
One-Shot Fine-Grained Instance Retrieval
Hantao Yao1,2, Shiliang Zhang3, Yongdong Zhang1,2, Jintao Li1, Qi Tian4

1Key Lab of Intelligent Information Processing of CAS, Institute of Computing Technology, CAS, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China

3School of Electronic Engineering and Computer Science, Peking University, Beijing 100871, China
4 Department of Computer Science University of Texas at San Antonio, San Antonio, TX 78249-1604, USA

{yaohantao,zhyd,jtli}@ict.ac.cn,slzhang.jdl@pku.edu.cn,qitian@cs.utsa.edu

ABSTRACT
Fine-Grained Visual Categorization (FGVC) has achieved signi�-
cant progress recently. However, the number of �ne-grained species
could be huge and dynamically increasing in real scenarios, making
it di�cult to recognize unseen objects under the current FGVC
framework. This raises an open issue to perform large-scale �ne-
grained identi�cation without a complete training set. Aiming to
conquer this issue, we propose a retrieval task named One-Shot
Fine-Grained Instance Retrieval (OSFGIR). “One-Shot” denotes the
ability of identifying unseen objects through a �ne-grained retrieval
task assisted with an incomplete auxiliary training set. This paper
�rst presents the detailed description to OSFGIR task and our col-
lected OSFGIR-378K dataset. Next, we propose the Convolutional
and Normalization Networks (CN-Nets) learned on the auxiliary
dataset to generate a concise and discriminative representation.
Finally, we present a coarse-to-�ne retrieval framework consisting
of three components, i.e., coarse retrieval, �ne-grained retrieval,
and query expansion, respectively. The framework progressively
retrieves images with similar semantics, and performs �ne-grained
identi�cation. Experiments show our OSFGIR framework achieves
signi�cantly better accuracy and e�ciency than existing FGVC
and image retrieval methods, thus could be a better solution for
large-scale �ne-grained object identi�cation.
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1 INTRODUCTION
Di�erent from conventional object categorization, Fine-Grained Vi-
sual Categorization (FGVC) aims to identify objects belonging to the
same or closely-related species that only experienced experts can
recognize, e.g., identify a bird as “Black footed Albatross” or “Sooty
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Figure 1: Illustration of One-Shot FGIR, which uses prior
knowledge inferred from a small independent auxiliary
dataset (dashed arrow) to perform �ne-grained query of an
unseen instance from a large-scale database (solid arrow).

Albatross”. Due to the ability of providing valuable information
to users, FGVC has been attracting lots of attentions [4, 7, 8, 14–
16, 27, 30, 32–35, 41, 48, 55]. Although FGVC is challenging, its
performance has been signi�cantly improved by using powerful
Convolutional Neural Networks [22, 27, 32, 55], considering de-
tailed part localization [7, 30, 35, 41, 55], and generating better
visual descriptions [4, 27, 35, 41]. For instance, the classi�cation
accuracy on CUB-200-2011 [45] has been pushed from 17.31% [45]
to 85.5% [35] within �ve years.

As a special case of visual categorization, FGVC is designed
to identify the species existing in the training set. However, the
number of �ne-grained species in real world could be huge and
varying, e.g., new shoes are being designed and produced every
week, making it di�cult to get a complete training set to recognize
unseen objects under the FGVC framework. In other words, FGVC
is powerful for scenarios like passenger plane classi�cation, where
the number of species is small and the complete training set is easy
to acquire. Therefore, it is still an open issue how to perform �ne-
grained identi�cation without a complete training set. Motivated
to conquer this issue, we present a novel problem named One-Shot
Fine-Grained Instance Retrieval (OSFGIR), where “One-Shot” em-
phasizes the ability of identifying the unseen �ne-grained species
through a retrieval task. As illustrated in Fig. 1, OSFGIR takes an
image as input, then performs �ne-grained instance retrieval within
a large-scale dataset without category labels, and �nally returns
images containing the identical object. OSFGIR can be tackled by
learning powerful features and retrieval models. It is not restricted
by the number of learned classi�ers, thus has potential to show
better generalization ability to unseen species than the FGVC frame-
work. To facilitate model and feature learning, we introduce a small
independent auxiliary training set. This incomplete auxiliary set
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is labeled with �ne-grained species and is easy to collect. We thus
call this task as One-Shot FGIR, because the training set is small
and independent with the testing set.

