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ABSTRACT 
Emotion recognition has been an active research area with both 
wide applications and big challenges. This paper presents our 
effort for the Audio/Visual Emotion Challenge (AVEC2015), 
whose goal is to explore utilizing audio, visual and physiological 
signals to continuously predict the value of the emotion 
dimensions (arousal and valence). Our system applies the 
Recurrent Neural Networks (RNN) to model temporal 
information. We explore various aspects to improve the prediction 
performance including: the dominant modalities for arousal and 
valence prediction, duration of features, novel loss functions, 
directions of Long Short Term Memory (LSTM), multi-task 
learning, different structures for early feature fusion and late 
fusion. Best settings are chosen according to the performance on 
the development set. Competitive experimental results compared 
with the baseline show the effectiveness of the proposed methods. 

Categories and Subject Descriptors 
I.5.4 [Pattern Recognition Applications]: computer vision, signal 
processing; J.4 [Social and Behavioral Sciences]: Psychology, 
sociology. 

General Terms 
Theory 

Keywords 
Affective Computing, Emotion Recognition, Recurrent Neural 
Network 

1. INTRODUCTION 
Automatic emotion recognition has been an active research area in 
past years, which is of great interest for human-computer 
interaction. It has wide application areas ranging from computer 
tutoring [1] to mental health diagnoses [2]. 

There are three major emotion computing models according to 
theories in psychology research [3]: discrete theory, dimensional 
theory, and appraisal theory. Discrete theory describes an emotion 
state as discrete labels such as “sad”, “happy” etc. It is intuitive 

and simple but cannot express complex affective states. 
Dimensional theory considers an emotion state as a point in a 
continuous space. Hence, dimensional theory can model subtle, 
complicated, and continuous affective behavior. Typically an 
emotion state is covered by three dimensions: arousal (indicating 
the level of affective activation), valence (a measure of pleasure) 
and dominance (a measure of power or control). However, it is 
arguable that three dimensions are enough for describing so many 
emotion states. In addition, getting high quality dimensional labels 
is difficult. Appraisal theory attempts to detail the mental 
processes underlying the elicitation of emotions. It views an 
emotion state as a set of stimulus evaluation checks. But it is still 
an open research problem on how to use it. Most of the past 
research has focused on discrete emotion recognition [4]. 
However, more recently, affective computing researches are 
shifting towards dimensional emotion analysis [5-7] for better 
understanding of human emotions. 

A broad range of modalities can express emotion information. The 
common cues include speech [4], text [8], facial expression [9], 
gesture [10], head movement, body movement/posture [11], and 
so on. Numerous findings in psychophysiology also suggest that 
there exists a correlation between bio-signals and affective states 
[12]. Combining different modalities seems to always improve 
emotion recognition performance. Most past works have fusion 
models on speech and text [13], audio and visual [14]. Results on 
fusion of audio, visual and physiological signals have not been 
well established.  

The major issues for fusion of different modalities are: (i) when to 
integrate the modalities (i.e., at what abstraction level), and (ii) 
how to integrate the modalities (i.e., fusion methods) [15]. 
Decision level fusion assumes independence of different 
modalities. Feature level fusion assumes a strict time synchrony 
between the modalities and tends not to generalize well when the 
modalities substantially differ in temporal characteristics. 
Therefore, synchronization among different features becomes 
very important. The common fusion method is to ensemble 
multiple models such as random forest, AdaBoost, gradient boost 
regression tree and so on. 

For dimensional emotion recognition, temporal information is 
very useful because the target dimensional values are continuous 
and have short time gap between two adjacent predictions. In this 
paper, we use temporal models, recurrent neural networks, to 
predict continuous dimensional values and explore many 
variations to improve performance. The major contributions 
investigated in this study can be listed as follows: (i) we use more 
powerful recurrent neural network models such as LSTM to 
capture contextual information (ii) we investigate features from 
audio, visual and physiology modalities, and find the dominant 
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feature or feature combination for each dimension prediction (iii) 
we explore different LSTM structures and more effective loss 
functions to optimize the prediction performance. The 
performance on the development set is significantly improved 
over the original baseline, which shows the effectiveness of our 
methods. 

The paper is structured as follows. Section 2 introduces related 
works in dimensional emotion recognition. Section 3 describes the 
dataset used in AVEC2015 challenge. Section 4 presents the 
proposed approaches and section 5 describes our extensive 
experimental results. Finally, section 6 concludes the paper. 

