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ABSTRACT 

Within the field of affective computing, human emotion and 

disorder/disease recognition have progressively attracted more 

interest in multimodal analysis. This submission to the Depression 

Classification and Continuous Emotion Prediction challenges for 

AVEC2016 investigates both, with a focus on audio subsystems. 

For depression classification, we investigate token word selection, 

vocal tract coordination parameters computed from spectral 

centroid features, and gender-dependent classification systems. 

Token word selection performed very well on the development 

set. For emotion prediction, we investigate emotionally salient 

data selection based on emotion change, an output-associative 

regression approach based on the probabilistic outputs of 

relevance vector machine classifiers operating on low-high class 

pairs (OA RVM-SR), and gender-dependent systems. 

Experimental results from both the development and test sets 

show that the RVM-SR method under the OA framework can 

improve on OA RVM, which performed very well in the 

AV+EC2015 challenge.  

Keywords 

Depression classification; dimensional emotion prediction; token 
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multimodal fusion. 

1. INTRODUCTION 
Affective computing relates to the study and development of 

automated emotion comprehension. It can be applied to interpret 

an individual’s emotional state, as well as identifying abnormal 

behavior originating from disorders or disease. For example, 

healthcare professionals and engineers are considering new 

reliable methods to identify and monitor depression. While the 

effect of depression on verbal communication has been researched 

over many decades [1], [2], it is only recently that advances in 

automatic affective computing (e.g. speech, facial analysis, body 

language) have been successfully applied to help identify and 

predict levels of depression. Affective computing analysis of 

depression has its advantages. For instance, considerable time is 

spent on training new qualified mental health experts and 

providing adequate evaluations for the sizeable and growing 

number of patients worldwide with depression. Visual and audio 

processing of individuals can quickly provide discrete temporal 

information and discover social-behavioral patterns at a cohort 

level that may be missed by a mental health clinician, especially if 

only one modality is available. 

Another important field within affective computing is the 

development of inexpensive machines capable of automatically 

recognizing people’s emotional status using non-invasive 

methods. Continuous analysis of affect, such as arousal and 

valence, has been shown to be effective in capturing subtle 

transitions in emotions in naturalistic environments.  This has 

motivated an increasing number of developed systems for 

continuous prediction of affect dimensions. 

In continuous affect and depression research, multi-modal 

behavioral analysis using audio, visual, and other non-invasive 

physiological signals have demonstrated potential for use as a tool 

for clinicians. Moreover, motivation stemming from the annual 

Audio-Visual Emotion Challenges and Workshops (AVEC) [3], 

[4], has led to more insightful automated affective computing 

designs, resulting in better overall performances with these two 

tasks and understanding of human behavior. Similar to the 

challenges presented in the last few years, the AVEC 2016 [5] 

provides a platform-benchmark for developing emotion prediction 

and depression recognition systems.  

The research herein describes and tests systems as entries for 

the affect and depression AVEC 2016 sub-challenges [5]. For the 

depression sub-challenge, our investigations focus on spectral 

centroid frequency-based vocal tract coordination features 
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(Section 3.2) and ‘thin slice’ acoustic analysis of token words 

(Section 3.1); for the emotion sub-challenge, we investigate a 

two–stage prediction approach based on probabilistic outputs 

from Relevance Vector Machine classification of ranked class-

pairs (Section 4.2), and data selection (Section 4.3) from a novel 

emotion change perspective. 

2. RELATED WORK 

2.1 Depression 
Observed speech-language behaviors in depressed individuals 

often include a combination of the following: a reduction in pitch, 

prosody, loudness, and rate of speech [2]. Furthermore, in 

severely depressed individuals motor incoordination (e.g. motor 

retardation) and/or word retrieval difficulty is often also a 

behavior exhibited [2], [6]. Spectral, prosodic, voice quality and 

glottal acoustic features have been investigated for the detection 

and prediction of depression levels in individuals’ speech. The 

most commonly used acoustic features include pitch, formants, 

formant bandwidths, intensity, harmonic-to-noise ratio, shimmer, 

jitter, and overall rate of speech [2], [7]. Recent investigations into 

the effects of depression on speech production have indicated that 

combinations of these types of acoustic features can provide 

strong depression recognition performances [8]. Moreover, 

acoustic features fused along with other modalities (e.g. visual) 

have shown robustness in depression recognition performances 

across speakers [9]. 

In other speech processing applications, such as speaker and 

language identification, text-dependent analysis has shown 

performance improvements over using larger portions of data 

which constitute greater phonetic variability [10]. Previous studies 

have indicated that ‘thin slice’ data selection of a single word,  

phrases, or even disfluencies can generate competitive 

emotion/depression classification performances [11],  [12].  For 

example, in [11], using only a small beginning portion of spoken 

phrases rather than all phrases, superior depression classification 

results with significantly less data was demonstrated.  