In this paper, we �rstly give the detailed description of OSFGIR,
and introduce the OSFGIR-378K dataset. To extract a powerful im-
age feature, we then propose a deep model called Convolutional and
Normalization Networks (CN-Nets), which learns and combines
two complementary features to generate the object description. Fi-
nally, we present a coarse-to-�ne OSFGIR framework that consists
of coarse retrieval, �ne-grained retrieval, and query expansion, re-
spectively. Given a query image, the coarse retrieval �rstly returns
the Top-K similar images based on a compact descriptor. A more
powerful descriptor is hence extracted to rank the Top-K images.
Finally, query expansion is used to further improve the retrieval
performance. Experimental results show that our feature and re-
trieval approach signi�cantly outperform existing deep features
and retrieval methods in the aspects of both accuracy and e�ciency.

OSFGIR is di�erent from and substantially more challenging than
traditional instance retrieval task. Most of the instance retrieval
datasets are designed for partial-duplicate or semantic-similar search
tasks, e.g., Oxford5K [37] and Holidays [23]. Such problems could be
e�ectively solved by extracting and matching robust local features,
i.e., Scale-invariant feature transform (SIFT) [36], or extracting se-
mantic features by o�-the-shelf deep leaning models [40]. OSFGIR
aims to return images containing the identical �ne-grained specie in
the query, e.g., images of “black billed magpie” with di�erent poses,
sizes, backgrounds, etc. For OSFGIR, more powerful features are
required to identify the �ne-grained details among species, because
di�erent species may exhibit similar appearances and semantics.

OSFGIR is also a novel retrieval task di�erent from most of
existing FGVC works. The most related FGVC work is [49], where
Xie et al. present a �ne-grained image search algorithm. Similar to
FGVC pipeline, Xie et al.[49] learns a series of classi�ers based on
the training set, and then identi�es the �ne-grained species with
the learned classi�ers. Note that, the training and testing datasets
share the same species in [49]. OSFGIR di�ers from [49] in that,
it uses independent training and testing datasets, i.e., uses a small
incomplete auxiliary dataset for training, but a large-scale dataset
for retrieval, which corresponds to more realistic settings.

For the past several years, lots of FGVC works [20, 30, 35, 41, 54,
55] have been proposed, and they focus on generating image repre-
sentations from object parts. However, these representations are
either complex or require expensive part annotations. CN-Nets is
proposed with the motivation of designing a concise representation
easy to implement and repeat. It reveals the shortcomings of CNN
in feature learning and signi�cantly outperforms the latest deep
models in the aspects of e�ciency, training complexity, and classi-
�cation accuracy. FGVC framework is di�cult to recognize unseen
�ne-grained species. This paper de�nes the OSFGIR problem and
presents the OSFGIR-378K dataset. Compared with FGVC, OSFGIR
is shown as a better solution for large-scale �ne-grained object
identi�cation, e.g., our method signi�cantly outperforms recent
FGVC works on OSFGIR-378K by more than 11% on Mean Average
Precision. We will release the OSFGIR-378K, and continually en-
large this dataset by adding more species to bene�t OSFGIR and
large-scale �ne-grained object recognition research.

2 RELATEDWORK
OSFGIR is related to works on �ne-grained visual categorization [4,
7, 8, 14–16, 20, 27, 30, 33–35, 41, 47, 48, 51, 52, 54, 55] and deep
learning-based visual retrieval [2, 17, 18, 26, 39, 46, 53]. In the fol-
lowing, we summarize these two categories of works respectively.