2. RELATED WORK 
In AVEC2014 challenge, the second place winner of the fully 
continuous sub-challenge [7] emphasizes temporal dynamic 
information using Deep Belief Network (DBN) with temporal 
pooling and multimodal-temporal fusion at the decision level, 
which demonstrates that high level temporal fusion can improve 
performance. The work also shows that the time delay between 
recordings and labels should be carefully processed.  

Long Short Term Memory Recurrent Neural Networks (LSTM-
RNN), one of the state-of-art sequence modeling techniques, has 
also been applied in dimensional emotion recognition. Wöllmer et 
al. [16] presented a fully automatic audiovisual recognition 
approach based on LSTM-RNN modeling of word-level audio and 
visual features. Compared to other models such as Support Vector 
Machine (SVM) and Conditional Random Field (CRF), LSTM 
achieved a higher prediction quality due to its capability of 
modelling long range time dependencies and decreasing the time 
delay. In AVEC2015 challenge, our experiments also demonstrate 
that LSTM outperforms traditional non-temporal models, so we 
focus on our investigation using the LSTM-RNN in this paper. 

Meanwhile, other techniques based on deep neural networks 
(DNN) have been successfully applied in extracting emotional 
related features. For speech emotion recognition, work in [17] 
adds gender information to train auto-encoders and extracts the 
hidden layer as audio features and improves the unweighted 
emotion recognition accuracy. In work [18], convolutional neural 
networks (CNN) are applied in speech emotion task with novel 
loss functions to extract features. For facial expression recognition, 
the best result in the Emotion Challenge in the Wild 2013 is 
achieved by using CNN [19]. It has been proved that DNN can 
generate more powerful features. 

Multi-task learning may also improve dimensional emotion 
prediction performance due to the correlation between arousal and 
valence. In work [20], two types of multi-task learning are 
introduced: one by learning each rater’s individual track and the 
other by learning both dimensions simultaneously. Although it did 
not help for the audio feature based system, it improved the visual 
feature based system performance significantly. 

Modalities fusion is another important issue in emotion 
recognition. Recent works [21] have studied synchronization 
between multimodal cues to support feature-level fusion and 
report greater overall accuracy compared to decision-level fusion. 

Previous studies [20] also provide some common insights: 1) It’s 
highly agreed that arousal is easier learned than valence. One 
reason is that the perception of arousal is more universal than is 
the perception of valence. 2) Audio modality is suitable for 
arousal prediction, but much less accurate for valence prediction. 
3) Valence appears to be more stable than arousal using facial 

expression modality. Bio-signals are also good for valence 
assessment. 

3. DATASET 
The AVEC2015 challenge is evaluated on a subset of the 
RECOLA dataset [22], a multimodal corpus of remote and 
collaborative affective interactions. Subjects were divided into 
pairs to resolve a collaborative task (“winter survival task”), and 
data from different modalities such as audio, video, electro-
cardiogram (ECG) and electro-dermal activity (EDA) were 
collected for each participant during their interactions. The data 
provided in the challenge consist of the first five minutes of the 27 
speakers, which are unsegmented, non-prototypical and non-
preselected. Emotional dimensions (arousal and valence) are 
annotated by 6 French speakers in scale [-1, 1] for every 40ms. 
Gold standard is calculated using a specific normalization 
technique as reported in [20]. Finally, the dataset is equally split 
into three partitions: train, development and test, with each 
partition containing 9 different speakers. . 

The concordance correlation coefficient (CCC) works as the 
evaluation metric for this challenge, which is defined as:  

௖ߩ ൌ
ଶఘఙೣఙ೤

ఙೣ
మାఙ೤

మାሺఓೣିఓ೤ሻమ
                                    (1) 

where ߤ௫ and ߤ௬ are the means for the two variables x and y, and 
௫ଶߪ  and ߪ௬ଶ  are the corresponding variances. ߩ  is the correlation 
coefficient between the two variables. Since it combines the 
Pearson Correlation Coefficient (CC) and the mean square error 
(mse), CCC is a much more reliable measurement for regression 
problems. 

