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ABSTRACT
In this paper, we propose an autoencoder-based generative adver-
sarial network (GAN) for automatic image generation, which is
called “stylized adversarial autoencoder”. Di�erent from existing
generative autoencoders which typically impose a prior distribu-
tion over the latent vector, the proposed approach splits the latent
variable into two components: style feature and content feature,
both encoded from real images. The split of the latent vector en-
ables us adjusting the content and the style of the generated image
arbitrarily by choosing di�erent exemplary images. In addition,
a multiclass classi�er is adopted in the GAN network as the dis-
criminator, which makes the generated images more realistic. We
performed experiments on hand-writing digits, scene text and face
datasets, in which the stylized adversarial autoencoder achieves su-
perior results for image generation as well as remarkably improves
the corresponding supervised recognition task.

CCS CONCEPTS
• Computing methodologies → Computer vision; Machine
learning approaches;
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1 INTRODUCTION
Generative natural image modeling is a fundamental research prob-
lem in computer vision and machine learning areas. Early works [22,
23, 34] are more focused on the statistical principles of generative
networks modeling, but the corresponding results are limited to cer-
tain particular patterns due to the lack of e�ective feature represen-
tations. Deep neural networks have shown prominent advantages
in learning representations and have been proven highly e�ective
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Figure 1: Illustration of our model, which extract features
from content image and style image respectively, then
merge them to decode target image. A multiclass discrimi-
nator forces generated image more realistic.

in discriminative vision tasks, such as image classi�cation [19] and
object detection [8], nourishing a series of deep generative models
with Bayesian inference [17, 18] or adversarial training [5, 9].

It is shown that regularized neural networks generally work
better than unconstrained networks in practice [1]. Frequently ap-
plied regularization forms include L1-norm LASSO, L2-norm ridge
regression, as well as some modern techniques such as dropout [33].
In particular, for autoencoder neural networks, quite a few regular-
ization methods have been proposed recently [18, 21, 26]. However,
all these regularizations impose a prior over the latent variable
(also called hidden code) distribution, where Gaussian distribution
is often employed. It works well for relatively simple generative
tasks, e.g. , modeling grayscale digital images, but is not suitable
for generating complex images, such as color alphanumeric images
or human face, because the real distribution of the latent variable
can be neither completely observed nor easily modeled.

As shown in Figure 1, in this paper, we propose a novel generative
model, called Stylized Adversarial AutoEncoder(SAAE) that uses an
adversarial way to train a stylized autoencoder. Unlike existing
autoencoders, we divide the latent vector into two parts, one is
related to the image content and the other is related to the image
style. Both content and style features are encoded from exemplary
images, without prior assumptions on the distribution of the latent
variable. The target image with given content and style can be
decoded from the combined latent variable, which means we are
enabled to adjust the output image by choosing di�erent exemplary
content and/or style images. In addition, inspired by the method
in [9, 21, 26], we adopt an adversarial criterion in the GAN training
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stage. Instead of using a typical binary classi�er [9], a multiclass
classi�er is proposed as the discriminator in our GAN network,
which has a higher capacity to model the variations of the generated
images when discriminating true and faked images. Moreover, the
GAN training is known to be very challenging to converge due to its
contradictory min-max objective [36], hence we develop an e�ective
empirical 3-step training algorithm to improve the convergence of
the proposed GAN network.

The main contributions of this work can be summarized as fol-
lows:

• We propose a novel deep autoencoder network, which
encodes content and style features separately from two
exemplary images and decode new images from those two
features.

• A multiclass classi�er is applied as the discriminator, which
better models the variations of generated images and e�ec-
tively enforces the generative network to generate more
realistic result.

• We develop a 3-step training strategy to escort the conver-
gence of the proposed stylized adversarial autoencoder.

2 RELATEDWORK
Related works of the proposed stylized adversarial autoencoder
can be summarized into three categories: autoencoder, generative
adversarial network, and style transfer learning. We will explain
the connections and di�erences between SAAE and these methods
in the corresponding aspects.

