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ABSTRACT
Often, a data object described by many features can be de-
composed as multi-modalities, which always provide comple-
mentary information to each other. In this paper, we study
subspace clustering for multi-modal data by effectively ex-
ploiting data correlation consensus across modalities, while
keeping individual modalities well encapsulated. Our tech-
nique can yield a more ideal data similarity matrix, which
encodes strong data correlations for the cross-modal data
objects in the same subspace.
To these ends, we propose a novel angular based regular-

izer coupled with our objective function, which is aided by
trace lasso and minimized to yield sparse representation vec-
tors encoding data correlations in multiple modalities. As
a result, the sparse code vectors of the same cross-modal
data have small angular difference so as to achieve the data
correlation consensus simultaneously. This can generate a
compatible data similarity matrix for multi-modal data. The
final subspace clustering result is obtained by applying spec-
tral clustering on such data similarity matrix.

Categories and Subject Descriptors
I.5.3 [Clustering]: Similarity measures

Keywords
Correlation Consensus; Angular based Regularizer; Multi-
modal Data

1. INTRODUCTION
The nature of visual data, in practice, is multi-modality,

e.g., an image can be described by a color modality or a
shape modality. These multiple modalities often encode
compatible and complementary information, which natu-
rally motivates one to leverage them to obtain better perfor-
mance than the result yielded by single modality, or simply
concatenating all modalities into a monolithic one.
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Among the studies of leveraging complementary infor-
mation from multi-modal data, unsupervised clustering on
multi-modal data is the most practical, due to the largely
available unlabeled multi-modal data in real life. As shown
in [6, 14, 13], data objects with high dimensions are always
drawn from a union of subspaces, motivating numerous ap-
proaches of subspace clustering for multi-modal data.

Kumar et al. [10] presented a co-training [4, 16] based
method to achieve a compatible multi-view similarity ma-
trix in eigen-subspaces spanned by Laplacian matrix, such
that the similarity matrix in one view is affected by that
from another view. However, they simply calculate similar-
ity matrix in a K-nearest neighbors manner, which degrades
the performance when data points are nearby the intersec-
tion of two distinction subspaces. That is, the neighbor-
hoods of a data point may cover the data points from dif-
ferent subspaces. The same problem holds in [11] as well.
Chaudhuri et al. [5] proposed to project the multi-modal
data into one common subspace, then apply the clustering
algorithm, e.g., K-means, to yield the subspace clustering
results. Such method, however, is sensitive to data ini-
tialization. Specifically, it requires the data initialization
strictly follow the Gaussian distribution while keeping dif-
ferent groups of data objects separated. Besides, the num-
ber of dimension for the projected subspace needs to be
known in advance. Matrix factorization is also utilized to
perform subspace clustering for multi-modal data, such as
[1, 9], where the essential idea is to first concatenate the fea-
tures of heterogeneous modalities into a single-long feature
representation, then non-negative matrix factorization is ap-
plied to get subspace clustering results. One limitation of
such one-combo-fits-all strategy is that the data correlation
information in each original view-specific feature space is
not well exploited. To combat this limitation, Liu et al. [12]
proposed a joint non-negative matrix factorization paradigm
on each individual modality to compute distinct coefficient
matrices, which are then regularized towards a common con-
sensus that represents the clustering structure shared by all
modalities. This method, however, suffers from the draw-
back that the dimension number of latent reduced subspace
needs to be manually parameterized, rather than automati-
cally.

In light of above raised limitations, we propose a novel
technique to address these limitations. The basic idea is we
learn a data similarity matrix by aggregating data correla-
tions from multiple modalities, and these correlations are
consensus to each other whilst their individualities are well-
encapsulated. Then the spectral clustering is applied to this
data similarity matrix to obtain the subspace clustering re-
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sults. Specifically, we propose a novel angular based regular-
izer to regularize our objective function, which is facilitated
by trace lasso through its fantastic grouping effect in sub-
spaces [13]. The objective function is minimized to sort out
data correlations, encoded as the sparse representation vec-
tors for data points under each modality. Meanwhile, sparse
code vectors towards the same data object across modalities
exhibit a small-angled difference.
The intuition of minimizing the angular based regularizer