It has been shown that acoustic features perform differently 

between males and females [13]–[15], but the investigation of 

gender-dependent modeling for depression recognition has only 

been described in a few studies. For instance, in [13], researchers 

discovered stronger correlation between depression level scores 

and prosodic features such as pitch and formants for male 

speakers than for female speakers. Other research has looked 

specifically at depression classification per gender [16]–[18] and 

found that gender-dependent models are advantageous in 

depression classification performances. These studies focused 

specifically non-verbal gender-based depression behavioral 

differences in the visual modality. While [18] found that both 

genders had repressed non-verbal expressiveness when compared 

to healthy speakers, the depressed females presented more 

socially interactive behaviors than the depressed males. In [16], 

the use of gender-dependent models for depression classification 

was also advocated due to the high-accuracy of automatic gender 

identification based on audio and/or visual information.   

In previous AVEC depression challenges, Vocal Tract 

Coordination (VTC) features extracted from formants and del-

mel-cepstra features produced by far the state-of-the-art 

performances in Root Mean Squared Error (RMSE) and Mean 

Absolute Error (MAE) for predicting Beck Depression Inventory 

(BDI) scores in depression [19], [20]. Features of this kind were 

originally proposed in [21], where they were used to capture 

changes in electro-encephalogram (EEG) spatiotemporal 

correlation structure for seizure prediction. In [19], it was showed 

that the VTC features can represent the changes in vocal tract 

coordination associated with depression and consequently can 

improve depression prediction from a number of other modalities.  

To date, the relative performance advantages of these three 

suggested methods – token word-based data selection, gender-

dependent modelling and VTC features – remain unknown. 

2.2 Emotion 
The AVEC 2016 challenge [5] adopted the same data partitions of 

the RECOLA corpus [22] as AV+EC 2015. Despite this, with a 

simpler version of the back-end, i.e. linear Support Vector 

Regression (SVR), the baseline has been raised significantly to be 

far more competitive compared with that of AV+EC 2015. This is 

largely because of the optimization of window sizes for feature 

extraction and delay compensation in the gold standard for each 

single modality, and for arousal and valence respectively. In 

addition, pre-processing such as speaker-wise and global z 

normalization, and post-processing such as centering and scaling 

have been considered as parts of the baseline systems. Linear 

regression at decision level further combines multiple modalities 

to achieve test scores in Concordance Correlation Coefficients of 

0.682 for arousal and 0.638 for valence [5]. However, it is 

believed that there still exists a range of alternative approaches for 

a more robust and effective multimodal prediction system. 

Approaches investigated herein include data selection for 

emotionally salient segments and exploitation of uncertainties of 

RVM outputs. 

One potential limitation of current continuous emotion 

prediction systems is to treat all input features as being equally 

emotionally-related. This may not be a good assumption in 

general, because within-utterance variation and emotional 

saliency in features are disregarded. In other words, there may 

exist emotionally salient segments within each utterance that can 

contribute more to emotion prediction. This aspect has been 

explored less compared with emotion classification systems, 

where e.g. segment selection based on specific phonemes or 

phoneme classes has been found more conducive to emotion 

classification [23]–[25]. Another investigation [26] into selecting 

informative segments within utterances examined various data 

selection strategies based on classifier agreement.  

The Relevance Vector Machine (RVM) [27] employs a 

probabilistic Bayesian framework to achieve a sparse 

representation for regression and classification, and is a relatively 

new regression model for predicting affect dimensions [28]. RVM 

makes the prediction based on the form [27]:  

 𝑦(𝒙∗, 𝒘) = 𝒘𝑇𝝓(𝒙∗) + 𝝐 (1) 

 𝑃(𝒘|𝜶) = ∏ 𝑁(𝒘𝒊|0, 𝛼𝑖
−1)

𝐾

𝑖=1

 (2) 

where 𝒙∗ represents a k-dimensional feature vector, and 𝒘 =
[𝑤1, ⋯ 𝑤𝐾]𝑇 are the weights of each feature dimension. The 

sparsity is enforced in the weights by introducing a zero-mean 

Gaussian prior controlled by 𝜶 = [𝛼𝟏, ⋯ 𝛼𝐾]𝑇, as seen in (2). 𝝐 =
 [𝜖1, 𝜖2, … , 𝜖𝑁]𝑇 denotes the training noise terms. 

A more effective framework for building emotion prediction 

systems from RVM is called Output-Associative (OA) RVM [28], 

formulated as: 

 𝑦𝒕
𝒂 =  (𝝎𝒂)𝑻𝝓(𝒙∗) + (𝝋𝒂)𝑻(�̃�𝒕

𝒂) + (𝝍𝒂)𝑻(�̃�𝒕
𝒗) +  𝝐 (3) 

 𝑦𝐭
𝐯 =  (𝝎𝒗)𝑻𝝓(𝒙∗) + (𝝋𝒗)𝑻(�̃�𝒕

𝒂)  + (𝝍𝒗)𝑻(�̃�𝒕
𝒗) +  𝝐 (4) 

where �̃�𝒕
𝒂  and �̃�𝒕

𝒗  are sets of temporal arousal and valence 

predictions at frame t. With the inclusion of dependencies 

between 1) temporal predictions; 2) affect dimensions; 3) 

predicted outputs and input features, this framework is beneficial 

for fusion and previously showed robustness for a range of system 

20



settings [29]. An advantage of RVM is that it offers probabilistic 

outputs representing uncertainty for each prediction. A similar 

probabilistic output can be obtained from RVM-based classifiers, 

which can further be exploited to improve system performances, 

although this has yet to be investigated in the literature. 