4. APPROACHES 

4.1 Audio Features 

Table 1: Short-time Low-level Acoustic Features 

FEATURES DESCRIPTION 

Loudness+Delta The loudness as the normalized 
intensity raised to a power of 0.3 

F0final+Delta The smoothed fundamental frequency 
contour 

F0finEnv+Delta The envelope of the smoothed 
fundamental frequency contour 

jitterLocal+Delta The local (frame-to-frame) Jitter (pitch 
period length deviations) 

jitterDDP+Delta The differential frame-to-frame Jitter 
(the ‘Jitter of the Jitter’) 

shimmerLocal 
+Delta 

The local (frame-to-frame) Shimmer 
(amplitude deviations between pitch 

periods) 

Voicing final 
+Delta 

The voicing probability of the final 
fundamental frequency candidate. 

MFCC-related MFCCs (15)+logMelFreqBand(8) 

The AVEC2015 challenge provided baseline audio features are 
extracted by calculating the statistical functions over low-level 
descriptors in fixed window length of 3s with shift 40ms. We 
consider it as long-time audio feature. In order to compare with 
the long-time audio features in the baseline paper [22], we utilize 
the OpenSMILE toolkit [23] to extract short-time low-level frame 
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features [24]. The configuration file is modified according to the 
configuration file “emobase2010.conf” based on the Interspeech 
2010 Paralinguistic Challenge [25]. Features are listed in Table 1. 
All the features are extracted with 40ms frame window and 40ms 
shift. Baseline long-time audio features have 102 dimensions, 
while short-time features consist of 76 dimensions. 

4.2 Visual and Physiological Features 
The Visual and physiological features used in this paper are the 
same as the provided baseline features used in [22]. The 
AVEC2015 challenge provides two sets of visual features 
extracted from facial expressions: appearance-based feature and 
geometric-based feature. The appearance-based feature is 
computed by using Local Gabor Binary Patterns from Three 
Orthogonal Planes (LGBP-TOP) and applied PCA to compress to 
84 dimensions. The geometric-based feature is computed from 49 
facial landmarks to generate 316-dimensional features. The 
features for frames without faces are padded with zeros. We 
consider both appearance-based and geometric-based visual 
features as short-time features. We consider ECG and EDA 
features as long-time features that are extracted with a sliding 
window of 4s in duration and 40ms shift. In total, there are 54 
ECG features and 62 EDA features. 

4.3 Temporal Model: LSTM 
Long short term memory (LSTM) architecture [26] is the state-of-
art model for sequence analysis since it uses memory cells to store 
information so that it can exploit long range dependencies in the 
data. 

 

Figure 1: Long Short Term Memory Cell 

In this paper, we use the LSTM version in [27]. Figure 1 
illustrates a single memory cell. The functions of hidden cells and 
gates are defined as follows. 

݅௧ ൌ ሺߪ ௫ܹ௜ݔ௧ ൅ ௛ܹ௜݄௧ିଵ ൅ ௖ܹ௜ܿ௧ିଵ ൅ ܾ௜ሻ 

௧݂ ൌ ሺߪ ௫ܹ௙ݔ௧ ൅ ௛ܹ௙݄௧ିଵ ൅ ௖ܹ௙ܿ௧ିଵ ൅ ௙ܾሻ 

ܿ௧ ൌ ௧݂ܿ௧ିଵ ൅ ݅௧ ∙ ሺ݄݊ܽݐ ௫ܹ௖ݔ௧ ൅ ௛ܹ௖݄௧ିଵ ൅ ܾ௖ሻ      (2) 

௧݋ ൌ ሺߪ ௫ܹ௢ݔ௧ ൅ ௛ܹ௢݄௧ିଵ ൅ ௖ܹ௢ܿ௧ିଵ ൅ ܾ௢ሻ 

݄௧ ൌ ௧݋ ∙  ሺܿ௧ሻ݄݊ܽݐ

where i, f, o and c refers to the input gate, forget gate, output gate, 
and cell input activation vectors respectively. ߪሺ∙ሻ is the sigmoid 
function and ݄݊ܽݐሺ∙ሻ  is the tangent function. In [28], various 
architectures of recurrent neural network are explored and LSTM 
with the large forget bias achieved best performance on many 

tasks empirically. So we initialize our forget gate bias to a large 
value 2. 

In addition to using LSTM memory cell as hidden units, we also 
employ bidirectional LSTM. A bidirectional RNN [29] makes use 
of all the past and all the future inputs on a single unit, which 
makes it ideal for processing data with de-synchronization 
between inputs and targets. Bidirectional property is achieved by 
processing the data sequences forwards and backwards in two 
separate hidden layers. The outputs from both hidden layers are 
then connected to the same output layer which fuses them. The 
combination of the concept of bidirectional RNN and LSTM leads 
to BLSTM. 