comes from the fact that if two distinct sparse code vectors
encode the similar data correlations, then there will be a
small angle between them. Now a natural question arises:
whether the two distinct sparse codes of the same data ob-
ject across modalities are similar? The answer is “yes”. A
common assumption holds in most multi-view based clus-
tering methods, e.g., [12], is that the same data set under
different modalities should characterize the similar cluster
structure, and clustering is largely determined by the data
correlations representing similarities under various modali-
ties. This observation has been validated by extensive ex-
periments on real-world image datasets.
Our major contributions are summarized as follows.

• To the best of our knowledge, we are the first to con-
sider the application of trace lasso on subspace clus-
tering (See Section 2.2) for multi-modal data.

• To exploit the data correlation consensus across modal-
ities, we propose a novel angular based regularizer over
the data sparse codes in multi-modalities (See Section
2.3). The objective function is minimized and regular-
ized by the new regularizer to achieve the goal.

• An efficient optimizing process is designed to optimize
the proposed objective function (See Section 3). Ex-
periments on real-world image datasets are conducted
to demonstrate the effectiveness of our algorithm.

2. PROPOSED TECHNIQUE

2.1 Problem Definition
Let X = {xk}nk=1 be data point set with n data points.
Suppose each data object has V modalities, without loss of
generality, for ith modality, Xi = {xi

k}nk=1, (i = 1, . . . , V ),
xi
k is the representation of xk under ith modality, and sik

is the sparse representation vector of xi
k based on Xi. The

trace lasso [8] is defined as ∥XiDiag(sik)∥∗, where Diag(sik)
represents diagonal matrix with all diagonal elements cor-
responding to the entries of sik, ∥A∥∗ denotes the nuclear
norm (the sum of all the singular value) of a matrix A. The
norms of ∥a∥1 and ∥a∥2 denote the ℓ1-norm and ℓ2-norm of
a vector a.
With the above notations defined, we aim to learn the

sparse representations sik of each xi
k based onXi (i = 1, . . . , V ).

These sparse codes are then used to construct a compati-
ble similarity matrix W for multi-modal data. Finally, the
spectral clustering is applied upon W to perform subspace
clustering for multi-modal data.

2.2 Modeling data correlations in single modal-
ity

We propose to deploy trace lasso to model data correla-
tions. That is, high correlations hold for the data points
from the same subspace, no (weak) correlations for those

from distinct subspaces. As shown in [13], trace lasso is more
adaptive than ℓ1 or ℓ2 norms, and it is equal to ℓ1-norm or ℓ2-
norm if data points are uncorrelated (orthogonal) or highly
correlated. Thereby, we have ∥sik∥2 6 ∥XiDiag(sik)∥∗ 6
∥sik∥1.The sparse representation sik of xi

k can well reflects
the correlations between xi

k and other data points under ith

modality. Thus, we formulate the problem of learning sparse
code vectors of each data point in ith modality as:

min
si
k

1

2
∥xi

k −Xi
ks

i
k∥22 + λ∥Xi

kDiag(sik)∥∗, (1)

where Xi
k represents the data set with xi

k excluded. The pa-
rameter λ controls the effect from trace lasso term. Through
trace lasso, sik is composed of approximately the equal coef-
ficients yet large weights on a few data points, implying their
strong correlations with xi

k. Meanwhile, the coefficients of
data having no (weak) correlation with xi

k are set to be 0.
The claims also apply on jth(j ̸= i) modality.

Eq. (1) is made on single modality. How to extend it to the
context of multi-modalities? The answer, however, is non-
trivial partially due to the fact that many multi-view learn-
ing methods, e.g., [15], are aided by common label spaces
across modalities. Hence, without label information, it be-
comes more challenging to exploit their consensus property
shared by modalities. To this end, below, we propose to
exploit correlation consensus across modalities.