Female and male speakers may express their emotions 

differently which may cause side-effects on speech based emotion 

recognition systems [30]. Attempts at reducing the gender effects 

involve training gender-dependent systems or penalizing the 

gender variability during modeling - both [31] and [32] reported 

superior performances in emotion classification using these two 

approaches, respectively. In contrast to emotion classification, 

emotion prediction systems exploiting gender information 

considered have been explored relatively less. In addition to the 

difference in emotion expression, we speculate that there may be 

some differences in the emotion perception of annotators, who 

may tend to rate female and male speakers differently. Motivated 

by this, we studied gender-dependent emotion prediction systems.  

3. DEPRESSION INVESTIGATION 

3.1 System Overview 
The following three sub-systems are proposed for classifying 

depression: audio, video and token word systems, as seen in 

Figure 1. In the audio system, we extracted short-term acoustic 

features. These features were then used to calculate the VTC 

features under different sliding window sizes before classification 

modeling. For the video system, we used two sets of FACET 

features (emotion traces and Action Units) and four sets of 

OpenFace features exclusive of the HoG features due to their high 

computational complexity and relatively poor performances. 

These features were directly or indirectly (VTC feature extraction) 

used for classification modeling. Training and Testing were 

performed on a per-frame basis and majority voting was applied 

to generate one output per file. For the token word system, speech 

segments for specific words were identified based on transcripts 

that include time stamps for spoken words. Acoustic features from 

these words were then extracted for training a model for 

classification.  

 
Figure 1: Overview of depression systems 

Train and test segments in the token word system are expected 

to have similar phonetic content, and to be of sufficient duration 

so as to capture reasonably long term acoustic context. This can 

help reduce phonetic variability. 

3.2 Vocal Tract Coordination Features 
Motivated by [19] and [20], we examined the VTC features 

extracted from four sets of short-term acoustic features and six 

sets of video features for the depression classification task. The 

features were 16-dimensional MFCC, 16-dimensional delta 

MFCCs, 13-dimensional Spectral Centroid Frequencies (SCF) and 

13-dimimensional Spectral Centroid Magnitudes (SCM) [33]. 

These four feature sets capture different characteristics of the 

spectral envelope. For example, the SCF feature estimates the 

frequency ‘centre of gravity’ of the speech spectrum within 

individual sub-bands, hence characterizing the distribution of the 

sub-band spectral energy [33]. This feature is a formant-like 

feature as it gravitates towards the location of formant frequency 

in each sub-band. On the other hand, the SCM feature estimates 

the weighted average magnitude spectrum in the sub-band. VTC 

features are sensitive to changes in the temporal delays between 

‘channels’, i.e. different parameter contours, within a particular 

feature set. They are thought to be sensitive to psychomotor 

disturbances because during disturbances muscular control 

behavior may become incoordinated, resulting in atypical or 

unsynchronized parameter evolution over time. 

During VTC feature extraction, auto and cross-correlation 

were calculated within and between channels. A certain number of 

correlation points were selected from the auto and cross-

correlation sequences and their lagged versions to form a channel-

delay correlation matrix, whose eigenspectra were then calculated. 

This process was repeated for multiple time-scales, i.e. different 

spacing between correlation points, and all eigenspectra were 

concatenated to form a new feature vector. PCA was further 

applied to eliminate the highly correlated features. A more 

detailed description can be found in [20]. The channel-delay 

correlation matrix is capable of capturing not only variations in 

correlation at different time scales, i.e. high-frequency changes 

with small spacing and low-frequency changes with large spacing, 

but also coherence or interaction between different channels, 

which may help distinguish between healthy and depressed 

speakers. 

4. EMOTION INVESTIGATION 

4.1 System Overview 
The AVEC 2016 emotion sub-challenge provides feature sets 

from audio, video and physiological (ECG and EDA based) 

signals. The feature sets include an 88-dimensional  acoustic 

feature set: the Extended Geneva Minimalistic Acoustic 

Parameter Set (EGEMAPS) [34], two sets of facial based video 

feature sets (168-dimensional appearance features and 632-

dimensional geometric features) and physiological features. For 

each feature set, window sizes for feature extraction were 

optimized for arousal and valence respectively. Further details on 

provided features can be found in [5].  

