,

32, 45, 51, 53]. Given an image and a natural language question for

the image, the task of image-based question answering is to provide

the accurate answer for the given question [2], which indeed is

a special type of content-based image retrieval[48]. Malinowski

et. al. [21] develop the multi-world probabilistic approach for

open-ended image question answering. With the development of

attention mechanism, Shih et. al. [27] propose the spatial-attention

mechanism that selects the relevant image regions to the given

question. Lu et. al. [20] devise the co-attention mechanism. Ye

et. al. [44] used the attributed-augmented attention mechanism

and Yang et. al. [42] develop the stacked attention method for

image question answering. To exploit the complex image question

answering task, QRU method [18] is proposed with reasoning

process that iteratively selects the relevant image regions and

updates the question representation. Xiong et. al. [38] propose the

dynamic memory networks and Zhao et. al. [49, 52] propose graph-

based methods for both image and textual question answering.

Kim et. al. [15] employ the multimodal residual network for image

question answering. Johnson et. al. [14] study the composition

image question answering. A survey of existing image question

answering methods can be found in [36].

As a natural extension of image-based question answering, the

video-based question answering has been proposed as a more

challenging task [45]. The fill-in-the-blank approaches [22, 53]

complete the missing entry in the video description by ranking

candidate answers based on both visual content and contextual

video description. Tapaswi et. al. [32] propose the three-way scoring

function for movie question answering based on both the relevance

between given question and textual movie subtitles, and textual

movie subtitles and answers. Hong et. al. [13] study the multimedia

question answering. Unlike the previous studies, we study the

problem of video question answering only based on the visual

contents.

Video representation learning is important for understanding

its evolving complex object interactions, which has attracted

considerable attentions recently [3, 24, 30, 33, 37, 47]. Tran et.

al. [33] propose to learn spatio-temporal video features using deep

3D ConvNet with 3 × 3 × 3 convolution kernels. Ballas et. al. [3]

introduce a recurrent convolutional network architecture with

different spatial resolutions for video representation learning. Wu

et. al. [37] introduce the DNN framework that explores both inter-

feature and inter-class relationships to achieve video classification.

Pan et. al. [24] propose hierarchical recurrent neural encoder that

exploits temporal information for video representation learning.

Xu et. al. [40] propose the CNN network with latent concept

descriptor for learning video representation. Acar et. al. [1] learn

the affective video representation with audio modality. Zhao et.

al. [50] study a multi-modal sparse coding representation for

multi-modal data like videos. Zhang et. al. [47] study a binary

video representation for self-supervised temporal hashing. Cui et.

al. [4] propose to learn the video recommendation from its content

attributes for recommendation. Xu et. al. [39] propose a deep shared

video representation learning architecture for multimodal fusion

of multi-timescale temporal data with music and video modalities.

Simonyan et. al. [28] propose a two-stream ConvNet architecture

which incorporates spatial and temporal networks for video action

recognition. Feichtenhofer et. al. [5] present the spatiotemporal

ResNet architecture for video-based feature representation.Wang et.

al. [35] propose the video representation learning method based on

Siamese-triplet network supervised by visual tracking information.

Srivastava et. al. [30] develop the sequence-to-sequence learning

framework for video representation learning. Zhang et. al [46]

use an embedding network to capture the relation between visual

objects under certain language descriptions. Unlike the previous
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Figure 7: The Examples of Video Question Answering Results.

Example Visualization of Temporal Attention Fusion Attention
Frame-Level Segment-Level

(a) 0.0405 0.9595

(b) 0.7308 0.2692

(c) 0.0942 0.9058

(d) 0.8459 0.1541

Figure 8: The Attentional Results of Hierarchial Dual-Level Attention Network.

studies, we study the question-aware joint video representation

learning with hierarchical dual-level attention network based on

both frame-level and segment-level features for video question

answering.

5 CONCLUSIONS

In this paper, we study the problem of video question answering

from the viewpoint of hierarchical dual-level attention network

learning. We first propose the frame-level and segment-level video

feature representationmethods to obtain both the object appearance

information and its movement information in videos. We then

employ the hierarchical dual-level attention networks to learn the

question-aware video representations withword-level and question-

level attention mechanisms. We next incorporate the question-level

fusion attention mechanism for our proposed network to learn

the question-aware joint video representation for video question

answering. We construct two large-scale video question answering

datasets and evaluate the effectiveness of our proposed method

through extensive experiments.
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