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ABSTRACT
Egocentric videos are becoming popular since the possibility
to observe the scene flow from the user’s point of view (First
Person Vision). Among the different assistive applications
in this context there is the daily living monitoring of a user
that is wearing the camera. In this paper we propose a sys-
tem devoted to automatically organize videos acquired by
the user over different days. By employing an unsupervised
segmentation, each egocentric video is divided in chapters
by considering the visual content. The video segments re-
lated to the different days are hence linked to produce graphs
which are coherent with respect to the context in which the
user acts. Experiments on two different datasets demon-
strate the effectiveness of the proposed approach which out-
performs the state of the art, both in accuracy and compu-
tational time with a good margin.

Keywords
Social Cameras, Video Curation, Summarization, First Per-
son Vision, Assistive Computer Vision

1. INTRODUCTION AND MOTIVATIONS
In the last years there has been a rapid emerging of wear-

able devices, including body sensors, smart clothing and
wearable cameras (e.g., smart glasses) together with an in-
creasing diversity of such devices with respect to hardware
capabilities and computational resources. These technolo-
gies can have a significant impact on our lives if the acquired
data are considered to assist the users in tasks related to the
monitoring of the quality of life [4] [11] [17]. In particular,
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egocentric cameras enabled the design and development of
useful systems that can be organized into three general cat-
egories with respect to the assistive tasks:

• User Aware: systems able to understand what the user
is doing and what/how he interact with, by recognizing
actions and behaviours from first person perpective.

• Environment/Objects Aware: systems able to under-
stand what objects sourround the user, where they are
with respect the user’s perspective and what the envi-
ronment looks like.

• Target Aware: systems able to understand what others
are doing, and how they interact with the user that is
wearing the device.

Wearable cameras provide a practical method to collect
first person view video datasets related to people during
their daily living in different environments. The growth of
wearable cameras leads to a number of challenging tasks for
the research community, as well as a huge number of ap-
plications. The monitoring of the activities and the events
that a person experiences, can help to stimulate the mem-
ory of users that suffer from memory disorders [21]. Sev-
eral works on recognition and indexing of daily living ac-
tivities of patients with dementia have been recently pro-
posed [3] [19] [13] [27]. The exploitation of aids for people
with memory problems is proved to be one of the most ef-
fective ways to aid rehabilitation. It has been demonstrated
to be effective in increasing independence in brain injured
patients [18]. Furthermore, by recording and organizing the
daily habits performed by a patient, a doctor can have a bet-
ter opinion with respect to the specific patient’s behaviour
and hence his health needs. To this aim, a set of egocentric
videos recorded among different days by a patient can be
analysed by experts to monitor the user’s daily living for as-
sistive purposes. Live recording for life logging applications
poses challenges on how to perform automatic index and
summarization of these big personal multimedia data [14].
Indeed, the task of monitoring daily living with first person
cameras involves several steps to be performed, such as the

45



Intraflow Analysis
Temporal Segmetnation

Between Flows Analysis
Content OrganizationAcquisition Exploration

a b c d

Figure 1: Overall scheme of the proposed framework. Given a set of first person videos recorded among different days

(a), the system performs a segmentation of each video according to the scenes visual context (b). Then, the different

segments are organized by matching their visual contents among different days (c). As result, the system provides an

organization for the monitoring of the user’s daily living that can be explored in a user interface (d).

Figure 2: Some first person view images from the con-

sidered dataset. Each column reports two different shots

of the same scene acquired among different days.

segmentation of the videos in chapters, indexing of frames
and summarization of long videos.

In the last years, due to the growing diffusion of wear-
able cameras and the expansion of their application areas,
several papers have been published by considering differ-
ent vision tasks from first person perspective. The work
in [28] proposes a temporal segmentation method of egocen-
tric videos by analysing the motion of the camera weared
by a user. The authors suggest a method that segments the
input egocentric video with respect to 12 different activities
organized hiararchically upon cues based on wearer’s motion
(e.g., static, sitting, standing, walking, etc.). In [24] the au-
thors propose a method that takes a long input video and
returns a short video summary as output by selecting a set
of video subshots depicting the essential moments. The fi-
nal output is obtained by defining a coherent chain of video
subshots in which each subshot influences the next through
some subset of influential visual objects. The method pro-
posed in [31] learns the sequences of actions involved in a
set of habitual daily activities. Thus, it is able to recognize
the current action performed by the wearer, predict the next
action and generate a notification if there is a missing action
in the sequence. The framework presented in [26] (RECfu-
sion), and further extended in [25], is able to automatically
process multiple video flows from different devices to under-
stand the most popular scenes for a group of end-users. The
aim of RECfusion is to catch the audience’s interest dur-
ing a social event by exploiting a set of crowdsourced video
flows. Its output is a video which represents the most pop-
ular scenes organized over time. This method has been suc-
cessful applied on videos acquired with mobile cameras, but
the performances decrease when videos are acquired with
wearable cameras.