4.4 Loss Function 
We explore two types of loss functions in this paper: single point 
loss and overall correlation loss. 

Single point loss is defined as in the following formula: 

Loss ൌ
ଵ

்
∑ ݈ሺ்
௧ୀଵ ,௧ݕ  ො௧ሻ                           (3)ݕ

where T is the number of time steps in the sequence, ݕ௧ and ݕො௧ are 
the target emotion dimension value and the predicted value 
respectively at step ݐ , l is a function to compute the distance 
between the target and the prediction. The most common distance 
is computed as mean square error (mse) or mean absolute error 
(mae). Similar with the support vector regression (SVR), we also 
compute the tube error, which does not count the absolute 
distance in the tube. This may have emphasis on the “super vector” 
data and make the predictions smoother. The formula is as follows: 

݈௠௦௘ሺݕ௧, ො௧ሻݕ ൌ ሺݕ௧ െ	ݕො௧ሻଶ 

݈௠௔௘ሺݕ௧, ො௧ሻݕ ൌ ௧ݕ| െ                               (4)			ො௧|ݕ

݈௧௨௕௘ሺݕ௧, ො௧ሻݕ ൌ ൜
0, ௧ݕ|	݂݅ െ |ො௧ݕ ൏ tube

௧ݕ| െ |ො௧ݕ െ tube, ݁ݏ݅ݓݎ݄݁ݐ݋
 

Overall correlation loss is computed using the overall 
characteristics between two sequences. The correlation loss 
function we use in this paper includes: Covariance (cov) and 
Pearson correlation covariance (CC). 

Assuming target sequence y ൌ ሺݕଵ, ,ଶݕ … , ்ݕ  and the predicted 
sequence ොݕ ൌ ሺݕොଵ, ,ොଶݕ … , ො்ሻݕ . The covariance of these two 
sequences is defined as: 

covሺy, ොሻݕ ൌ
ଵ

்
∑ ሺݕ௜ െ ො௜ݕതሻሺݕ െ

ଵ

்
∑ ො௝ݕ
்
௝ୀଵ ሻ்

௜ୀଵ       (5) 

where  ݕത ൌ
ଵ

்
∑ ௝ݕ
்
௝ୀଵ , so the derivative of ݕො is as follows: 

பୡ୭୴ሺ୷,௬ොሻ

ப௬ො	
ൌ

ଵ

்
ሺݕ െ  തሻ                           (6)ݕ

We can see from formulation (6) that the backpropagation loss has 
nothing to do with the prediction output. The intuitive 
understanding of this gradient is that it only helps to push the 
shape of prediction to be similar with the shape of target sequence 
without considering the real value of the prediction output. So 
distance constraint is necessary for overall correlation loss. We 
explore different loss functions including: 1) we use mse as 
distance constraint and use (mse-cov) as the overall correlation 
loss. 2) we use mse/(CC+1) as the overall correlation loss since 
Pearson correlation covariance (CC) which ranges between -1 and 
1 can be considered as a global correlation among covariance 
dimensions. 3) concordance correlation covariance (CCC) can 
also be considered as an overall loss function with distance 
constraint. 
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4.5 Feature Fusion Structure 
The most common way for feature fusion is the simple 
concatenation of features, but this suffers from asynchronization 
of features with different durations. One possible way to solve this 
problem is to input features with different duration to different 
layers of the network. It might relax the compatibility problem in 
time for different features. For example, Figure 2 illustrates such a 
LSTM structure for this purpose. The first hidden layer takes the 
short-time audio features as input. The second layer takes the 
longer-time visual features concatenated with the output of the 
first layer as input. The last hidden layer takes the longest-time 
ecg features concatenated with the output of the second layer as 
input. It is generally reported that the higher hidden layers capture 
more abstract and more global information from the source; we 
expect this new proposed feature fusion structure can alleviate the 
asynchronization problem.  