Fine-Grained Visual Categorization: In the past �ve years, re-
searchers have signi�cantly boosted the classi�cation accuracy
of FGVC. Existing methods could be summarized into four cate-
gories according to the type of image representation they use, i.e.,
1) part-based methods, 2) attribute-based methods, 3) object-based
methods, and 4) global-description based methods. 1) As the CUB-
200-2011 dataset provides 15 part annotations, the authors of [4]
employ the labeled part annotations for training and testing to
generate the part description. Based on the labeled part annotations
for training images, the other works [7, 20, 30, 33, 34, 54, 55] �rstly
infer the part annotations for testing images, then generate the part
descriptions. As most �ne-grained datasets lack manually labeled
part annotations, some works infer part labels with unsupervised
methods [15, 27, 41]. 2) Recently, Liu et al. [35] employ the given
attributes of each part to infer the part annotations, which are then
used to generate the object description. 3) Besides the descriptions
from local parts, the description from the object bounding box
is also commonly used to identify the �ne-grained species. [55]
and [27] infer the bounding boxes for testing images based on those
of training images. [48] and [41] generate bounding boxes for train-
ing and testing images only with image-level labels. 4) Di�erent
from the methods mentioned above, the Bilinear CNN [32] and
Spatial Transformer Networks (STN) [22] generate a robust global
description for FGVC with a forward pass of the CNN.

CNN for Visual Retrieval: Visual retrieval have been attracted
more attentions in the past ten years [56, 57]. Recently, CNN has
exhibited promising performance for various vision tasks. Several
works have attempted to apply CNN in image and instance re-
trieval [3, 17, 18, 26, 39, 44, 53]. NeuralCode [3] is an early work
that applies CNN for image retrieval, e.g., Babenko et al. employ the
output of fully-connected layer as image feature for retrieval. Since
Vector Locally Aggregated Descriptors (VLAD) [24] shows good
retrieval performance by encoding SIFT descriptors. Ng et al. [53]
replace the SIFT with CNN feature and encode the convolutional
feature maps into a global feature with VLAD. In [44], Tolias et al.
demonstrate that simply applying a spatial max-pooling over all lo-
cations on convolutional feature maps produces an e�ective visual
descriptor. Instance retrieval di�ers slightly from image retrieval,
because it focuses on image regions containing the target object,
rather than the entire image. Given the object bounding boxes of
query images, Tolias et al. [44] propose approximate integral max-
pooling to select the best matching bounding box from hundreds
of candidates. Di�erent from [44], Salvador et al. [39] and Gordo et
al. [18] apply Faster R-CNN [38] to reduce the number of candidate
proposals.

OSFGIR di�ers from FGVC because it is a retrieval task, thus is
able to query and identify the unseen query object. OSFGIR is also
di�erent from most of the visual retrieval tasks because it needs to
further identify and capture the subtle di�erences among visually
and semantically similar objects. Among recent visual retrieval
methods, Gordo et al. [18] have achieve promising performance.
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However, the method in [18] is not suitable for OSFGIR because: 1)
it works on partial-duplicate image retrieval and is evaluated on
the widely-used Oxford5K [37] and Holidays [23]. OSFGIR aims to
return images containing the identical �ne-grained specie in the
query. Those two problems are quite di�erent. 2) The deep regional
feature training in [18] involves keypoint matching to generate the
bounding boxes for each candidate object, thus is more suited to
partial-duplicate image search.

In the next section, we proceed to give the formulation of OSFGIR,
then introduce the OSFGIR-378K dataset.

3 PROBLEM FORMULATION
3.1 One-Shot Fine-Grained Instance Retrieval
As illustrated in Fig. 1, OSFGIR de�nes a �ne-grained instance
retrieval task assisted with a small independent training set. We
denote the set of query images as Q = {q1, ......,qn }, where n
is the number of query images. Each query image has a ground
truth label pc (0 ≤ pc ≤ Pc , 0 ≤ c ≤ C), which denotes the p-
th �ne-grained specie in the c-th object category. Note that, we
use “object” to denote the coarse category and “specie” to denote
the �ne-grained specie within a coarse object category. C thus is
the total number of objects in the query set, Pc is the number of
species in the c-th object category. We denote the image database
as D = {d1, , ......,dm }, where each image either contains a specie
in one of the C categories, or could be a distracter for the retrieval.

Given a query q, OSFGIR retrieves the specie in q from D, and
returns a ranked list of images. If the query specie exists in the data-
base, OSFGIR aims to return images containing the identical specie.
For query species do not exist in the database, OSFGIR returns other
species with similar appearances and semantics. Because it does not
learn a �xed set of classi�ers, OSFGIR is potential to show better
generalization ability to new species than existing FGVC methods.