2.1 Autoencoders
In the early stage, autoencoders are designed for improving data
compression e�ciency. It can be regarded as a way to �nd a minimum-
length description for given data, in which the encoding weights
produce a code for a particular sample and the decoding weights
embody a generative model which turns this code back into an
approximation of the original sample [12, 14]. In fact, this kind
of autoencoder often ends up with learning a low-dimensional
representation of the original data, which is very similar to PCA.
Autoencoder was also proven useful in initializing network weights
and make it possible to train a deep neural network [13]. Sparse
Autoencoder [28] imposes a sparsity constraint on the hidden codes,
then the autoencoder can capture certain intrinsic visual features
in images, such as edges and corners. However, these types of
autoencoders are designed for image reconstruction rather than
generating a new image.

In order to make an autoencoder a truly generative network, vari-
ational autoencoder(VAE) [18] imposes a Gaussian distribution on
the hidden codes in the training stage, then one can generate image
from a VAE by sampling data from the Gaussian prior distribution
and feeding the data into the VAE’s decoder. This corresponding
regularization is realized by minimizing the KL-divergence between
the inferred distribution and the imposed prior. The KL-divergence
can be easily obtained in a closed form when Gaussian prior is
chosen, however, VAE is di�cult to be used when there does not
exist a simple closed form solution for the KL-divergence. Accord-
ingly, adversarial autoencoders (AAE) [26] were proposed, which
perform variational inference by matching the aggregated posterior

of the hidden codes vector with an arbitrary prior distribution using
adversarial training. Though imposing an arbitrary prior on the
latent variable solves the former di�culty, it will not work well
in real word, because the real manifold of natural images in the
latent space are not easy to be completely observed or reasonably
modeled. Therefore, we propose to learn the latent variable from
observed data without any prior distribution assumption. As to be
detailed, this design also enables us to regulate the generated out-
puts of the proposed model, while is not possible for most previous
autoencoders.

2.2 Generative adversarial networks
In recent years, generative adversarial networks (GANs) [5, 9, 29]
have been introduced for generating desired images. The GAN
framework [9] establishes a min-max adversarial “game” between
two neural networks: a generative model G and a discriminative
model D. The generator uses a function G (z) to generate data with
samples z from a prior pz (z), aiming at capturing the corresponding
true data distribution, while the discriminator D (x ) attempts to
determine whether a point x in the data space is a sample from
generated images(negative samples) or a sample from the true data
distribution pdata (x ) (positive samples, which we are trying to
model).G (z) is trained to confuse D (x ), that is, to generate samples
that D (x ) is di�cult to di�erentiate whether they are from true
data distribution or not. The formulation to solve this game can be
summarized as:

min
G

max
D

V (D,G ) =Ex∼pdata (x )[logD (x )]

+Ez∼pz (z )[log(1 − D (G (z)))]
(1)

The images generated by earlier GAN networks su�er from being
noisy and incomprehensible [5, 10]. A Laplacian pyramid extension
to this approach [5] showed higher generation quality. A recurrent
network method [10] and a deconvolution network method [29]
have also shown promising results in generating natural images.
However, the intrinsic semantic structure of the training data is
not well exploited in existing GAN networks. Typically, G utilizes
D’s error gradient to update its parameters, and the loss function
of G is based on a binary classi�er, that is, we only di�erentiate
whether the generated sample is ‘faked’ or ‘real’. However, the
training images come from various semantic categories, therefore,
they are di�cult to be clustered into one ‘real’ class. Hence we
employ a multiclass classi�er as the discriminator, in which we
determine whether the generated image is faked or belongs to a
particular prede�ned category.