The proposed systems utilize the EGEMAPS features, the two 

sets of video features and a set of 650-dimensional audio features 

which contains five statistical functionals, i.e. mean, standard 

deviation, min, max and max-min range calculated over 130-

dimensional ComParE 2013 low level descriptors using the 

openSMILE toolkit [35]. These functionals are calculated within a 

2-second window in every 40 milliseconds, referred as to 

ComParE 2013. The physiological features were omitted, as they 

yielded marginal improvements during the system development. 

An overview of the final emotion prediction system is 

illustrated in Figure 2. The four selected feature sets were fused to 

generate 1538-dimensional features and delay compensation was 

carried out on both training and test data. The training data were 

used for regression modeling with OA RVM or RVM-Staircase 

Regression. The proposed data selection method based on 

emotion changes was applied to training data; refer to Section 

6.2.3 for further detail.  
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Figure 2: Overview of emotion prediction system (with optional 

data selection from training data) 

4.2 RVM Staircase Regression (RVM-SR) 
This approach is motivated by Gaussian Staircase Regression 

(GSR), which was first proposed for depression prediction [19]. In 

the GSR approach, data corresponding to intervals of the rating 

scale were grouped into several pairs of low-high classes, and the 

log mean likelihood ratio (LMLR) between the low and high 

partition was calculated. The LMLR from each low-high class 

pair was then used in regression modeling, to predict depression 

BDI scores. Based on the same framework, RVM-SR used an 

ensemble of RVM classifiers to model the class boundaries 

associated with low-high class pairs. The probabilistic outputs 

from each of the RVM classifiers were used as features for 

training a regression model at the second stage. The assumption 

made in the previous application of RVM-SR to depression score 

prediction [36], was that probabilistic outputs of the RVM 

classifier reflect beliefs in how strongly an utterance corresponds 

to a certain region of depression BDI scores. This may hold true 

for emotion ratings, which motivated investigation of RVM-SR 

for emotion prediction tasks herein. 

 
Figure 3: Overview of RVM Staircase Regression (RVM-SR) 

approach, showing how pairs of low-high classifiers are built 

upon intervals of the rating dimension, after [36]. 

Similarly to RVM regression in (1) and (2), the RVM 

classifier learns a set of sparse weights for the most relevant 

features during training:   

 𝑦(𝒙∗, 𝒘) =  𝒘𝑇𝜓(𝒙∗) (5) 

where 𝑦(𝒙∗, 𝒘)  follows a Bernoulli distribution and is 

combined with a sigmoid function 𝜍{𝑦} =  
1

1+𝑒−𝑦 to represent the 

posterior probability of class membership [27]. 

 𝑝(𝑐∗|𝒙∗, 𝒘) = 𝜍{𝑦(𝒙∗, 𝒘)} (6) 

Both the arousal and valence dimensions were divided into N 

classes (based on the distribution of their ratings, where 

percentiles are evenly divided), with a view to compare adjacent 

pairs of low-high classes, as seen in Figure 3. One method 

proposed for scoring the similarity of a feature under test to the 

low or high class is to use the probabilistic output of an RVM 

classifier {𝑝(𝑐𝑛|𝒙∗, 𝒘𝒏)| 𝑛 ∈ [1,2, … , 𝑁 − 1]} , resulting in N-1 

probabilities for the adjacent low-high class-pairs from which the 

rating is predicted. This has shown fairly good results for 

depression prediction [36], however it has not been applied to 

emotion prediction so far. 

4.3 Data Selection based on Emotion Change  
The data selection that was evaluated in this work is based on the 

assumption that segments corresponding to change in emotion are 

more salient than segments within which there is little or no 

change. To illustrate the various segments considered for 

selection, in Figure 4 partition C contains all the frames where 

emotion ratings change in addition to all frames whose ratings 

remain unchanged for less than L frames. Partition B contains all 

the frames before emotion ratings change at the beginning of 

every file, and the second half of all frames whose ratings remain 

unchanged for more than L frames. Similarly, partition A contains 

all the frames after the last change frame of every file and the first 

half of all frames whose ratings remain unchanged for more than 

L frames, where L is the minimum number of frames considered 

as non-change frames (i.e. B and A). Non-change frames were 

divided into B (before) and A (after) for exploring differences 

before and after emotion change frames. L was introduced to 

provide more continuity for C, as seen in Figure 4 With L = 1, 

partitions B, C and A account for 16.86%, 63.18%, and 19.96% 

respectively for arousal while those corresponding measures for 

valence are 19.36%, 58.10%, and 22.54%.   

 
Figure 4: Example arousal rating vs. time, showing the 

definitions of the different partitions relative to emotion changes 

Since the first-order differences may fluctuate due to annotator 

uncertainty or tremble, partitioning training data based on those 

first-order differences may be unreliable for emotion changes. To 

resolve this, we smoothed the first-order differences by applying a 

low-pass filter, whose length was empirically set to 15 and 30 

frames. Then a threshold was applied to detect a frame with the 

largest emotion change compared to its previous frame. 