OSFGIR is challenging because �ne-grained species commonly
exhibit subtle inter-class variance and large intra-class variance. To
better tackle this task, we introduce an Auxiliary Database, which
contains a small set of images annotated with �ne-grained specie la-
bels. The auxiliary database is de�ned as AD = {α1, ......,αk } and
each image α is annotated with a specie label. It allows for feature
learning and model �ne-tuning, which are potential to signi�cantly
improve the OSFGIR performance. Referring to [12], OSFGIR de-
�nes an one-shot learning problem, i.e., using prior knowledge in a
small independent AD to identify new objects in the large-scale
D. It thus corresponds to more realistic settings than �ne-grained
image retrieval work [49].

3.2 OSFGIR-378K dataset
Among existing image datasets, ImageNet [9] contains many coarse
categories like �sh, dog, bird, etc., and many �ne-grained species.
However, ImageNet is designed for image classi�cation and con-
tains a complete training set. Moreover, most of existing baseline
deep models are trained on ImageNet, making ImageNet not suit-
able to serve as a fair benchmark for OSFGIR features and models.
Therefore, we collect a new OSFGIR-378K dataset.

We aim to build a large-scale OSFGIR dataset labeled with variety
types of �ne-grained species, e.g., both the man-made and natural
objects. To make the dataset collection task feasible, we leverage

Table 1: The summarization of OSFGIR-378K dataset.

Sub-sets # Species # Queries # Images
Dbird 200 1,692 24,119
Dcar 1,715 13,033 136,725
Df ood 70 7,000 70,000
Ddistr 70,194
Total (D) 1,985 21,725 301,038

ADbird 362 30,371
ADcar 196 16,185
ADf ood 31 31,000
Total (AD) 589 77,556

existing FGVC datasets to construct the new OSFGIR-378K dataset.
Speci�cally, OSFGIR-378K contains three sub-sets of coarse object
categories and one sub-set of distractors. We denote the four sub-
sets containing birds, food, cars, and distractors as Dbird , Df ood ,
Dcar , and Ddistr , respectively. In the following, we give details
about the construction of those sub-sets.

There are two datasets for �ne-grained bird categorization, i.e.,
CUB-200-2011 [45], and BirdSnap [5]. BirdSnap contains a larger
number of images and species, i.e., 500 species, and 49,829 images
in BirdSnap vs. 200 species and 11,788 images in CUB-200-2011,
respectively. Note that, the BirdSnap and CUB-200-2011 share 138
common species. Because the images of CUB-200-2011 generally
have better quality, we �rstly include CUB-200-2011 in the bird
sub-set. Then, we put the 138 common species in BirdSnap into
the bird sub-set. Finally, we manually delete the noisy images and
construct the clean bird sub-set Dbird . Therefore, the �nal Dbird

contains the CUB-200-2011 and a part of BirdSnap.
For the car sub-set, there also exist two datasets, i.e., Car196 [28]

consisting of 16,185 images of 196 species, and CompCar [50] con-
sisting of 136,725 images of 1,715 species, respectively. As the Com-
pCar contains more images and species than Car196, and it is a
clean dataset, we simply treat the CompCar as Dcar .

There is only one public dataset for �ne-grained food catego-
rization, i.e., the food-101 [6]. We thus randomly select 70 species
to generate the food sub-set Df ood . To test the robustness and
e�ciency of OSFGIR methods, we further collect 70K images as
distractors Ddistr . The detailed descriptions of OSFGIR-378K are
summarized in Table 1.

The Auxiliary Database AD contains three sub-sets: ADbird ,
ADf ood , and ADcar , respectively. ADbird contains the rest
species in BirdSnap, thus has no overlap with the species in Dbird .
For the car dataset, we treat the Car196 as ADcar . 70 species of
food-101 are selected as Df ood . We hence use the rest 31 species
as ADf ood . The detailed summarization of auxiliary database is
shown in Table 1.

The �nal OSFGIR-378K dataset contains a datasetD for retrieval
and an Auxiliary Dataset AD for training. Note that, to test the
ability of identifying unseen species and simulate a real experimen-
tal setting, D and AD do not share common species and AD is
smaller.
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Figure 2: Illustration of Convolutional and Normalization
Networks (CN-Nets) �ne-tuned on the auxiliary dataset.
GAP denotes Global Average Pooling and BN denotes the
Batch Normalization.