2.3 Style transfer learning
Our work is partially inspired by style transfer learning [7, 35], an
interesting sub�eld recently raised in computer vision and machine
learning areas. The goal of style transfer learning is to simulta-
neously match the visual style of a �rst image, captured by cer-
tain low-level statistics, and the visual content of a second image,
revealed by higher-level statistics [35]. [7] employs neural repre-
sentations to separate and recombine the content and style of the
images. [35] trains compact feed-forward convolutional networks
to generate multiple samples of the same texture but arbitrary size
and to transfer artistic style from a given image to any other image.
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What they have in common is that CNN features of speci�c layers
in the network are considered as content or style representation,
and the features are also used to measure the mismatch between
the original image and generated image. In a similar way, we ex-
tract content and style features from two exemplary images, and
then combine them to transfer to the target image. The di�erence
between our method and [7] is that we generate images in a single-
pass feed-forward way while [7] needs iterative online optimizing.
Furthermore, we only need to train one model for all di�erent style
images, instead of training a speci�ed model for each style image
as in [35].

3 STYLIZED ADVERSARIAL AUTOENCODER
For convenience, we use textual character image generation (for
example, scene text generation, etc.), as the background application
to introduce our algorithm, though we will show more applications
(such as face generation) in the experiments. Our goal is to generate
images from two exemplary images, content image c and style
image s , by de�ning and training a neural network. For character
image generation, a content image is a synthesized letter image
without any style or texture or background, such as A to Z, 0 to 9; a
style image is an exemplary image, for example, a real word image.

As aforementioned, we split the latent variable that reveals the
prior distribution of the real-world data into two parts, style feature
and content feature. Content feature will be derived (through a
convolutional network) from the content image, and style feature
will be from the style image.

3.1 The generator
The generative network consists of two encoders(Encc and Encs )
and one decoder (Dec). Encc encodes the content image to the
content latent representation or feature zc , and Encs encodes the
style image to the style latent representation or feature zs :

zc = Encc (c ), zs = Encs (s ) (2)

Dec decodes the combined latent representations and produces the
output image x̂ :

x̂ = Dec (zc , zs ) (3)
For convenience, we use generator G to represent the combination
of Encc , Encs and Dec:

x̂ = G (s, c ) (4)
The reconstruction error is denoted by L2-loss:

Lr ec = ‖x − x̂ ‖ (5)

where x is the ground truth image.

3.2 The discriminator
The output of the discriminator in existing GANs [5, 9, 10, 26] is
the probability y = Dis (x ) ∈ [0, 1], which indicates probability
of x being a real-world image. Training the discriminator D is to
minimize the binary cross entropy:

Ldis = − log(Dis (x )) − log(1 − Dis (G (z))) (6)

The goal of generator G is to produce images that D is not able
to di�erentiate from real world images, that is, to maximize Ldis .
As aforementioned, in existing GAN networks, a binary classi�er
is applied in D to determine whether the image is a real image or

a generated image. However, putting all real images into one big
positive class failed to leverage the intrinsic semantic structure of
the training images. Therefore, we propose to use a multi-class
classi�er as the discriminator, in which the classi�er will determine
whether the input is a generated image or a particular real image
category(e.g. , the speci�c character).

In our model, the output of D (x ) is a (k + 1)-dimensional vector,
where k is the number of image classes, indicating the probabilities
of x belonging to each corresponding class(k real classes plus one
class for generated/fake images). The ground truth label of a real
image is denoted by lr eal (lx ) = [l (1)x , · · · , l

(k )
x , 0] and the label

for fake images is lf ake = [0, · · · , 0, 1]. Note that lx is one-hot k-
dimensional category vector of each real image x , in which l

(i )
x = 1

if x belongs to the i-th class. Then the discriminator error of D is
derived as:

Ldis,D =H (Dis (x ), lr eal (lx )) + H (Dis (G (s, c )), lf ake ) (7)

where H (p,q) denotes the sum of binary cross entropy of each
elements in vector p,q:

H (p,q) =
k+1∑
i=1
−q (i ) logp (i ) − (1 − q (i ) ) log(1 − p (i ) ) (8)

Cross entropy is a typical measurement that measures the similar-
ity between two distributions. As aforementioned, G’s goal is to
generate images that are di�cult to be determined as faked images
by D. Therefore, the discriminator error of G can be denoted by:

Ldis,G = H (Dis (G (s, c )), lr eal (lx )) (9)

3.3 Network architecture
Convolutional neural networks (CNNs) have shown signi�cant
advantages in feature representation [8, 19] and image genera-
tion [5, 6, 29], Our proposed SAAE network is based on CNN archi-
tecture,as illustrated by Figure 2.