In this paper we build on the RECfusion methodology [26]

improving it in the context of daily living monitoring from
egocentric videos. In [26] the multiple videos are analysed by
using two algorithms: the former is used to segment the dif-
ferent scenes, transitions and the unstable intervals within
each video (intraflow analysis). The latter is employed to
perform the grouping of the videos related to the involved
devices over time by taking into account the visual content
of the previously segmented video streams. The popularity
of the obtained clusters over time is used to produce the final
video. During the segmentation phase, each scene is repre-
sented by a set of extracted SIFT descriptors [23] which is
considered as a template of the corresponding scenes within
the segment. The intraflow analysis consists in the compar-
ison of templates extracted from different frames of a video
to split it in blocks with frames having similar visual con-
tent. As reported in the experimental results of the original
paper [26], the intraflow analysis of RECfusion suffers when
applied to egocentric videos because they are highly unsta-
ble due to the user’s movements.

To compare different blocks of different devices (between
flow analysis), the authors of [26] exploit an image represen-
tation based on a quantized weighted color histogram. The
weights are obtained by using a gradient map computed in
both x and y directions as proposed in [6]. This representa-
tion is extracted after an equalization phase proposed in [10].
Such an image representation requires high computational
effort to be extracted, in fact it involves several processes:
image equalization, gradient extraction, weighted histogram
computation and quantization. Furthermore, the computa-
tional effort augments drastically with the dimensions of the
input images.

In this paper we propose a framework which overcomes
the problems of [26]. The overall pipeline is shown in Fig-
ure 1. The proposed method takes a set of egocentric videos
regarding the daily living of a user among different days
and performs an unsupervised segmentation of them. The
obtained video segments among different days are then orga-
nized by contents. The video segments of the different days
with the same contents can be then visualized by exploiting
an interactive web-based user interface. Experiments have
been performed on egocentric videos acquired in two differ-
ent scenarios (Figure 2).

Differently than [26], the proposed framework allows to
have better performances for egocentric videos organization.
We obtained an improvement with respect to RECfusion on
both segmentation accuracy and computational costs. This
is obtained by using a unique representation for frames of
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the videos based on CNN features [20] (for both intraflow
and between flows analysis) instead of two different represen-
tations based on SIFT and the color histogram. Moreover,
experiments show that the proposed framework outperforms
RECfusion [26] also for mobile video organization.

The rest of the paper is organized as follows. Section 2
presents the proposed framework. In particular, Section 2.1
and Section 2.2 present the proposed segmentation and con-
tent organization approaches respectively. Section 3 intro-
duces the considered wearable dataset, whereas the discus-
sion of the obtained results is given in Section 4. In Sec-
tion 5 the proposed system is further compared with respect
to RECfusion [26] on mobile videos. Finally Section 6 con-
cludes the paper and gives insights for further works.

2. PROPOSED FRAMEWORK
The proposed framework employs two main steps on the

videos acquired by a wearable camera: temporal segmenta-
tion and content organization. Figure 1 shows the scheme of
the overall pipeline of the proposed system. Starting from a
set of egocentric videos recorded among multiple days (Fig-
ure 1 (a)), the first step performs an intraflow analysis of
each video to segment them with respect to the different
scenes observed by the user (Figure 1 (b)). Then, the ob-
tained segments over different days that regard to the same
content are grouped (Figure 1 (c)).The system produces sets
of video clips related to each location where the user per-
forms daily activities (e.g., the set of the clips over days
where the user washes dishes in the kitchen, the set related
to the activity of the user of playing piano, and so on). The
clips are organized taking into account both visual and tem-
poral correlations. Finally, the framework provides a web
based interface to enable an efficient browsing of the seg-
mented videos by exploiting the inferred organization (Fig-
ure 1 (d)). In the following subsections the details on the
different steps involved into the pipeline are given.

2.1 Intraflow Analysis
The intraflow analysis performs the unsupervised segmen-

tation of each input video by associating a scene ID to each
video segment. This means that the identification of the seg-
ments given by the intraflow analysis doesn’t associate video
segments extracted from two different video flows. Instead,
it works to segment each video and to associate segments
with same content within each video. In the following we
focus our analysis on the issues related to the intraflow algo-
rithm proposed in [26] when applied on first person videos.
This is useful to introduce to the reader on the main prob-
lems of a classic feature based matching approach for tem-
poral segmentation in wearable domain. Then we present
the proposed solution for the intraflow analysis to split each
video in blocks according to their visual content. The main
differences between the approach in [26] and the proposed
one are related to both, the employed image representations
and the way we obtain the final segments of each video.