5. EXPERIMENTAL CONDITIONS 

5.1 Database 
The depression sub-challenge adopts the Distress Analysis 

Interview Corpus (DAIC) [6] 1 . It was originally designed to 

investigate clinical communication behaviors and assisted human-

                                                                 
1

 Quality control listening per utterance was completed to check time-

stamp accuracy (some transcriptions had time-stamp errors). 
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computer commutative dialog. This database provides a fixed set 

of prompts; a large group of speakers, 189 speakers in total, which 

are divided into training (107 speakers), development (35 

speakers) and test (47 speakers) partition; high-quality close-

talking microphone recordings; natural speech; and PHQ-8 

evaluations along with scores per speaker. The PHQ-8 has an 

interval scale from 0 to 24 and larger scores indicate greater 

depression severity. The DAIC also includes phrase-level 

transcripts with beginning/ending time markers, making locating 

single token words possible with minimal error. Further details of 

the DAIC transcription conventions could be found at [6]. 

The AVEC 2016 emotion sub challenge was assessed on part 

of the Remote Collaboration and Affective Interaction (RECOLA) 

corpus [22], containing speech of 27 subjects which were evenly 

divided into training, development (devel.) and test partitions. The 

database comprises synchronously recorded multimodal signals, 

i.e. audio, video, and physiological signals for the first 5 minutes 

of each conversation. Arousal and valance emotional attributes 

during this period were rated by 6 gender balanced raters in 40ms 

time steps, resulting in 7501 pairs of affective score per file.  

5.2 Key Experimental Settings  
In depression classification systems, the token words (primarily 

‘filler’ words) used for experiments were: hmm, mhm, no, uh, so, 

mm, umm. These words were chosen as they commonly occur 

throughout conversations, and performed well relative to other 

token words with relatively constrained phonetic content. The 

token words hmm, mhm, no, and uh combined were spoken by 

95% of speakers from the training, 100% of speakers from the 

development and 100% of speakers from the test sets. Roughly 

5% of training data were omitted due to transcript time marker 

errors. Since token words present a shortage of training data for a 

classification model, we trained a linear SVR model with 

complexity coefficients selected from [10-5, 100] to predict PHQ-8 

scores, which were then thresholded into depressed or non-

depressed. The threshold was empirically set to T = 7 due to 

consistent classification performances across various sets of 

features. This study adopted the same settings for the VTC feature 

extraction from audio and video features as per [20], except 

excluding the log power and entropy of the channel-delay 

covariance matrix due to no observed improvement. That is, 4 

timescales with spacing of 1, 3, 7, 15 frames respectively. The 

number of correlation points was set to 15. For audio features, we 

performed Voice Activity Detection based on the transcription. 

VTC was applied to four sets of short-term acoustic features 

(Section 3.2) and provided video features.  

In emotion prediction systems, speaker-wise preprocessing 

such as [0, 1] scaling and z-normalization were implemented for 

each modality. We retained whichever of the methods gave better 

performance, and observed that speaker-wise z-normalization 

generally performed poorer in terms of CCC. We applied the 

speaker-wise [0, 1] scaling to appearance-based video features 

(arousal and valence) and geometric-based video features (arousal 

only). For post-processing, we applied centering and scaling as in 

the baseline paper [5] for arousal prediction within all systems. 

During system development, we trained on all training data and 

tested on all development data. Training data were scaled into the 

range [0, 1] and scaling coefficients were used to normalize test 

data. For RVM, the back-end for emotion prediction systems, the 

only parameter to be tuned was the iteration number, which was 

selected among {10, 30, 50, 70}. In RVM-SR, the distribution of 

ratings on training data was evenly partitioned into 10 classes for 

arousal and 20 classes for valence, selected empirically, which 

means that the number of pairs of adjacent low-high partitions for 

arousal and valence were 9 and 19 respectively. The window sizes 

for OA RVM were set to 201 frames for arousal and valence. 

6. SYSTEM DEVELOPMENT 

6.1 Depression Systems 

6.1.1 VTC vs Token Words  
A comparison between token words versus VTC features was 

completed using MFCC, delta MFCC, SCM, and SCF features, as 

shown in Table 1. In both systems, training and testing were 

performed on a frame-basis, and outputs from test frames were 

based on either majority voting (VTC) or average (token words). 

The best VTC entire utterance baseline feature was the SCF 

feature, which attained an F1 score of 0.50(0.74). Results for the 

4-best token words (‘hmm’,’mhm’,’no’,’uh’) raw features are 

shown in Table 1. Note that SCF features from the 4-best token 

words outperformed the VTC and the AVEC 2016 audio/visual 

development baseline in F1 score. Additionally, the 4-best token 

word SCM and SCF functionals were explored and performed 

similarly to the VTC and AVEC 2016 audio baselines. 7-best 

token words were evaluated as well; however, this did not 

outperform the 4-best. As previously hinted at in [14], it was 

believed that thin slice token word selection could potentially do 

better across all the development than using 100% of each 

utterance, and this hypothesis seems to be supported in Table 1, 

where token words are generally better in average F1 scores. 