 
Figure 2: New feature fusion network structure 

4.6 Smoothing 
The predicted target from the temporal model can be noisy so 
smoothing is required to get better performance. Exponential 
smoothing is a rule of thumb technique for smoothing time series 
data [30]. It can take into account all the past data. The form of 
exponential smoothing is given by the formula: 

௧ݏ ൌ ߙ ∙ ௧ݔ ൅ ሺ1 െ ሻߙ ∙  ௧ିଵ                         (7)ݏ

where ݔ௧ and  ݏ௧ are the sequence value and the smoothed value at 
time t respectively. α (0 ൏ α ൏ 1ሻ	is the smoothing factor. Larger 
α  has less smoothing effect and gives greater weight to local 
values, while smaller α  has better smoothing effect. The 
optimization of α is done by grid search. The initial value of ݏଵ is 
 ଵ. In our experiments, we find that if LSTM is forward, applyingݔ
smoothing backwardly achieves slightly better performance, while 
if LSTM is backward, applying smoothing forwardly is better.  

5. EXPERIMENTS 
All the features in following experiments are normalized in each 
speaker set using z-score. The gradient descend method is 
rmsprop [31] with nesterov momentum [32] of 0.9 and learning 
rate of 1e-4. Early stopping strategy is used to avoid overfitting. 
Training stops if there is no improvement after 50 epochs. The 
Neural network in this paper is implemented using Theanets [33], 
a wrapped library based on Theano [28]. 

The structure of LSTM is presented as a list in this paper. For 
example, [618,160,120,1] indicates that the network contains an 
input layer with 618-dimentional input feature, two hidden layers 
with hidden units of 160 and 120 respectively, and an output layer 
with one node corresponding to the predicted emotion dimension 
value. 

5.1 Dominant Features 
In this set of experiments, we aim to investigate best features for 
each emotion dimension prediction. First, we apply a two-hidden 
layer LSTM to single modality features in the baseline to find the 
dominant feature for predicting each emotion dimension. Due to 
time and resource limitation in this challenge, the size of the two 
hidden layers is only optimized among (80,60), (160,120), 
(200,160) three setups respectively for each modality and mse loss 
function is applied.  

Table 2 shows the prediction performance using each single 
modality features on the development set. As we can see from the 
table that audio features achieve the best performance on the 
arousal dimension prediction. For valence prediction, visual 
features perform the best. Physiological features based emotion 
dimension prediction is however relatively low. Figure 3 presents 
an example of the arousal dimension prediction based on the eda 
feature, which indicates that prediction with CCC below 0.1 is not 
reliable. So we only consider features with CCC above 0.1 for 
fusion later. As expected, arousal prediction is an easier task than 
valence prediction.  

Table 2: Performance of baseline single modality feature on 
the development set 

 Arousal Valence 

modality rmse CC CCC rmse CC CCC 

audio 0.133 0.730 0.703 0.118 0.369 0.312 

video_app 0.168 0.550 0.533 0.114 0.430 0.354 

video_geo 0.182 0.470 0.417 0.111 0.523 0.504 

ecg 0.190 0.343 0.221 0.119 0.303 0.159 

eda 0.195 0.140 0.065 0.117 0.348 0.236 

Figure 3: An arousal prediction example on the development 
data based on eda feature 

5.2 Long-time vs. Short-time Features 
The original provided audio feature is from applying statistical 
functions in 3s analysis window. We consider it as long-time 
audio feature. Since LSTM is good at memorizing, we input short-
time audio features with 40ms analysis window to LSTM. The 
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network size is optimized with two hidden layers of size (160, 
120). As shown in Table 3, short-time audio feature outperforms 
long-time feature for arousal prediction while long-time audio 
feature works better on valence prediction, which is consistent 
with the knowledge that valence is more related to longer time 
period. So in our following experiments, we only use short-time 
audio feature for arousal prediction and long-time audio feature 
for valence prediction. 

Table 3: Performance based on long-time and short-time 
audio features 

Target Feature rmse CC CCC 

Arousal 
long-time audio 0.133 0.730 0.703 

short-time audio 0.122 0.78 0.762 

Valence 
long-time audio 0.118 0.369 0.312 

short-time audio 0.119 0.32 0.224 

Figure 4 shows an arousal prediction example based on long-time 
and short-time audio feature. The red curve shows the true arousal 
value. The green and blue curves show the predicted arousal value 
based on the long-time audio feature and the short-time audio 
feature respectively. From Figure 4, we can see that curve fitting 
is better in peaks and valleys with short-time audio feature. This 
may relate to the fact that long-time features may lose some 
detailed local information compared with short-time features. 