2.1.1 Issues related to SIFT based templates
The intraflow analysis proposed in [26] compares two scenes

considering the number of matchings between a reference
template (i.e., the last stable set of SIFT descriptors ex-
tracted from the last detected scene) and the current frame.

Figure 3: Template based video segmentation per-

formed by the intraflow analysis.

When the algorithm detects a sudden decrease in the number
of matchings, it refreshes the reference template extracting a
new set of SIFTs and cuts the video (see Figure 3). In order
to detect such changes, the system computes the value of
the slope in the matching function (i.e., the variation of the
number of matchings in a range interval). When the slope
is positive and over a threshold (which correspond to a sud-
den decrease of the number of matchings between the SIFT
descriptors) the algorithm finds a new template. The scene
template is a set of SIFT descriptors that must accomplish
specific properties of reliability [26]. When a new template
is defined, it is compared with the past templates in order to
understand if it regards a new scene or a known one (back-
ward search phase). In this way the IDs are assigned to the
different segments.

Although this method works very well with videos ac-
quired with mobile cameras, it has difficulties when applied
on videos acquired with wearable cameras. In such egocen-
tric videos, the camera is constantly moving due to the shake
induced by the natural head motion of the wearer. This
causes a continuous refresh of the reference template that
is not always found during the backward search of the tem-
plate performed by [26]. Furthermore, the approach in [26]
requires to perform several SIFT descriptor extraction and
matching operations (including geometric verifications) to
exclude false positive matchings [26]. An example of a seg-
mentation obtained with the algorithm in [26] on a egocen-
tric video is reported in Figure 4. The first row shows the
Ground Truth segmentation of the video acquired with a
wearable camera in an home environment1. The second row
shows the segmentation result of the SIFT based interflow
analysis proposed in [26]. The algorithm works well when
the scene is quite stable (e.g., when the user is cooking in
the kitchen, or when he is sit on the sofa watching a TV
program), but it performs several errors when the scene is
highly unstable due head movements. In fact, in the middle
of the video related to Figure 4 (which correspond to a user
cleaning dishes at the sink) the user is continuously moving
his head.

Furthermore, in the aforementioned example the intraflow
approach based on SIFT features detects a total of 8 different
scenes instead of 3. In such cases, the algorithm can’t find
the matchings between the current frame and the reference
template due to two main reasons:

• When the video is unstable, even though the scene
doesn’t change, the matchings between local features

1The video related to the example in Figure 4
is available for visual inspection at the URL
http://iplab.dmi.unict.it/recfextension.
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Figure 4: Output of the intraflow analysis using CNN and SIFT applied to the video Home Day 1. The first row is

the Ground Truth of the video, which depicts ten minutes of tipical home activities (cooking in the kitchen, cleaning

dishes at the sink, watching a TV program in the living room). The second row shows the result of the intraflow

analysis with the method proposed in [26]. The third row shows the result of the intraflow analysis performed by the

proposed system, whereas the last two rows show the results of the application of the scene coherence and duration

filtering criteria. The performances of the intraflow methods applied to this video instance, are detailed in the first

row of Table 1.

are not reliable and stable along time;

• In a closed space such as an indoor environment, the
different objects of the scene can be very close to the
viewer. Thus, just a small movement of the user’s
head is enough to cause an high number of mismatches
between local features.

2.1.2 CNN Based Image Representation
To deal with the issues described in 2.1.1, we exploit an

holistic feature to describe the whole image rather than an
approach based on local features. In particular, for the in-
traflow analysis we represent frames by using features ex-
tracted with a Convolutional Neural Network [5]. Over the
last few years, the increasing computational power of GPUs
and the creation of large image datasets have allowed Convo-
lutional Neural Networks (CNNs) to show outstanding per-
formance in many Computer Vision challenges. Further-
more, CNNs have proved to be very effective for transfer
learning problems. In this work we consider the CNN pro-
posed in [20], which is called AlexNet. It consists of seven in-
ternal layers with a final 1000-way softmax which produces a
distribution over the 1000 predefined classes of the ImageNet
dataset [29]. In our experiments, we exploit the representa-
tion obtained from the last hidden layer of AlexNet, which
consists of a 4096 dimensional feature vector (fc7 feature).

We decided to use AlexNet representation for the following
motivations:

• The fc7 representation of AlexNet has been success-
fully used as a general image representation for classi-
fication purpose in the last few years [1] [2]. Thus, the
use of this feature is highly known and tested by the
community.

• The feature extracted by AlexNet have been used suc-
cessfully for transfer learning [15] [22] [32].