2.3 Exploiting correlation consensus in multi-
ple modalities

Inspired by multi-view clustering [12]: the true underlying
clustering would assign corresponding data objects across
modalities into the same cluster, we propose to exploit the
data correlation consensus w.r.t. modalities, which critically
determines the subspace clustering on multi-modal data.
Basic idea: Why angular based similarity? We are
expected to effectively exploit the correlations across modal-
ities but keep their individuality well-encapsulated. The
question is how to quantify the similarity between the data
correlations from different modalities? One may directly use
a distance metric, e.g., Euclidean distance, to measure data
objects across modalities. It is, however, infeasible because
data points in different views might not be comparable in the
same scale. Fortunately, the sparse code of one point, e.g.,
sik for xi

k, can well reflect the correlations between xi
k and

other data points under ith modality. Another nice property
is that sparse codes for different modalities have the same
dimension. These properties drive us to quantify the an-
gular based similarity over sparse codes of multi-modal
data. This is equivalent to quantifying the data correlations
inX under different modalities. This enables us to propose a
novel regularizer term, π(sk), to encode the cosine similarity
among sik regarding xi

k for multi-modality.
Mathematically, π(sk) can be defined as

π(sk) = −
V∑

i,j ̸=i

(sik)
T · sjk

∥sik∥2∥s
j
k∥2

. (2)

The objective function in Eq. (3) needs to be minimized,
thus, we add minus sign “−” in Eq. (2).
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Combining Eq. (1) with Eq. (2), we confirm our objective
function as

min
si
k

V∑
i

βi

(
1

2
∥xi

k −Xi
ks

i
k∥22 + λ∥Xi

kDiag(sik)∥∗
)
+ γπ(sk),

(3)
where the parameter βi controls the contribution from ith

modality and
∑V

i=1 βi = 1. γ is a weight parameter on π(sk),
which is able to correlate modalities by essentially regulating
the structural consensus over dictionaries. In summary, we
aim to learn sparse codes sik of xi

k for each modality i by
optimizing Eq. (3), which will be discussed in Section 3.

3. OPTIMIZATION STRATEGY
The difficulty of optimizing Eq. (3) lies in its non-joint-

convex for M i
k and sik, along with non-smoothness for trace

lasso. We alternatively optimize each variable by fixing oth-
ers. We initialize each sik by optimizing the Eq. (1) via
Alternating Direction Method (ADM) in [13], by setting λ
to be 0.15. We derive an equivalent variational formulation
of the trace norm [2]. Assume M ∈ Rn×m, then the trace
norm of M is equal to

∥M∥∗ =
1

2
inf
S≽0

tr(MTS−1M) + tr(S), (4)

where the infimum is achieved when S = (MMT )1/2, then
we recast Eq. (3) to be

min
si
k

inf
Mi

k
≽0

V∑
i

βi

2
∥xi

k −Xi
ks

i
k∥

2
2

+
λβi

2

(
tr

(
(Si

k)
2(Xi

k)
T (M i

k)
−1Xi

k

)
+ tr(M i

k)
)
+ γπ(sk),

(5)

where Si
k = Diag(sik).

Updating M i
k with fixed sik. The optimization problem

in Eq. (5) is convex in M i
k. We conduct coordinate descent

procedure to optimize M i
k for each xi

k. Given sik, we have
the closed form solution of M i

k as

M i
k = (Xi

k(S
i
k)

2(Xi
k)

T )1/2 (6)

Updating sik with fixed M i
k. We propose to adopt GIST

[7] algorithm to optimize sik, due to its effectiveness in ad-
dressing non-convex and non-smoothness optimization prob-
lems, and this strategy is well converged as proved by [7].
Denote by F (sik) the objective function over sik, that is,

F (sik) =
βi

2
∥xi

k −Xi
ks

i
k∥22 +

λβi

2
tr

(
(Si

k)
2(Xi

k)
T (M i

k)
−1Xi

k

)
− γ

V∑
l̸=i

(slk)
T · sjk

∥slk∥2∥s
j
k∥2

.