4 PROPOSED APPROACH
One of the key steps in OSFGIR is to learn a discriminative visual
descriptor with auxiliary training set. There exist several CNN-
based descriptors that have achieved good classi�cation accuracy
on FGVC, e.g., Bilinear CNN [32], Spatial Transformer Networks
(STN) [22], and CompactBilinear CNN [13]. However, they all have
some disadvantages for retrieval task, e.g., time-consuming or hard
to extend to unseen data. We propose a novel Convolutional and
Normalization Networks (CN-Nets) to generate the image descrip-
tion in Sec. 4.1. With the CN-Nets, we further propose a coarse-to-
�ne retrieval framework in Sec. 4.2.

4.1 Convolutional and Normalization
Networks

CN-Nets is proposed to learn a concise and discriminative repre-
sentation from image-level labels. It is designed to be more e�cient
and easy to implement than many FGVC works that generate repre-
sentations from part labels. As shown in the Fig. 2, CN-Nets takes
an image as input and is �ne-tuned on the auxiliary dataset in a
classi�cation task. It combines outputs from two sub-networks, i.e.,
Conv-Net and Norm-Net, as the classi�cation result. Conv-Net and
Norm-Net share several convolutional and pooling layers, and are
designed with di�erent network structures to learn complementary
features. We use outputs of their last inception layers to generate
features for OSFGIR. In the following, we introduce these two net-
works and discuss why their features are complementary to each
other.

Most of popular networks, such as Alexnet [29], VGG [42], and
GoogLeNet [43] feed the extracted feature into the fully-connected
layer followed by softmax layer for classi�cation. This setting is
proven e�ective in classi�cation tasks but is hard to interpret and
is expensive for training due to the huge number of parameters
in fully connected layers. Inspired by [31], we propose Conv-Net,
which �rstly uses convolutional layers to generate feature maps
explicitly corresponding to object categories, then uses Global Av-
erage Pooling (GAP) layer to predict the classi�cation score for
each category. As shown in Fig. 2, Conv-Net �rstly generates C
feature maps corresponding toC categories, then computes aC-dim
classi�cation score vector with GAP. Because the average response
value on each feature map equals to a classi�cation score, we also
call the C feature maps as category con�dence maps.

Figure 3: Images and their con�dence maps generated by
Norm-Net (second row) and Conv-Net (third row), respec-
tively.

Compared with the fully-connected layer, GAP layer also gen-
erates the classi�cation score and has the following advantages
making it more suited for retrieval task: 1) GAP generates explicit
object con�dence map, i.e., each feature map denotes the spatial
activation for an object category. This makes the network feature
easier to interpret. 2) GAP has no parameter to tune, thus avoids
over�tting and accelerates the network training and testing. 3)
The con�dence map reveals the discriminative regions in the in-
put image, thus can be useful for object detection and background
elimination. As shown in the third row of Fig. 3, the con�dence
maps of Conv-Net focus on the foreground objects, i.e., the most
discriminative regions in the image.

Based on the Conv-Net, we add Batch Normalization (BN) layer
between the last convolutional layer and GAP layer to construct the
Norm-Net. Given n input images in a mini-batch, the BN layer �rst
collects the activations on each location of a M ×M sized feature
map as B = {x1,x2, ......,xm }, where m = n × M × M . BN then
employs the mini-batch mean µB and variance σ 2

B
to normalize the

samples in B, and �nally obtains the normalized values x̂ . Aiming
to make the output of BN represent the identity transform [21] of
the input, BN also scales and shifts x̂ by γ and β , respectively. The
output of BN yi in Norm-Net is �nally passed to the GAP layers to
compute the classi�er scores. We summarize the BN algorithm in
Algorithm 1. More details of BN can be found in [21].

The second row of Fig. 3 shows that the con�dence maps of Norm-
Net focus on both the foreground object and the spatial contexts,
thus are largely di�erent from the con�dence maps of Conv-Net.
Our experimental results also validate that the features generated
by Conv-Net and Norm-Net are complementary to each other. For
example, on CUB-200-2011 dataset [45], the individual classi�cation
accuracies of Conv-Net and Norm-Net features are 83.8% and 82.3%,
respectively. Combining these two features substantially boosts the
accuracy to 85.1%. More extensive experiments about these two
features can be found in Sec. 5.2.