• AlexNet architecture is a short network compared to
other networks (e.g., VGG [30]). Thus, it allows to

perform the feature extraction very quickly. Consider-
ing that the proposed system needs to extract a huge
number of image representations from the frames of
several video flows, computational costs and time are
critical factors.

In [26] the similarity between the scene templates is de-
fined by the number of matchings between two SIFT sets,
computed after a geometrical verification check. The pro-
posed solution, instead, compares a pair of fc7 features by
using the cosine similarity measure. The cosine similarity of
two vectors measures the cosine of the angle between them.
This measure is independent of the magnitude of the vec-
tors, and is well suited to compare high dimensional sparse
vectors, such as the fc7 features. The cosine similarity of
two fc7 vectors v1 and v2 is computed as following:

CosSimilarity(v1, v2) =
v1 · v2
‖v1‖ ‖v2‖

(1)

2.1.3 Proposed Intraflow Analysis
During the intraflow analysis, the proposed algorithm com-

putes the cosine similarity between the current reference
template and the fc7 features extracted from the follow-
ing frames. When the algorithm detects a sudden decrease
in the cosine similarity sequence, it refreshes the reference
template selecting a new stable fc7 feature. As in the ap-
proach presented in [26], in order to detect such changes the
system computes the value of the slope (i.e., the variation of
the cosine similarity in a range interval). According to [26],
when the slope has a positive value (which correspond to a
sudden decrease of the cosine similarity) the algorithm finds
a new template. There are two cases in which the intraflow
analysis compares two templates:

1. A template is compared with the features extracted
from the forward frames, when the algorithm have to
check its eligibility to be a reference template for the
involved scene.
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Figure 5: Linking segments between egocentric videos. Each plot shows the cosine similarity values obtained by

comparing one block of a video vA with respect to some blocks extracted from the other videos. For each plot the

following details are specified: the Ground Truth of the considered block (GT), the value of σ(bvA ,vBj
) (s), the value

of the maximum similarity (M). The red asterisks indicate the segment blocks that are selected by considering the

equation (2). The red lines depict the boundings of a neighborhood of the maximum value with a range of ±σ(bvA ,vBj
)/2.

The following abbreviations are used: Ki - Kitchen, Re - Reading, La - Laboratory.

2. A template is compared with the past templates during
the backward checking phase.

In the first case, the elapsed time between the two com-
pared frames depends on the sampling rate of the frames (in
our experiments, we sampled at every 20 frames for videos
recorded at 30 fps). Differently, the frames compared during
the backward checking could be rather different due to the
elapsed time between them. For this reason, when we com-
pare a new template with a past template, we assign the tem-
plates to the same scene ID by using a weaker condition with
respect to the one used in the forward verification. When
the algorithm compares a template with the forward frames,
it assigns the same scene ID to the corresponding frames if
the cosine similarity between their descriptors is higher than
a threshold Tf (equal to 0,60 in our experiments). When the
algorithm compares two templates in the backward process,
it assign the same scene to the corresponding frames if the
similarity is higher than a threshold Tb (equal to 0.53 in our
experiments).

Besides the image representation, our intraflow algorithm
introduces two additional rules with respect to the approach
proposed in [26].

• In [26] each video frame is assigned to a scene ID or
it is classified as Noise and hence rejected. Our ap-
proach is able to distinguish the rejected frames be-
tween frames caused by the movement of the head
of the user (Noise) or by the transition between two
scenes in the video (Transition). When a new tem-
plate is defined after a group of consecutive rejected
frames, the frames belonging to this rejected group
are considered as “Transition” if the duration of the
block is longer than 3 seconds (i.e., we consider that
head movements much faster than 3 seconds). Oth-
erwise they are classified as “Noise”. In case of noise,
the algorithm doesn’t assign a new scene ID to the
frame that follows the “Noise” video segment because
the noise is related to head movements but the user
is in the same context. This simple heuristic is very
useful when the system considers videos acquired with
wearable devices. On the contrary, when a video has
been acquired by using a mobile camera, the viewed
scene can be quickly changed by the movement of the

hand. Since we have to deal with first-person view
videos, when the user changes its location he changes
his position in the environment. Thus, the transition
between different scenes involves a longer time inter-
val, and this is the reason of the established distintion
between noise and transition with the proposed heuris-
tic.

• The other introduced rule is related to the backward
verification. In [26] it is performed starting from the
last found template and proceding backward. It stops
when the process finds the first past template that have
a good matching score with the new template. Such
approach is quite appropriate for the method in [26]
because it compares sets of local features and relyes
on the number of achieved matchings. The approach
proposed in this paper compares pairs of vectors in-
stead of a number of descriptors, and selects the past
template that yelds the best similarity to the new one.
In particular, the proposed approach compares the new
template with all the previous ones, and all the past
templates that yelds a cosine similarity grather than Tb
are considered. From this set of positive cases, the al-
gorithm selects the one that achieves the maximum
similarity, even if it is not the most recent in the time.
This make more robust the ID assignment in the in-
traflow analysis.