Let sik(j) be the jth entry of sik ∈ Rm, and sik ≥ 0 (each
entry is large or equal to 0). It is common to set ∥sik∥2 = 1
for any i, then the subgradient of F (sik) at s

i
k(j) is

ηj =
∂F (sik)

∂sik(j)
= βiX

i
k(·, j)

T (xi
k −

∑
l̸=j

Xi
k(·, l)s

i
k(l)−Xi

k(·, j)s
i
k(j))

+ λβis
i
k(j)Ki(j, j)− γ

V∑
l ̸=i

slk(j),

where Ki = (Xi
k)

T (M i
k)

−1Xi
k, X

i
k(·, j) denotes the jth col-

umn of Xi
k. We assume the sub-gradient of F (sik) at point

sik can be computed as g = (η1, . . . , ηm). Consider a series of
updated sparse codes sik[t] and the associated subgradients
g[t] (1 ≤ t ≤ p) at time stamp t, then we have

F (sik[t]) ≥ Fp(s
i
k[t]) = max

1≤t≤p
{F (sik[t−1])+(sik[t]−sik[t−1])g[t−1]}.

(7)

Given the previous prox-center point sik[t−1], it seeks the
next potential candidate point by minimizing the piecewise
linear lower bound:

sik[t] = argmin
∥si

k
∥=1,si

k
≥0

Fp(s
i
k) +

ωp

2
∥sik[t]− sik[t− 1]∥2. (8)

We stop the iteration and report the optimal sik if the ap-
proximation error residual for sik, measured by F (sik[t]) −
F (sik[t − 1]), is less than a predefined threshold ϵ (In our
experiments, ϵ is set to be 10−2). Otherwise, we conduct a
line search between sik[t − 1] and sik[t] to reproduce a new
candidate and repeat the above process until convergence.
We follow [3] to initialize and update the step size ωp.
Remark. The convergence for optimizing Eq. (3) is deter-
mined by optimizing sik, as M

i
k enjoys a closed form at each

step. It is convergent for updating sik due to the convergence
property of GIST algorithm [7]. We calculate the similarity
between kth and lth data objects under ith modality, such

as Wi(k, l) =
sik(l)+sil(k)

2
. The final affinity matrix regarding

all modalities is calculated as W =
∑V

i Wi, which is further
utilized for subspace clustering.

4. EXPERIMENTAL RESULTS
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Figure 1: (a) The values of consensus ratios versus num-

ber of training data and thresholds for our method. (b)

The evaluation on cluster qualities of different methods.

4.1 Datasets and Competitors
Datasets. Three real world image datasets are used in

our experiment.
• UCI Handwritten Digit Dataset 1: This hand-

written digits (0-9) dataset consists of 2,000 examples. We
construct two modalities, with first modality being the 76
Fourier coefficients and second modality being the 240 pixel
averages in 2×3 windows.

• CMU PIE Face Database 2: This dataset contains
68 subjects with 41,368 face images. Each image is 32×32,
and we use four kinds of features as four modalities: LBP
(256-dim), HOG (100-dim), and grey levels (128-dim).

• PASCAL VOC 2010 Database: This dataset con-
tains 10,103 images from 20 classes. We adopt four types of

1http://archive.ics.uci.edu/ml/datasets.html
2http://www.ri.cmu.edu/projects/project 418.html
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Method
Accuracy(%) Normalized Mutual Information(%)

UCI CMU-PIE PASCAL UCI CMU-PIE PASCAL
BSV-SSC 69.028±0.010 70.255±0.013 62.381±0.009 52.622±0.010 51.457±0.009 56.403±0.009
ConcatSSC 70.832±0.007 65.735±0.011 60.228±0.006 54.055±0.011 48.829±0.008 51.520±0.009

CCA 76.114±0.004 77.482±0.006 70.010±0.006 61.671±0.007 60.227±0.006 58.731±0.008
Co-train-SC 84.642±0.002 83.070±0.007 76.125±0.004 77.011±0.005 71.420±0.004 66.592±0.006
MultiNMF 88.014±0.003 86.807±0.004 80.227±0.007 80.257±0.010 77.561±0.011 69.882±0.011

Ours 93.149±0.001 90.006±0.003 87.540±0.004 86.553±0.009 82.716±0.010 74.660±0.010

Table 1: Clustering performance on three real image datasets.