 
Figure 4: An arousal prediction example based on the long-

time audio feature and the short-time audio feature  

5.3 Comparison of Loss Functions 
Table 4 and Table 5 compare the prediction performance for 
arousal and valence dimensions respectively using different loss 
functions. For single point loss functions, mse achieves the best 
performance in general. mae and tube error seem unstable for 
different modality features. Overall covariance loss function with 
distance constraints achieves much better performance especially 
with loss functions (-CCC) and (mse-cov), which improve the 
single modality performance significantly. Loss function (mse-
cov) tends to work better for arousal prediction and loss function 
(-CCC) tends to work better for valence prediction. 

5.4 Bidirectional LSTM 
We compare the directions of LSTM in this section. BLSTM is to 
combine a forward LSTM and a backward LSTM in an elegant 
way, of which one hidden units can get input from the past and the 
future. So for BLSTM we double the size of LSTM. We choose 
the best single modality with the corresponding best loss function 
to compare the performance of BLSTM and LSTM as shown in 
Table 6. Although BLSTM achieves slightly better performance 
than LSTM, it is much more time consuming and prone to 
overfitting. We therefore consider that LSTM might be good 
enough for this task. 

Table 4: CCC performance comparison with different loss 
functions for arousal prediction 

 
Single Point Loss Overall Covariance Loss 

mse mae tube0.05 -ccc mse-cov mse/(CC+1)

short-time 
audio 

0.762 0.802 0.756 0.807 0.761 0.765 

video_app 0.533 0.258 0.511 0.515 0.571 0.476 

video_geo 0.417 0.340 0.394 0.423 0.471 0.354 

ecg 0.221 0.240 0.235 0.333 0.329 0.208 

Average 0.483 0.410 0.474 0.520 0.533 0.451 

 

Table 5: CCC performance comparison with different loss 
functions for valence prediction 

 
Single Point Loss Overall Covariance Loss 

mse mae tube0.05 -ccc mse-cov mse/(CC+1)

long-time 
audio 

0.312 0.24 0.221 0.334 0.443 0.435 

video_app 0.354 0.409 0.415 0.526 0.496 0.433 

video_geo 0.504 0.517 0.468 0.557 0.530 0.525 

ecg 0.159 0.114 0.147 0.314 0.252 0.229 

eda 0.236 0.131 0.174 0.315 0.262 0.140 

Average 0.313 0.282 0.258 0.409 0.397 0.352 

 

Table 6: Comparison of BLSTM and LSTM  

 Short-time audio, 
arousal 

Video_geo, valence 

RMSE CC CCC RMSE CC CCC 

LSTM 0.115 0.810 0.807 0.116 0.564 0.557 

BLSTM 0.116 0.816 0.812 0.121 0.573 0.564 

 

5.5 Multi-task learning 
We explore utilizing multi-task learning scheme to learn arousal 
and valence dimension prediction together using different features. 
First, we explore multi-task learning using the best single 
modalities (short-time or long-time audio features and video_geo 
feature). As shown in Table 7, we compare the performance of 
our best single modality system with and without multi-task 
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learning. The upper part refers to our baseline single modality 
system performance while the lower part (bolded) refers to the 
performance with multi-task learning. We can see from the table 
that multi-task learning improve the arousal prediction very 
marginally.  For valence prediction, multi-task learning improves 
the performance based on video_geo feature but decreases the 
performance based on long-time audio features. We suspect the 
reason might be that there is larger gap between arousal prediction 
and valence prediction based on audio features, while arousal and 
valence predictions based on video_geo features are more 
balanced. We also investigate multi-task learning with all 
modality features combined/concatenated and with bigger 
network size; however we could not achieve better performance. 

Table 7: Performance comparison with and without multi-
task learning 

 Arousal Valence 

 RMSE CC CCC RMSE CC CCC

Audio 0.122 0.780 0.762 0.118 0.369 0.312

Video_geo 0.182 0.470 0.417 0.111 0.523 0.504

Audio 0.134 0.771 0.765 0.119 0.379 0.235

Video_geo 0.195 0.426 0.418 0.104 0.622 0.618

 

5.6 Early Fusion 
Early fusion or feature fusion in this work is implemented either 
by feature concatenation or new feature fusion structure as 
described in section 4.5. For experiments in this subsection, we 
fix the LSTM structure with 3 hidden layers of size (200,200,200). 
All modality features are applied for valence prediction. For 
arousal prediction we drop the eda feature as its CCC performance 
is below 0.1. Results are shown in Table 8. From Table 8 we can 
see that new feature structure could not outperform the simple 
concatenation feature fusion on all three modalities. 