Considering the example in Figure 4, the segmentation re-
sults obtained with the proposed intraflow approach (third
row) are much better than the one obtained using SIFT
features (second row). After the intraflow analysis segmen-
tation a refinement is performed as detailed in the following
subsection.

2.1.4 Segmentation Refinement
The previous section describes the proposed method to

perform the intraflow analysis in order to obtain segments
with coherent visual content. Starting from the result of the
intraflow analysis (see the third row of Figure 4), we can
easily distinguish between “Transition” and “Noise” blocks
among all the rejected frames. A block of rejected frames is
a “Noise” block if both the previous and the next detected
scenes are related to the same visual content, otherwise it
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Figure 6: The top timelines show the Ground Truth segmentation and organization related to the Home Day scenario,

whereas the bottom timelines show the inferred segmentation and organization obtained by the proposed method.

is marked as a “Transition block”. We refer to this criteria
as Scene Coherence. The result of this step in the example
considered in Figure 4 is shown in the fourth row. When
comparing the segmentation with the Ground Truth, the
improvement with respect to [26] (second row) is evident.
Moreover, many errors of the proposed intraflow analysis
(third row) are removed.

The second step of the segmentation refinement consists
in considering the blocks related to user activity in a location
with a duration longer than 30 seconds (Duration Filtering),
unless they are related to the same scene of the previous
block (i.e., after a period of noise the scene is the same as
before but it has a limited duration). We applied this cri-
teria because, in the context of Activities of Daily Living
(ADL), we are interested to detect the activities of a person
in a location that have a significative duration in order to be
able to observe the behaviour. This step follows the Scene
Coherence step. The final result is shown in the last row
of Figure 4. Despite some frames are incorrectly rejected
(during scene changes) the proposed pipeline is much more
robust than [26]. This is quantitatively demonstrated on two
different datasets in the experimental section of this paper.
Comparing the final result with respect to the Ground Truth
(in Figure 4), we can observe that the proposed system cor-
rectly segments almost all the three scenes of the example
video.

2.2 Between Video Analysis
When each egocentric video is segmented the next chal-

lenge is to determine which segments among the different
days (i.e.,videos) are related to the same content. Given a
segment block bvA extracted from the egocentric video vA,
we compare it with respect to all the segment blocks ex-
tracted from the other egocentric videos vBj . To represent
each segment, we consider again the CNN fc7 features ex-
tracted from one of the frames of the video segment. This
frame is selected considering the template which achieved

the longer stability time during the intraflow analysis (i.e.,
the reference template that has been used to represent that
scene for the longer time interval during the slope checking
with the cosine similarity sequence, explained in 2.1.3). For
each block bvA , our approach assigns the ID of bvA (obtained
during intraflow analysis) to all the blocks bvBj

extracted

from the other egocentric videos vBj :

bvBj
= arg max
bvBj

∈vBj

{CosSimilarity(bvA , bvBj
)

| σ(bvA ,vBj
) ≥ Tσ} ∀vBj

(2)

where σ(bvA ,vBj
) is the standard deviation of the cosine sim-

ilarity values obtained by considering the segment block bvA
and all the blocks of vBj . This procedure is performed for
all the segment blocks bvA of the video vA. When all the
blocks of vA have been considered, the algorithm takes into
account a video of another day and the matching process is
repeated until all the videos in the pool are processed. After
this process, a scene ID is assigned to all the blocks of all the
considered videos. This identification is unique for the set
of egocentric videos. Thus, a pair of blocks with the same
ID are linked, even if they belong to different videos, and all
the segments are connected in a graph with multiple com-
ponents (as in Figure 1 (c)). Figure 5 shows the details of
the comparisons performed with the above approach. When
there is a high variability in the cosine similarity values (i.e.,
the value of σ(bvA ,vBj

) is high), the system assigns the scene

ID to the segment block that achieved the maximum simi-
larity. When a block isn’t matched (e.g., the first plot of the
first row, and the first two plots of the second row), all the
similarity values of the missmatched blocks are similar. This
causes low values of σ and helps the system to understand
that the searched activity is not present. When the similar-
ity is low, the blocks are skipped. In our experiments, we
used Tσ = 4 × 10−2. However we observed that all values
of Tσ between 3 ×10−2 and 5 ×10−2 also provide similar per-
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formances. The use of such a threshold on the σ value gen-
eralizes the obtained measures of similarity between blocks.
Indeed, the system considers two blocks to be similar if their
similarity has a high value with respect to the set of similar-
ity values obtained comparing different pairs of blocks. Fur-
thermore, this threshold is needed to detect isolated scenes
(i.e., scenes with only one instance among all the considered
videos). When the searched scene is matched we usually
observe high values of σ (higher than Tσ by one order or
more), but without a threshold value for σ we couldn’t find
any isolated block (unless we use a threshold on the similar-
ity value).