Here, we brie�y analyze the reason why the Norm-Net fea-
tures focus on more spatial contexts. With the BN input B =
{x1,x2, ......,xm } and output {y1,y2, ......,ym }, the backpropagation
of the loss l , as well as the computation of gradients with respect
to the BN parameters can be summarized as, i.e.,

ϑl

ϑ x̂i
=

ϑl

ϑyi
· γ , (1)

Session: Fast Forward 2 MM’17, October 23–27, 2017, Mountain View, CA, USA

345



Algorithm 1 Batch Normalizing Transform, applied to activation
x over a mini-batch.

1: Input: Values of x over a mini-batch: B = {x1, x2, ......, xm }; Param-
eters to be learned: γ , β

2: Output: {yi = BNγ ,β (xi ) }
3: µB ← 1

m
∑m
i=1 xi

4: σ 2
B
← 1

m
∑m
i=1 (xi − µB )

2

5: x̂i ←
xi−µB√
σ 2
B
+ϵ

6: yi ← γ x̂i + β ≡ BNγ ,β (xi )

ϑl

ϑσ 2
B

=

m∑
i=1

ϑl

ϑ x̂i
· (xi − µB ) ·

−1
2 (σ 2

B
+ ϵ )−3/2, (2)

ϑl

ϑµB
=

m∑
i=1

ϑl

ϑ x̂i
·
−1√
σ 2
B
+ ϵ
+

ϑl

ϑσ 2
B

·

∑m
i=1 −2(xi − µβ )

m
, (3)

ϑl

ϑxi
=

ϑl

ϑ x̂i
·

1√
σ 2
B
+ ϵ
+

ϑl

ϑσ 2
B

·
2(xi − µB )

m
+

ϑl

ϑµB
·
1
m
, (4)

where Eq. (4) a�ects the original activation xi . The �rst and third
terms in Eq. (4) do not a�ect xi individually. For the �rst term of
Eq. (4), because of GAP, ϑ l

ϑyi
is identical for each xi in the same

con�dence map, so the �rst term of Eq. (4) has no e�ect on xi .
Among the second term in Eq. (4), although the sign for ϑ l

ϑσ 2
B

is
unknown, it has a same e�ect on all xi . Therefore, the second term
outputs large values when the gap between xi and µB is large, vice
versa. It is easy to infer that, the back propagation would make
larger changes to xi in this case and would �nally make every xi
show similar values close to µB . In other words, BN suppresses
the highly activated locations on a feature map and encourages the
rests.

As a result, Norm-Net tends to activate larger image regions
compared with Conv-Net, which only focuses on the discriminative
regions on the object. Because the Norm-Net is trained to minimize
the classi�cation error, it has potential to discover more helpful
contextual cues in the image. Consequently, Conv-Net focuses on
the discriminative region, and Norm-Net “see" more contexts.

By combining features from Conv-Net and Norm-Net, we obtain
a more powerful CN-Nets feature. As shown in Fig. 2, given an input
image region, Norm-Net and Conv-Net generate the feature maps of
the last inception layer, denoted as X = {Xi }, i = 1, ......,N , where
N=1024 in this paper. The Xi is a 2D tensor denoting the responses
of the i-th channel. Conv-Net and Norm-Net then generate two
N -dim feature vectors with GAP operation. We denote the features
of Conv-Net and Norm-Net as fConv and fNorm , respectively. The
�nal CN-Nets feature fCN is generated by concatenating the Conv-
Net feature and Norm-Net feature, i.e.,

fCN = [fConv , fNorm], fCN ∈ R2048. (5)

4.2 Coarse-to-�ne retrieval framework
The �ne-grained species in image database belong to di�erent
coarse object categories. This naturally leads to a coarse-to-�ne
retrieval framework, which �rst quickly retrieves images with the
same coarse object to narrow-down the search space, then �nds the
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Figure 4: Our coarse-to-�ne framework for online OSFGIR.

�ne-grained species. As shown in Fig. 4, the coarse-to-�ne frame-
work consists of three stages, i.e., coarse retrieval, �ne-grained
retrieval, and query expansion. Both the coarse and �ne stages are
targeted to build an accurate and e�cient retrieval system.