In fact, the proposed generative network, which we formally
refer as G (s, c ), consists of two streams of feature extraction net-
works followed by a generation network. Content feature extractor
and style feature extractor both have three convolutional layers
without down-sampling, which preserve the detail information of
the exemplary images as much as possible. The input style image
and content image may have di�erent shape. For example, when
generating scene text character images, the content image is an im-
age of one character and the style image is an image of one word or
multiple characters. After three convolutional layers, style feature
map is reshaped to style feature vector by a fully connected layer.
In order to combine with the content feature map decoded from the
content image, the style feature vector is reshaped back to a feature
map, which has the same shape with the content feature map. Con-
tent feature extraction network does not have any fully connected
layers as the spatial information of the content image needs to be
preserved. We merge the content feature map and the style feature
map at the channel dimension, which means the combined feature
map has half channels from the content feature and another half
from the style feature. Afterwards, the generation network decodes
the combined feature map to a target character image with three
convolutional layers.
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Figure 2: Architecture of the network.

The discriminative network is a generic CNN classi�er consist-
ing of three convolutional layers, one 2 × 2 max-pooling layer
following the �rst convolutional layer and two fully connected
layers following the last. The output layer of discriminator is a
(k + 1)-dimensional vector, indicating the probabilities of input
image belonging to each class (k classes of real images and one
class for faked images).

We apply batch normalization [16] to each of the convolutional
layers, which accelerates convergence at the training stage. Leaky
ReLU [25] is used at each layer except the last one, in which sigmoid
is applied to cater each output into [0, 1] (as a probability).

3.4 Training strategy
Generative adversarial networks are known to be challenging to
converge [31, 36] due to their contradictory min-max objective.
Another di�culty is to balance the losses from the generator and
discriminator. We need to make sure that neither the generator
nor the discriminator becomes too strong so that the other will
be suppressed. If the discriminator is too strong and classi�es all
images correctly, the error gradient will be poor and the generator
will not be able to learn from it. Conversely, if we allow the genera-
tor to win easily, it usually exploits a non-meaningful weakness in
the discriminator (e.g. by coloring the entire image blue or some
repeated texture), which is not desirable.

To solve this problem, inspired by step-training used in [30], we
propose a 3-step training strategy to optimize our model. We denote
the network parameters by θG ,θD and the total number training
epoch is 4n. In [0,n] epochs, we only optimizeG by minimizing the
reconstruction error:

θG
+
← −∇θG (Lr ec ) (10)

D is not trained at this stage because G is too weak thus the
images generated by it are something like noises, which could be
easily distinguished from real images. So that D cannot learn any-
thing meaningful and may be initialized poorly. When G is able to
output meaningful images, we begin to optimize D simultaneously
in [n + 1, 2n] epochs:

θG
+
← −∇θG (Lr ec )

θD
+
← −∇θD (Ldis,D )

(11)

After another n epochs, D should responses meaningful error
gradient that G is able to learn from it. So we begin the adversarial
training stage in the second half [2n + 1, 4n] epochs:

θG
+
← −∇θG (Lr ec + Ldis,G )

θD
+
← −∇θD (Ldis,D )

(12)

It can be seen as that we trainG by reconstruction error �rst and
then add discriminator error to �ne-tune it. This 3-step optimizing
strategy helps us get stable training results.

4 EXPERIMENTS
We evaluate our approach using 4 di�erent methods: computation
of log-likelihood on MNIST dataset to measure the ability of the
SAAE model to capture the data distribution; showing the visual
attribute transferring on face generation; evaluating the SAAE
model on scene text dataset; generating training data for supervised
recognition task.