3. DATASET
To demonstrate the effectiveness of the proposed approach

on first person videos, we have acquired egocentric videos to
perform experiments on two different scenarios. All videos
have been taken in different days using the same head mounted
camera. Specifically, we used a Looxcie LX2 with a resolu-
tion of 640x480 pixels. The duration of each video is about
10 minutes.

We considered the following scenarios:

• Home Day: a set of three egocentric videos taken in
an home environment. In this scenario, the user per-
forms typical home activities such as cooking, cleaning
dishes, watching TV, and playing piano. This set of
videos has been borrowed from the dataset used in [12]
which is available at the following URL:
http://iplab.dmi.unict.it/PersonalContexts/segmentation/.

• Working Day: a set of three videos taken in an office
environment. Also in this scenario, the user performs
different activities such as reading a book, working in
a laboratory, sitting in front of a computer, etc.

Figure 2 shows some examples of the acquired scenes among
different days. Each video has been manually segmented to
define the blocks that have to be detected in the intraflow
analysis. Moreover, the segments have been labeled with
the scene ID to build the Ground Truth for the between
video analysis. This Ground Truth is used to evaluate the
performances of the framework. The used egocentric videos,
as well as the Ground Truth, are available at the following
URL: http://iplab.dmi.unict.it/recfextension.

4. EXPERIMENTAL RESULTS
In this section we report the results obtained with the

proposed segmentation and between analysis on the afore-
mentioned dataset.

4.1 Segmentation Results
Table 1 shows the performances of the proposed segmen-

tation method. We compared our solution with respect to
the method presented in [26]. For each method we computed
the quality of the segmentation as the percentage of the well
classified frames (Q), the number of detected scenes (S) and
the computation time (T). In comparison to [26], we observe
strong improvements up to over 16% for segmentation qual-
ity (results at fifth row in Table 1) obtained by just applying
the segmentation approach explained in section 2.1.3. Fur-
thermore, the application of the segmentation refinements
provides improvements up to 30% in segmentation quality

(results at third row in Table 1). Considering the mean
performaces (last row in Table 1) our system achieves an
improvement of over 9% points without segmentation re-
finements, with over 16% of margin after the segmentation
refinements. The proposed method also achieves up to over
than 19 minutes in computation time saving (first row in
Table 1) and there is an average computation time saving of
about 17 minutes with respect to [26].

Furthermore, Table 1 shows that the application of the
Scene Coherence and the Duration Filtering criteria used in
the segmentation refinement step allows to detect the correct
number of scenes (S). Thus, the application of such simple
heuristics, allows to define the exact number of periods of
time related to the user’s activities, avoiding to select worth-
less blocks. In sum, as shown in the segmentation example
in Figure 4, and as demosntrated by the results reported in
Table 1, the proposed system is robust for the segmentation
of egocentric videos, and provides high performances with
low computational time with respect to [26].

4.2 Between Video Analysis Results
In our experiments, all the segmented blocks among the

considered days have been correctly matched by the pro-
posed approach for both scenarios. This means that all
the segments have been correctly linked among the differ-
ent days. Figure 6 shows two timelines related to the videos
of the scenario Home Day. The first timeline shows the
Ground Truth labeling. In the timeline the black blocks in-
dicate the transition intervals (to be rejected). The second
timeline shows the result obtained by our framework. In
this case, the black blocks indicate the frames rejected by
the algorithm. In order to better asses the results obtained
by the proposed system, the reader can perform a visual
inspection of the videos produced by our approach at the
following URL:
http://iplab.dmi.unict.it/recfextension.
Through the web interface the different segments can be ex-
plored. We also tested the between analysis approach by
using the color histogram and the distance function used
in [26]. When the system uses such approach there is a high
variance in the obtained distance values even if there isn’t
any segmentation block to be matched among videos. This
causes the matching between uncorrelated blocks and hence
errors.