Coarse Retrieval retrieves images containing the same coarse
object with the query. Because this is an easier task, we extract a
compact e�cient feature. Speci�cally, during o�-line indexing, we
use Conv-Net with the input size of 224× 224 to generate the image
feature fdConv ∈ R

1024 for the database image d . To accelerate the
similarity comparison, we reduce the dimensionality of fdConv to
32-dim with PCA [11], and apply L2-normalization to each feature.
Moreover, we generate the con�dence map for d , which is then
used to locate the foreground region. As discussed in Sec. 4.1, Conv-
Net outputs C × M × M con�dence maps for each input image,
where C is the number of species in auxiliary dataset, and M ×M
is the size of con�dence map. Among the C con�dence maps, we
select the one with the maximum average activation. The selected
con�dence map is resized to the same size of the input image, and
is normalized by dividing the maximum response value on it. We
denote the selected con�dence map for database image d as Id .

During online retrieval, we process the query q in the same
way to obtain its feature fqConv and con�dence map Iq . Euclidean
distance is then computed between the query feature fqConv and all
database features to obtain the Top-K similar images, e.g., K=10,000.
Besides that, we estimate the object category of the query specie.
For OSFGIR-378K dataset, a three-way SVM classi�er is trained with
the 32-dim feature based on the auxiliary database. We assume that
the query images do not contain distractors, thus use a three-way
classi�er and ignore the distractors. As shown in Fig. 4, the coarse
retrieval outputs 1) the Top-K similar images, 2) the con�dence
map, and 3) the coarse category label of the query image.

Fine-Grained Retrieval performs �ne-grained identi�cation
on the Top-K images. As illustrated in Fig. 4, we employ the com-
plete CN-Nets to extract features fCN and additionally fuse features
from both the discriminative region and the entire image to acquire
more discriminative power. The con�dence map I guides the dis-
criminative region selection. I is �rst converted to a binary image
with threshold t , e.g., t = 0.5. Then, we employ the connected
region analysis [10] to remove the small regions and select one
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dominant region. The discriminative region is generated by crop-
ping the dominant region with the minimum enclosing rectangle.
As illustrated in Fig. 4, the discriminative region covers most of the
foreground object.

During online retrieval, we �rst extract the discriminative re-
gions of query and database images, then extract their CN-Nets
features. To ensure the discriminative power of CN-Nets feature,
we �ne-tune a category-speci�c CN-Nets for each coarse category
on the auxiliary dataset. For instance, if an image is identi�ed to
bird category, we employ the CN-Nets �ne-tuned on ADbird for
feature extraction. The predicted category label in coarse retrieval
hence selects the proper category-speci�c CN-Nets for feature ex-
traction. This strategy leads to two feature vectors, i.e., f imдCN ∈ R

2048

on the entire image and fr eдCN ∈ R
2048 on the discriminative region,

respectively.
We reduce dimensionality of f imдCN and fr eдCN to 512-dim with

PCA, respectively. The �nal feature f for �ne-grained retrieval is
generated by concatenating these two 512-dim features, i.e.,

f = [f imдCN , f
r eд
CN ], f ∈ R1024. (6)

The Top-K images are �nally ranked using f and Euclidean distance.
Note that, in our implementation, the discriminative regions and
features of database images can be extracted and stored o�-line,
thus their computations do not degrade the online e�ciency.

Query Expansion (QE) strategy is designed to further improve
the retrieval accuracy. The �ne-grained retrieval e�ectively ranks
some positive images at the top of returned image list. We simply
apply average pooling on the features of Top-K (K =5) returned
images to calculate a new descriptor. A new round of retrieval is
performed with the new descriptor to update the original ranking
list. In the experimental part, we will evaluate the e�ectiveness and
e�ciency of this coarse-to-�ne retrieval framework.