Table 8: Comparison of new feature fusion structure and 
feature concatenation using three modalities 

Target Architecture rmse CC CCC 

Arousal 
concatenation 0.149 0.802 0.777 

new structure 0.141 0.789 0.779 

Valence 
concatenation 0.101 0.654 0.652 

new structure 0.107 0.613 0.610 

 

Table 9: Comparison of new feature fusion structure and 
feature concatenation using two modalities 

feature architecture CCC 

Audio & Video (video_app+video_geo) 
Concatenation 0.609 

New structure 0.536 

Video (video_app+video_geo) & 
BioSignal (ecg+eda) 

Concatenation 0.588 

New structure 0.611 

Audio & BioSignal (ecg+eda) 
Concatenation 0.492 

New structure 0.451 

 

We also compare two fusion strategies based on two modalities. 
The network structure consists of two hidden layers with 200 units 

for each layer. Results are presented in Table 9. We can see that 
new feature fusion structure improves the video and bio-signal 
modalities feature fusion over simple feature concatenation. 
However, it cannot outperform simple concatenation when audio 
modality is used.   

5.7 Late Fusion 
Late fusion/decision fusion is a linear regression of the different 
predictions from multiple subsystems for each emotional 
dimension prediction. We further split the development set into 
two parts, one part with the first 8 sequences for learning fusion 
weights (dev-dev) and the last sequence for testing fusion 
performance (dev-test). We apply smoothing before fusion. For 
arousal prediction, we fuse the predictions of the top loss function 
for each modality, which are: (long-time audio, mse), (short-time 
audio, mae), (short-time audio, mse-cov), (video_app, mse), 
(video_app, mse-cov), (video_geo, -ccc), (video_geo, mse-cov), 
(ecg, -ccc), (ecg, mse-cov). We conduct similar late fusion for 
valence prediction as well. As shown in Table 10, late fusion 
improves the final predictions (0.841 vs 0.768 for arousal, 0.669 
vs 0.597 for valence). 

Table 10: Late fusion Performance 

 Arousal Valence 

best baseline on dev w/o fusion 0.768 0.597 

with late fusion on dev-dev 0.872 0.717 

with late fusion on dev-test 0.770 0.600 

with late fusion on entire dev 0.841 0.669 

 

5.8 Smoothing Effects 
We apply exponential smoothing (as described in subsection 4.6) 
on the raw prediction from LSTM. Table 11 presents some 
examples to show the effectiveness of smoothing. Smoothing can 
bring some additional small improvement.  

Table 11: Performance comparison w/o smoothing  

target feature Alpha Original Smoothed 

Arousal short-time audio 0.1 0.8073 0.8101 

Valence video_geo 0.7 0.5570 0.5571 

 

5.9 Best Submitted Run 
Table 12 presents the best arousal prediction and the best valence 
prediction from our 5 submitted runs. The best arousal prediction 
system is from using late fusion of all modalities as described in 
section 5.7 and further late fused with two early fusion systems 
(concatenation and new structure). The best valence prediction is 
from using concatenation early feature fusion as described in 
section 5.6. The prediction performance is significantly improved 
over the provided baseline performance in [21]. 

Table 12: The best submission results 

 Arousal Valence 

 rmse CC CCC rmse CC CCC 

train 0.074 0.974 0.928 0.043 0.973 0.952 

dev 0.096 0.867 0.860 0.101 0.654 0.652 

test 0.121 0.746 0.739 0.111 0.590 0.567 

54



6. CONCLUSIONS 
This paper presents our approach to model dimensional emotions 
using recurrent neural networks. We explore different aspects for 
improving prediction performance, including various modality 
features, duration of features, novel loss functions, bidirectional 
networks, early fusion and late fusions. Some findings from 
extensive experiments are listed as follows: 

(1) Audio feature alone performs the best to predict the arousal 
dimension while visual feature is more suitable for valence 
dimension prediction.  

(2) Loss functions related to overall covariance with distance 
constraint are good for dimensional emotion predictions. 

(3) Single direction of LSTM is good enough for dimensional 
emotion regression in this task. 

(4) Early feature fusion from different modalities helps valence 
dimension prediction. Late fusion always helps. 

(5) Inputting features that are not compatible in time into 
different layers of network can help with feature 
asynchronization. 

Our future work will focus on improving predictions by extracting 
more powerful modality features and improving RNN structures. 
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