5. POPULARITY ESTIMATION
Considering the improvements achieved by the proposed

method on both intraflow and between flow analysis in the
context of egocentric videos, we have tested the approach
to solve the popularity estimation problem defined in [26].
Specifically we have used the proposed framework to infer
the popularity of the scenes. The popularity of the scene in
a instant of time depends on how many people are looking at
that scene, and therefore can be obtained though the “visual
consensus” among multiple video streams acquired by dif-
ferent mobile devices [26]. The proposed approach has been
tested for popularity estimation considering the dataset in-
troduced in [26] in order to perform a fair comparison with
the state of the art approaches for this problem [16] [26].
We have used the clustering approach of [26]. Differently
than [26] we have used the proposed CNN features for clus-
tering after processing the videos with the intraflow analysis
proposed in this paper.
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Table 1: Intraflow performances for wearable devices, computed using [26] and the proposed approach. Each
test is evaluated considering the accuracy of the segmentation (Q), the computation time (T) and the number
of the scenes detected by the algorithm (S). The accuracy is measured as the percentage of well classified
frames with respect to the Ground Truth. The measured time includes the feature extraction process.

Intraflow proposed in [26] Proposed Intraflow Proposed Interflow Approach
Approach with Segmentation Refinement

Video Scenes Q S T Q S Q S T
HomeDay1 3 62,5% 8 20’45” 77,5% 4 92,5% 3 1’23”
HomeDay2 3 71,6% 3 20’18” 80,3% 4 94,5% 3 1’46”
HomeDay3 3 64,3% 5 19’03” 79,7% 5 94,3% 3 1’21”

WorkingDay1 4 95,7% 5 16’16’ 98,4% 5 99,5% 4 1’22”
WorkingDay2 4 82,5% 5 15’15” 98,9% 5 100% 4 1’08”
WorkingDay3 5 98,7% 6 19’02” 99,2% 6 99,4% 5 1’29”

Average 79,2% 18’27” 89,0% 96,7% 1’25”

Table 2: Experimental results on the popularity es-
timation problem defined in [26]. The proposed ap-
proach is compared with respect to the popularity
estimation method in [26].

[26] Proposed method
Dataset dev Pa/Pr Pg/Pr Po/Pr Pa/Pr Pg/Pr Po/Pr
Foosball 4 1,02 1 0,023 1 1 0
Meeting 2 1,01 0,99 0,020 0,99 0,99 0,018
Meeting 4 0,99 0,95 0,033 0,93 0,93 0
Meeting 5 0,89 0,76 0,131 0,70 0,70 0,006
SAgata 7 1,05 1 0,050 0,99 0,99 0

To evaluate the performances of the compared methods,
we compute three measures. Two of them are measures
proposed in [26]. Specifically, for each clustering step we
compute:

• P r: ground truth popularity score (number of cam-
eras looking at the most popular scene) obtained from
manual labelling;

• P a: popularity score computed by the algorithm (num-
ber of the elements in the popular cluster);

• P g: number of correct videos in the popular cluster
(inliers).

From the above scores, the weighted mean of the ratios
Pa/Pr and Pg/Pr over all the clustering steps are computed
in [26]. Thus, the ratio Pa/Pr provides a score for the popu-
larty estimation, whereas the ratio Pg/Pr assesses the visual
content of the videos in the popular cluster. These two scores
only focus on the popularity estimation and the number of
inliers in the most popular cluster. Since the aim is to in-
fer the popularity of the scenes, it is useful to look also at
the number of outliers in the most popular cluster. In fact,
the results reported in [26] show that when the algorithm
works with a low number of input videos, the most popu-
lar cluster is sometimes affected by outliers. These errors
could affect the popularity estimation of the clusters and,
therefore, the final output. Thus, we introduced a third
evaluation measure that takes into account the number of
outliers in the most popular cluster. Let Po be the number
of wrong videos in the popular cluster (outliers). From this
score, we compute the weighted mean of the ratio Po/Pr

over all the clustering steps, where the weights are given
by the length of the segmented blocks (i.e., the weights are
computed as suggested in [26]). This value can be consid-
ered as a percentage of the presence of outliers in the most

popular cluster inferred by the system. The aim is to have
this value as lower as possible.

Table 2 shows the results of the popularity estimation ob-
tained by considering the proposed approach in compari-
son with respect to [26]. For each test we computed the
three aforementioned performance measures. The first col-
umn shows the results obtained by the approach proposed
in [26], which performs a SIFT based intraflow analysis and
exploits a color histogram representation during the clus-
tering phase. Although the method in [26] achieves good
performance in terms of popularity estimation and inliers
rate, the measure Po/Pr demonstrate that it suffers from
the prencence of outliers in the most popular cluster. This
means that the popularity ratio (Pa/Pr) is affected by the
presence of some outliers in the most popular cluster. In-
deed, in most cases the Pa/Pr value is higher than 1 and
Po/Pr is greater than 0.