4.1 Log-likelihood analysis
Enlightened by the evaluation procedure in [9, 26], in this sub-
section, we evaluate the performance of the SAAE as a genera-
tive model to capture the data distribution by comparing the log-
likelihood of this model to a set of hold-out images on the real-
valued MNIST dataset. The basic idea of this experiment is: �rstly,
we train the SAAE on the training set of the MNIST dataset and
10, 000 images are then generated through the trained autoencoder.
After that, we estimate the distribution of these generated data and
calculate the log-likelihood of the MNIST test set (that is, a set of
hold-out real-world images) over this estimated distribution. The
bigger the log-likelihood, the closer the generated images are to
the real world images.

To be more speci�c, we trained a SAAE on the generally-used
training set of MNIST dataset. As shown in Figure 2 the input
of SAAE actually has two parts: style image and content image.
For this particular case, the content image c is a computer-print
digital image, which has black background, white font color and a
standard look font (e.g. SimSun). The size of content images and
target images is 28 × 28. For the style image s , we randomly choose
a �xed number of digit images from the training set (say, 7 we
used), and arrange them horizontally to form a 196×28 image, from
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Figure 3: Visualization of samples generated from our styl-
ized adversarial autoencoder. The last column shows the
closest training images in pixel-wise Euclidean distance to
those in the second-to-last column, in order to demonstrate
that the model has not memorized the training set.

which the generator will learn the style features(such as strokes
and thickness). The ground truth image x is one of the randomly
selected 7 images and have the same label with c . For each �xed
c , we choose di�erent style images s , and SAAE will generate a
variety of images with the same content label while di�ering in
styles.

We estimate the probability of the test set data underpG by �tting
a Gaussian Parzen window to 10, 000 samples generated from the
model and compute the log-likelihood of the MINST test dataset
over this distribution. The free-parameter σ of the Parzen window
is obtained by cross-validation. This procedure [4] for estimating
likelihood is not an optimal benchmark due to the poor performance
of Parzen estimators in high dimensional spaces, however, it is the
best method available to our knowledge [9, 31].

Table 1 compares the log-likelihood results of the stylized ad-
versarial autoencoder (SAAE) to six state-of-the-art methods. Our
method shows the best performance under this criterion, outper-
forming AAE [26] by about 89 points. In order to demonstrate the
advantage of the multiclass discriminator against a normal binary
discriminator, we train two models, one with binary D and the
other with multiclass D respectively (denoted by “SAAE-binary”
and “SAAE” in Table 1). The log-likelihood results show that mul-
ticlass D has a better performance. Note that our SAAE-binary
outperforms existing methods even using a binary D, which reveals
that the latent representation in our method is sampled from real
images instead of a manually-set distribution assumption(which is
used in existing approaches).

Following previous methods [9, 26], we show a number of sam-
ples drawn from the trained SAAE generator in Figure 3. The last
column shows the closest training images (in terms of pixel-wise
Euclidean distance) to those generated images in the second-to-
last column, in order to demonstrate that the SAAE model has not
memorized the training set.

Table 1: Log-likelihood of test data on MNIST dataset.
Higher values are better. The last two rows are our method
with binary or multiclass discriminator. The reported num-
bers are themean log-likelihood of samples on test set, with
the standard error of the mean computed across examples.

Models Log-likelihood

DBN [11] 138 ± 2
Stacked CAE [3] 121 ± 1.6
Deep GSN [2] 214 ± 1.1
GAN [9] 225 ± 2
GMMN + AE [24] 282 ± 2
AAE [26] 340 ± 2

SAAE-binary 402 ± 2.2
SAAE 429 ± 2.5

4.2 Attribute-conditioned Face Generation
We evaluate our model for face image generation on Labeled Faces
in the Wild(LFW)[15] dataset. Followed the preprocessing in [36],
we aligned the face images and rescaled the center region to 64×64.
For each image in the training set, we blurred the image with Gauss-
ian �lter of kernel size 21 × 21, which only preserves background
color and lineament, and used it as the content image. We applied
the pre-trained model provided by [20] as the Encs to extract the
73 dimensional attribute score vector as the style feature vector,
which describes di�erent aspects of facial appearance such as age,
gender, or facial expression, following previous method [36]. The
SAAE model was trained to generate the clear face image given the
blurred content image and attribute vector extracted from the style
image.