features corresponding four modalities: color moments (255-
dim), color histogram (64-dim), edge distribution (73-dim),
and wavelet texture (128-dim).
We consider five algorithms as competitors in our ex-

periments: (1) The best single view on Sparse Subspace
Clustering (BSV-SSC), (2) Concatenating the features of
each view on Sparse Subspace Clustering (ConcatSSC),
(3) multi-view clustering via Canonical Correlation Analysis
(CCA) [5], (4) Co-training based multi-view Spectral Clus-
tering (Co-train-SC) [10], (5) Multi-view NMF (MultiNMF)
[12]. Please refer to the section 1 for the discussions on
[5], [10] and [12]. We omit the details here due to limited
spaces. The clustering results are evaluated by validating
the obtained label of each data point with the label provided
by the dataset. Two widely adopted metrics, the accuracy
(AC) and normalized mutual information (NMI) are used
to measure the clustering performance. Please refer to [10]
for detailed definitions. The sparsity parameter λ is set 0.15
in all experiments by cross-validation, βi for each modality
equally to be 1

V
. Parameter γ, in Eq. (3), controlling angular

based regularization is set by grid search on {0.1, . . . , 0.9}.

4.2 Clustering results
Table 1 shows the clustering performances of different al-

gorithms on the three datasets. We can observe that our
algorithm outperforms the second best counterpart Mult-
iNMF by a margin of 5.8%(7.8%) on UCI, 3.7%(6.6%) on
CMU-PIE, 9.1%(6.8%) on PASCAL, in terms of accuracy(NMI).
One reason is that our method can automatically learn a
good similarity matrix by aggregating consensus data cor-
relations across modalities instead of manually setting the
dimension number of reduced subspaces. Moreover, the im-
provement gain is significantly higher between our method
and other alternatives, which areCCA,Co-train-SC,Con-
catSSC, and BSV-SSC.
We demonstrate the stableness and robustness by compar-

ing withCCA, andMultiNMF. Both need to manually set
the dimension number of reduced subspaces, i.e., number of
clusters. To evaluate the quality of clusters {Ul}Kl=1, we use
Davies-Bouldin Index (DBI) to measure the uniqueness of
clusters w.r.t. the unified similarity measure.

DBI({Ul}Kl=1) =
1

K

K∑
i=1

max
j ̸=i

d(ci, cj)

σi + σj
, (9)

where cx is the centroid of Ux, d(ci, cj) is the similarity be-
tween ci and cj , σx is the average similarity of vertices in
Ux to cx. Fig.1 (b) shows the DBI comparison on CMU-PIE
with various K values. Our method has the lowest DBI,
while other methods have higher DBIs. This indicates that
our parameter-free algorithm can discover true clusterings
more robustly through adaptively correlating data consen-
sus across modalities. As a comparison, manually set up

the values of K makes CCA and MultiNMF sensitive to
parameters and less effective in clustering quality.

4.3 Consensus study
To show the correlation consensus propertied by angular

term π(sk), we conduct another experiment on PASCAL
VOC 2010 wherein a training set X is composed of ran-
domly selected images numbering from 50 to 450. The rest
are taken as test samples. The consensus threshold is T,
whose value is discretely set from 0.73 to 0.94. We em-
ploy the consensus ratio as the evaluation metric, defined
as calculating the number of test samples whose values of
Eq. (2) are larger or equal to T. The results are shown in
Fig.1 (a). It can be seen that as more training samples get
involved, we can have larger values of consensus ratio, im-
plying learned sparse codes are more consensus. However,
the consensus ratios naturally decrease when cosine values
become higher, implying a more restrict consensus. Overall,
our method shows a good performance even with a relatively
small training set and large values of T.

5. CONCLUSIONS
In this paper, we propose a novel approach towards sub-

space clustering on multi-modal data. Unlike existing meth-
ods, our proposed method can well achieve the consensus
of data correlations across modalities, encoded by learned
sparse code vectors w.r.t. each modality. This method is
able to automatically uncover true underlying clusters. Ex-
perimental results validate the effectiveness of our method.
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