The second column is related to the results obtained with
the proposed approach. We obtained values of popularity
estimation and inliers rate comparable with [26]. In this
case, the values of popularity score are all lower than 1, this
means that sometimes the clustering approach lost some in-
liers. But it worth to notice that for all the experiments the
outlier ratio Po/Pr is very close to zero and lower that the
values obtained by [26]. This means that the most popular
cluster obtained by the proposed approach is not affected
by outliers, and this assure us that the output video belongs
to the most popular scene. By performing a visual assess-
ment of the results, we observed that using the proposed
CNN features in the clustering phase involves a fine-grained
clustering, which better isolates the input videos during the
transitions between two scenes or during a noise time inter-
val. This behaviour is not observed in the outputs obtained
by [26]. Using the color histogram indeed, the system defines
a limited number of clusters that are, therefore, affected by
outliers. Some examples about this behaviour are shown
in Figure 7 and Figure 8. In these figures, each column
shows the frames taken from the considered devices at the
same instant. The border of each frame identifies the clus-
ter. The first column of each Figure shows the result of the
proposed approach, and the second column shows the re-
sult of the method proposed in [26]. Specifically Figure 7
shows an example of clustering performed by the compared
approaches during the analysis of the scenario Foosball [26].
In this example, the first and the third devices are viewing
the same scene (the library), the second device is viewing
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the sofa, whereas the fourth device is performing a transi-
tion between the two scenes. In such case, the proposed
method creates a different cluster for the device that is per-
forming the transition, whereas the method proposed in [26]
includes the scene in the same cluster of the second device.
Figure 8 shows an example of the popularity clustering per-
formed during the analysis of the scenario Meeting [26]. In
this case, the first four devices are viewing the same scene,
but all the approaches fail to insert the second frame in the
popular cluster due to the huge difference in scale. This ex-
ample shows that the method in [26] creates a cluster that
includes the second and the fifth device, despite they are
viewing two different scenes, whereas the proposed method
can distinguish the second image from the fifth one. This
demonstrates that the CNN features have a more discrimi-
native power than the color histograms used in [26].

Besides the improvement in terms of performance, the ex-
ploitation of the CNN representation provides also an out-
standing reduction of the computation time. In fact, the
time needed to extract a color histogram as suggested in [26]
is about 1.5 seconds, whereas the time needed to extract the
CNN feature is about 0.08 seconds. Regarding the popu-
larity estimation experiment, the proposed intraflow anal-
ysis achieves similar segmentation results compared to the
SIFT based approach [26]. However, as in the wearable do-
main, the proposed segmentation method strongly outper-
forms [26] when the system have to deal with noise (e.g.,
tremors).

6. CONCLUSIONS AND FUTURE WORKS
This work propose a framework to segment and orga-

nize a set of egocentric videos for daily living monitoring.
We built our system taking inspiration from the RECfu-
sion approach [26]. The experimental results show that
the proposed system outperforms [26] in terms of segmen-
tation accuracy and computational costs, both on wearable
and mobile video datasets. Furthermore, we tested our ap-
proach to solve the popularity estimation problem defined
in [26] obtaining an improvement in terms of outliers rejec-
tion. Future works can consider an extension of the sys-
tem to perform recognition of contexts from egocentric im-
ages [7] [8] [11] [33] and to recognize the activities performed
by the user [9], after the unsupervised organization.
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[13] Y. Gaëstel, S. Karaman, R. Megret, O.-F. Cherifa,
T. Francoise, B.-P. Jenny, and J.-F. Dartigues.
Autonomy at home and early diagnosis in alzheimer’s
disease: Utility of video indexing applied to clinical
issues, the immed project. In Alzheimer’s Association
International Conference on Alzheimer’s Disease
(AAICAD) 2011, page S245.

[14] C. Gurrin, A. F. Smeaton, and A. R. Doherty.
Lifelogging: Personal big data. Foundations and trends
in information retrieval, 8(1):1–125, 2014.

[15] J. Hosang, M. Omran, R. Benenson, and B. Schiele.
Taking a deeper look at pedestrians. In The IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[16] Y. Hoshen, G. Ben-Artzi, and S. Peleg. Wisdom of the
crowd in egocentric video curation. In Proceedings of
the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 573–579, 2014.

[17] T. Kanade. Quality of life technology [scanning the
issue]. Proceedings of the IEEE, 100(8):2394–2396,
2012.

[18] N. Kapur, E. L. Glisky, and B. A. Wilson. External
memory aids and computers in memory rehabilitation.
The essential handbook of memory disorders for
clinicians, pages 301–321, 2004.

[19] S. Karaman, J. Benois-Pineau, V. Dovgalecs,
R. Mégret, J. Pinquier, R. André-Obrecht, Y. Gaëstel,
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