Table 1: F1 scores for VTC audio features vs token words 

Front-end features VTC (Audio) Token words 

16-dim MFCC 0.43(0.72) 0.33(0.89) 

16-dim ΔMFCC 0.36(0.71) 0.22(0.89) 

13-dim SCF 0.50(0.74) 0.59(0.87) 

13-dim SCM 0.50(0.74) 0.36(0.88) 

Combined 0.42(0.70) 0.40(0.84) 

6.1.2 Whole File vs Thin Slice 
This section compares 88-dimensional EGEMAPS features [34] 

extracted at different time scales: the whole utterance, 3 second 

sliding window with 1 second overlapping, and token word 

segments. Interestingly, the best performances were achieved 

using the least amount of data; a significant and promising 

0.54(0.92) on the development set. 

Table 2: Comparison of EGEMAPS features extracted at different 

time scales. 

Systems F1 score Precision Recall 

Whole file 0.27(0.80) 0.25(0.81) 0.29(0.79) 

3s (1s) sliding window 0.44(0.92) 1.00(0.85) 0.29(1.00) 

Token words-4 0.54(0.92) 0.75(0.87) 0.43(0.96) 

Token words-7 0.36(0.88) 0.50(0.84) 0.29(0.93) 

6.1.3 VTC for Video Features 
This section compares video features and their VTC features. The 

sliding window sizes for VTC extraction were optimized on the 

development set among {10, 20, 40, 80, 120} seconds, except that 

only 120s was used for the CLM-2D and CLM-3D features 

because of their high dimensionality, causing rather long 

computation time. The VTC features with optimized window size 

outperformed raw features in general. The CLM-2D and CLM-3D 

achieved higher F1 scores compared with their VTC features. 
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Table 3: Comparison of VTC features extracted from video 

features and raw video features in F1 score 

Front-end features VTC (Video) Video 

FACET emotions 0.38(0.81) 0.30(0.56) 

FACET AUs 0.31(0.84) 0.17(0.60) 

CLM-2D 0.29(0.82) 0.50(0.70) 

CLM-3D 0.42(0.78) 0.44(0.81) 

CLM-Gaze 0.40(0.76) 0.33(0.65) 

GLM-Pose 0.38(0.81) 0.44(0.81) 

6.1.4 Decision Level Fusion  
This section examines performances for different combinations of 

previous sub systems. Decision level fusion was achieved using 

logistic regression. The first set of results combined four 

individual VTC systems for four sets of acoustic features. This 

yielded higher performances than a single VTC-audio system. The 

best audio and video subsystems were combined, yielding further 

improvements. Different combinations of audio and video systems 

were trialed, but none of them outperformed the VTC-SCF + 

CLM-2D system, shown in Table 4.  In addition, inclusion of 

token word system at decision level did not favor classification.  

Table 4: Performances for decision-level fusion of the best audio, 

video and token word systems. 

Systems F1 score Precision Recall 

VTC-Audio fused 0.53(0.82) 0.42(0.91) 0.71(0.75) 

VTC-SCF + CLM-2D 0.59(0.87) 0.50(0.92) 0.71(0.82) 

VTC-SCF + CLM-2D 

+ Token words-4 
0.59(0.87) 0.50(0.92) 0.71(0.82) 

6.1.5 Gender-dependent Systems  
The best system from the previous section, i.e. the token word 

subsystem using the SCF features, was used to further examine 

the effect of gender difference in depression classification, shown 

in Table 5. The starting point was to train and test on only either 

female or male data, producing two sets of improved 

performances as shown in Table 5. This was achieved with 

optimized models and threshold T for each. The results were 

further combined to generate final gender-dependent system 

results. As shown in Table 5, the results indicate that separate 

gender-based systems for depression classification analysis 

perform better than gender-agnostic systems, especially in the 

case of male speakers. Similar and consistent performances were 

observed using EGEMAPS features with the same system 

configurations. 

Table 5: 4-best token word gender-dependent depression 

classification performances using raw SCF features 

Systems F1 score Precision Recall 

Gender-independent 

(T=7) 
0.59(0.87) 0.50(0.92) 0.71(0.82) 

Female (T=6.75) 0.60(0.86) 0.43(1.00) 1.00(0.75) 

Male (T=7) 0.73(0.86) 0.57(1.00) 1.00(0.75) 

Gender-dependent 0.67(0.86) 0.50(1.00) 1.00(0.75) 

6.2 Emotion Systems 
As delays are crucial to the accuracy of emotion prediction 

systems, the first development priority was to optimize delays for 

each modality. The delay value was optimized in CCC on 

development set within the range [0, 6] seconds with a 0.4 second 

increment. The optimized delay values (as seen in Table 6) were 

adopted throughout all experiments. Compared with single 

modality performances in the baseline paper [5], the provided 

EGEMAPS feature set performed slightly poorer.  However, the 

video-appearance features provided superior performances for 

arousal (0.615 vs 0.483) and valence (0.530 vs 0.470). Similar 

improvement can be seen for arousal using video-geometric 

features for arousal (0.467 vs 0.379). These improvements were 

from speaker-wise scaling on features before training and testing. 