Followed the evaluation procedure in [36], we generate various
images with interpolated attributes by gradually increasing the val-
ues along each attribute dimension. To be more speci�c, we modify
the value of one attribute dimension by interpolating between the
minimum and maximum value. Then, we generated images by the
modi�ed attribute vector while keeping the content image �xed. As
we can see in Figure 7, generated samples are visually consistent
with attribute transferring. For example, by changing attributes like
“eyewear”, the global appearance is well preserved but the di�erence
appears in the eye region.

In order to demonstrate the e�ect of the discriminator loss
in SAAE, we add a hyperparameter α in G loss so that LG =
Lr ec + αLdis,G . As shown in Figure 7, when α is small (0.05 we
set), the SAAE model prefers to generate smoothed faces due to the
dominant L2 reconstruction loss, which are similar with the result
in [36]. With a high weight(α = 0.5), the discriminator loss imposes
the SAAE model to describe more details in face images, such as
the texture of hair and wrinkle of skin, and makes the generated
faces more realistic.

4.3 Model samples
In this subsection we evaluate our SAAE model on the IIIT 5k-word
(IIIT5K) dataset and Chinese car license plate(PLATE) dataset.
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Figure 4: Attribute-conditioned image generation organized into six groups(gender, age, complexion, expression, eye wear and
eye size). α denotes the weight of Ldis,G in G loss.

Figure 5: Training data and model samples of SAAE and DC-
GAN. Top row: IIIT5K dataset. Bottom row: PLATE dataset.

IIIT5K [27] contains 5, 000 cropped word images collected from
the Internet, 2, 000 of which used for training and the rest for
testing. Here we model our SAAE network on the training set,
which contains 9, 678 characters in total. We crop each character out
from the word images with the bounding box provided in dataset.
In order to uniform the input shape, we transform the character
images into squares by zero-padding and then resize to 48×48 pixel
as the ground truth images. The reason of not resizing the images
directly without zero-padding, which is a widely used method in

CNNs, is that the aspect ratio is an important attribute of character
style and should be preserved. For each ground truth character
image x , the corresponding computer-print character image is used
as the content image c , with black background, white font color
and SimSun font, similar to what we have mentioned in Section 4.1.
The word image, from which the ground truth character image x is
cropped out, is used as the style image s(with the size of 240 × 48).
Each word image is �rst resized to 48 pixels in height while keeping
the aspect ratio, and then crop(randomly) or pad (in a replicating
way) the image into 240 pixels in width.

PLATE dataset contains 13, 345 Chinese car license plate im-
ages we collected and labeled. Each license plate has one Chinese
character followed by 7 digits of alphanumeric character. All the
alphabets are in uppercase. We crop each character out and resize it
to 30 × 64 as the ground truth image x . The corresponding content
image c is also a white-on-black character, but we use the standard
font of Chinese car license plate instead. The license plate image
itself is used as the style image s , resized to 192 × 64.

After training a SAAE model on each dataset, we use the model
to generate samples by traversing all content images for each style
image. Figure 5 shows samples randomly selected from our model
and DCGAN [29] model, as well as training data for comparison.
The SAAE samples appear to be much more character-like and have
clearer edges and cleaner backgrounds.

It is noted that all SAAE samples are meaningful characters while
some DCGAN samples appear meaningless. We owe this improve-
ment to the well-de�ned content input of our model, which enables
us to control the content of the output of the generator.Some DC-
GAN outputs look similar though they are generated from di�erent
samples in the latent distribution, due to the instability caused
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Figure 6: Generative samples of one given style image. Top
row: IIIT5K dataset. Bottom row: PLATE dataset. For each
set of generative samples, the style image is shown on top
left, marked by red rectangle. For PLATE dataset, we hid the
�rst Chinese character of style images for privacy reasons

by binary discriminator. In such case, the generator is not able to
learning category information from the binary discriminator, so
that it turns to generate some particular images to confuse the
discriminator.

In order to visualize the stylization property of our stylized ad-
versarial autoencoder, we show several sets of generative samples
in Figure 6, both on IIIT5K and PLATE dataset. In each set, we
choose one exemplary style image and traverse all content images
and labels. The result demonstrates that SAAE model can transfer
the character style from exemplary style images to the content im-
ages. On IIIT5K dataset, SAAE model extracts not only the features
of font color and background color, but also the features of font-
size, font-weight, aspect ratio, even some stroke style of particular
images. On PLATE dataset, some detail features such as character
tilt and license plate boundary are captured by the model and then
decode to the generative samples. Although our training set does
not cover all the Chinese characters used in car license plate, SAAE
model still can reconstruct the characters that never appear in the
training set, with given exemplary content images.

An interesting �nding is that, if we input an all-zero content vec-
tor and an all-black content image into the model, it will generate a
pure background image without any character on it, as shown in the
last of each set of PLATE samples in Figure 6. This �nding enables
us to generate arbitrary arrangement of characters by generating a
background image �rst and then embed generated character images

Figure 7: Recognition accuracy with respect to iteration
count on di�erent training set.

on it. We use this method to generate training data in Section 4.4
and show that it improves the supervised recognition task.

4.4 Data generation for supervised learning
Deep Neural Networks(DNNs) have shown signi�cant superiority
in supervised l earning, but it relies on massive labeled training data.
A deep model is easily over-�tting on a small number of training
data. In this section we use SAAE model to generate training data
for recognizing Chinese car license plate.

We collect a double row plate dataset (DR-PLATE) consist of
1738 double row plate images, each contains two rows of characters
and can not be well recognized by a model trained from normal
single row plate images. We hold out 900 images as the testing
set, while the rest 838 images are too few to train a deep optical
character recognition (OCR) network. Therefore, we apply a SAAE
model trained on DR-PLATE dataset to generate training data by
the following steps. Firstly, choose a training sample in DR-PLATE
as the exemplary style image. Then generate a background image
and 7 randomly-chosen character images, following the method
introduced in Section 4.3. Thirdly, embed the character images on
the background image by the position de�ned in car license plate
standard. Scaling and rotation augmentation are then applied on the
generated license plates. By means of this method, we can generate
plenty of training data without any manual annotation.

We evaluate the data generation quality by measuring the recog-
nition accuracy on DR-PLATE. We use the CNN model introduced
in [32], followed by 7 fully connected layers to predict 7 digits of
character respectively. The mini-batch size is 32 and we use �xed
learning rate of 0.001. We train the recognition network on 4 sets of
training data: the original training data in DR-PLATE(ORI), mixed
dataset of original data and 1k , 5k , 10k generated data respectively
(MIX-1k, MIX-5k, MIX-10k). The recognition accuracy on testing
data is recorded every 1k iterations and the result is plotted in Fig-
ure 7. We improve the recognition accuracy from 77.17% to 91.09%
by generating 10k more training data. Figure 7 shows that with
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more generated data mixed into the training set, the model con-
verges more slowly, but the classi�cation accuracy become better
and better. This result demonstrates that our SAAE model improves
supervised learning by generating data.

5 CONCLUSION
In this paper, we proposed the stylized adversarial autoencoder,
which is an autoencoder-based generative adversarial network for
image generation. The split of the latent vector enables us adjust-
ing the content and the style of the generated image arbitrarily by
choosing di�erent exemplary images, and the multiclass discrimi-
nator utilizes the inter class variation and contributes to generating
more realistic. We demonstrated the superior results of SAAE model
in hand-writing digits, scene text and face images generation as well
as the improvement in supervised recognition task. Further work
will be focused on optimizing the network structure for higher gen-
eration quality. Extending this framework to other application(such
as semi-supervised feature learning) would be interesting as well.
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