Table 6: Performances and optimized delay values for single 

modality using RVM 

 Arousal Valence 

 CCC Delay CCC Delay 

EGEMAPS 0.750 2.8 0.396 2.4 

ComParE 2013 0.750 3.2 0.361 2.8 

Video-appearance  0.615 2.4 0.530 2.8 

Video-geometric 0.467 4.0 0.571 3.2 

6.2.1 RVM vs RVM-SR 
RVM has shown solid emotion prediction performances [29], but 

systems considering its probabilistic outputs have been 

investigated relatively less. As seen in related work on depression 

prediction [36], regression approaches based on probabilistic 

outputs of RVM classifiers operating on low-high class pairs 

perform well. We applied this idea to continuous emotion 

prediction. In RVM-SR, to partition the data into different low-

high pairs, we evenly divided percentiles from the training ratings 

(i.e. arousal and valence) based on which thresholds are selected. 

Data was grouped into 10 partitions based on arousal scores and 

20 partitions based on valence scores to give 9 and 19 

corresponding low-high class pairs and used these to train RVM 

classifiers (Figure 3). The sets of low-high class posteriors from 

these classifiers were used to train a RVM regression model. 

Table 7 compares RVM and RVM-SR. In two systems, 

features from 4 modalities were concatenated at the feature level. 

The RVM system was outperformed by RVM-SR, which exploits 

the probabilistic output property of conventional RVM. These 

low-dimensional probabilities are found to be informative for 

emotion prediction tasks, which can be further incorporated 

within the OA-RVM framework. It was also observed that RVM-

SR performs relatively poorly on a per-modality basis, but better 

than RVM when features from 4 modalities are combined. 

Table 7: Comparison of RVM and the two-stage RVM-SR. Note 

that the dimensionalities of features were reduced to 9- and 19-

dim within RVM-SR, compared with 1538-dim features within 

RVM. 

Systems Arousal Valence 

RVM 0.675 0.586 

RVM-SR 0.770 0.640 

6.2.2 OA RVM vs OA RVM-SR  
The output-associative RVM (OA RVM) framework is effective 

for continuous emotion prediction [28]. This section compares 

RVM and RVM-SR under the OA framework. In OA RVM-SR, 

probabilistic outputs from RVM-SR are included within the OA 

matrices, which include temporal arousal and valence predictions 

and input features for further training a regression model. This 

enables more information about the low-high classes to be 

considered during regression modeling. However, results shown 

in Table 8 indicate that the proposed OA RVM-SR performed 

slightly poorer for arousal and valence, which is presumably 

because the probabilistic outputs are low-dimensional compared 

with the original OA matrices, which are more than 2000 

dimensions. Since RVM generates models with sparse weights for 

features, the low-dimensional information may not favor 

regression in this context.  
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Table 8: Comparison of RVM and RVM-SR under the OA fusion 

framework 

Systems Arousal Valence 

OA RVM 0.857 0.695 

OA RVM-SR 0.855 0.642 

6.2.3 Data Selection based on Emotion Changes  
To identify emotional saliency in speech and video, this section 

examines the proposed emotion change based data selection 

method, as described in Section 4.3. Table 9 shows that the 

change (C) and non-change (B and A) partitions produced slightly 

lower CCCs than using all data. This may be in part due to noises 

and arbitrary fluctuations in the first-order differences of arousal 

and valence, from which data were partitioned into B, C and A. 

Therefore, we applied a mean filter of length W in frames to 

smooth the first-order differences. In addition to W, there were 

two parameters used to characterize partition C: threshold T to 

select large changes, and regions R in frames around large 

emotion changes included as C. [W, T, R] were set to [30, 0.0012, 

5] and [15, 0.0016, 5] to partition C for training. With smoothing, 

training on only C (change frames) achieved better performances 

for valence. 

Table 9: Comparison of performances using all and subset of 

training data 

Partitions Arousal Valence 

B+C+A 0.859 0.696 

C 0.809 0.647 

B 0.814 0.681 

A 0.803 0.676 

C [15, 0.0016, 5] 0.804 0.664 

C [30, 0.0012, 5] 0.812 0.707 

6.2.4 Gender-dependent Systems 
This section examines effects of gender variability on emotion 

prediction systems under the OA RVM framework. Three gender-

dependent systems were developed: Female, Male and Combined. 

For Female and Male systems, models were trained and tested 

using Female only or Male only data, whereas in the Combined 

system, predictions from Female and Male systems were 

combined to generate results as shown in Table 10. The gender 

dependent model yielded poorer performances for emotion 

prediction, likely because there is less data for training. 

Table 10: Comparison of gender-dependent and gender-

independent systems 

Systems Arousal Valence 

Gender-independent 0.855 0.654 

Female 0.851 0.622 

Male 0.808 0.597 

Combined 0.831 0.612 

7. AVEC 2016 CHALLENGE RESULTS 

7.1 Depression 
For the challenge test submission, depression classification results 

using the 4-best token words SCF features, gender-dependent 

models, and decision-level fusion of VTC-SCF and VTC-MFCC 

had performances below the baseline [6]. In all the systems, 

training and development data were merged for training. The test 

results in Table 11 clearly show lower depressed identification for 

all three methods in clear contrast to development results shown 

previously in Sections 6.1.1 and 6.1.2. For the 4-best token words, 

the lower performance is possibly attributable to selecting a 

balanced threshold and complexity coefficient. As supporting 

evidence, an improvement was recorded by adjusting the latter to 

a higher value (as indicated in Table 11 by an ‘*’). However it is 

also likely that, despite care with feature dimensionality, 

overfitting was an issue in these experiments. In general, it was 

observed that there was little similarity between system 

configurations which performed well on the development and 

system configurations which performed well on the test set. This 

suggests that the database contains considerable variability. 

Table 11: Comparison of AVEC 2016 test set for depression sub-

challenge 

Systems F1 score Precision Recall 

Baseline [5] 0.50(0.90) 0.60(0.87) 0.43(0.93) 

Token word-4 SCF 0.14(0.85) 0.20(0.81) 0.11(0.90) 

Token word-4 SCF* 0.30(0.81) 0.27(0.83) 0.33(0.79) 

Token word-4 SCF GD 0.20(0.78) 0.18(0.81) 0.22(0.76) 

VTC-SCF+VTC-MFCC 0.17(0.81) 0.12(0.72) 0.33(0.40) 

7.2 Emotion 
Three emotion prediction systems were submitted as affect sub-

challenge entries. In all systems, training and development data 

were merged for training. All three systems employed an iteration 

number of 10 for arousal and 30 for valence, optimized on 

development set.  

The first system was an OA RVM system. The OA window 

size was set to 201 frames and 21 frames optimized on the 

development set for arousal and valence. The second system, OA 

RVM-SR, included probabilistic outputs of RVM classifiers. The 

partition number was set to 10 and 20 for arousal and valence. In 

the system, RVM-SR was trained on each modality, and 

probabilistic outputs from each modality were included into OA 

matrix for regression modeling. The third system employed the 

proposed data selection under the OA RVM framework. 

Parameters [W, T, R] to partition C were set to [15, 0.0016, 5], 

chosen because of their consistent performances in 2-fold cross 

validation. This resulted in the use of 57.61% and 38.18% of 

training data for arousal and valence. For all submissions, we 

achieved improved performances over the baseline for arousal, 

but poorer for valence.  

Table 12: Comparison of AVEC 2016 test set for affect sub-

challenge 

 Arousal Valence 

Baseline [5] 0.682 0.638 

OA RVM 0.770 0.533 

OA RVM-SR 0.770 0.545 

OA RVM with data selection 0.728 0.515 

8. CONCLUSIONS 
In this paper, experiments on and submissions to the AVEC 2016 

challenge were reported, with the primary focus on the audio 

subsystem. For the continuous emotion system, the OA 

framework showed consistently superior performances, 

confirming the effectiveness of introducing temporal 

dependencies of emotion attributes. The introduction of a 

prediction approach based on probabilistic outputs of Relevance 

Vector Machine (RVM) classifiers operating on low-high class 

pairs (RVM-SR), which is novel in the emotion prediction 

context, provided a significant improvement over RVM prediction 

results on the development set and also outperformed RVM on the 

test set in a novel configuration under the output-associative (OA) 

framework. These results are broadly in line with other methods 

based on predictions from pairwise comparisons [20], [36]. 

Overall stronger test set results for arousal than valence were 

expected, with the focus on the audio subsystem, and the OA 
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RVM-SR prediction result for arousal provided 10% higher 

accuracy than that of the baseline.  

Novel explorations into thin slice token word depression 

classification and gender-specific depression modelling expanded 

upon previous research findings. Results from investigating these 

methods show that data selection has a significant impact on 

depression classification performance, which was strongly 

positive on the development set, with significant gains over the 

development set baseline results. Moreover, for similar acoustic 

data (or even in other modalities), minimal data were required to 

achieve high classification accuracy. The token word approach 

performed more poorly for the test set, and there were insufficient 

test submissions to understand the reasons behind this (possibly 

due to the issue of balancing the classifier output).  

Experiments on gender dependency were conducted on both 

emotion and depression systems, which provided higher 

performances for depression classification on the development set, 

but no improvement was seen for emotion prediction systems. 

Future work will explore a larger set of token words, helping 

determine whether a combination of reduced phonetic variability 

and word type (or phrase location) contributes to depression 

classification. Also, the gender depression modeling will be 

further investigated; analyzing a greater number of gender-

specific features across modalities. 
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