5 EXPERIMENTS
5.1 Implementation Details
We use Ca�e [25] for CNN model training and �ne-tuning. The CN-
Nets are �rstly initialized with the model introduced in [1], then are
modi�ed based on the Batch-Normalized Convolutional Networks
described in [21]. Conv-Net in coarse retrieval is �ne-tuned on the
complete AD with C=589. The three category-speci�c CN-Nets
in �ne-grained retrieval are �ne-tuned on ADbird , ADf ood , and
ADcar with C = 362, 196, and 31, respectively. All experiments
are conducted on a server equipped with Intel Xeon E5-2650 CPU
and Tesla K40 GPU. Experiments in Sec. 5.2 are conducted on CUB-
200-2011 [45].

We use the widely-used Mean Average Precision (MAP) to eval-
uate the performance on OSFGIR-378K. Classi�cation accuracy is
used when we test on classi�cation tasks.

5.2 Analysis and Discussions on CN-Nets
Examples in Fig. 3 demonstrate that Conv-Net focuses on the dis-
criminative object regions, while Norm-Net covers more spatial
contexts. To verify this observation, we calculate the standard de-
viation (std) histogram of the response values in con�dence maps
on all training images, and compare the results of Conv-Net and
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Figure 5: Standard deviation histograms of response values
in con�dencemaps produced byNorm-Net andConv-Net on
all training images, respectively.

Table 2: The classi�cation accuracy of features extracted by
CN-Nets with di�erent number of shared layers. “Time” is
the feature extraction time. “Cn" and “Im" denote the n-th
convolutional layer and m-th inception layer, respectively.
“Cn-Cm" means Cn to Cm layers are shared. “-” denotes no
layer is shared.

Shared Layers - C1-C2 C1-I3b C1-I4c C1-I4e
Acc.(%) 83.9 84.5 85.1 83.9 84.4

Time(ms ) 50 41 34 29 26

Norm-Net in Fig. 5. Higher standard deviation (std) denotes more
unbalanced activations, i.e., the size of highly activated regions
would be smaller, and lower standard deviation (std) denotes that
the con�dence map contains similar activation values. As shown
in the �gure, the con�dence maps of Conv-Net show substantially
larger standard deviations than those of Norm-Net. This means that
Conv-Net tends to activate smaller discriminative regions, while
Norm-Net covers larger regions.

We conduct another classi�cation experiment to show the com-
plementarity of Conv-Net and Norm-Net features. It is easy to
observe from the results in Fig. 6 that, Conv-Net features get higher
accuracies than Norm-Net features because they are extracted from
more discriminative regions. It is also clear that, the combined
Conv-Net and Norm-Net feature, i.e., the CN-Nets feature, gets the
best accuracy. The �gure also shows that, although BN layer is
inserted at the end of Norm-Net, it a�ects the learned features in
preceding layers, e.g., inception5a and 5b.

As shown in Fig. 2, Conv-Net and Norm-Net share several lay-
ers in CN-Nets. Table 2 shows the e�ects of shared layers on the
discriminative power and extraction time of CN-Nets feature. It
can be observed that, sharing more layers between Conv-Net and
Norm-Net actually improves both the e�ciency and discriminative
power of the CN-Nets feature. For example, by sharing the C1-I3b
layers, CN-Nets feature obtains the highest classi�cation accuracy
and only needs 34ms for feature extraction. This validates that the
structure of CN-Nets is e�cient and reasonable.

5.3 Comparison with Other Deep Features
To test the discriminative power of CN-Nets feature, we compare it
with deep features extracted with recent deep learning models, i.e.,
Res-152 [19], BilinearCNN [32], and Spatial Transformer Networks
(STN) [22] in FGVC tasks on CUB-200-2011 [45] and Car196 [28],
respectively. We summarize the results in Table 3.
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Among the compared features, CN-Nets feature achieves the
best classi�cation accuracy. E.g., single CN-Nets outperforms both
the recent BilinearCNN and STN on CUB-200-2011 and Car196. We
also compare with an attribute-based method [35] and a part-based
method [27], which use extra cues for model training and currently
report the highest classi�cation accuracies on CUB-200-2011 and
Car196, respectively. As shown in Table 3, by simply concatenating
the features from two CN-Nets, fused CN-Nets outperforms both
of these works. The above comparisons clearly show CN-Nets is a
powerful feature extractor for �ne-grained species.

It is also necessary to point out that, CN-Nets is the fastest deep
feature extractor in Table 3. CN-Nets only needs 34ms to extract
the feature. The Fused CN-Nets needs about 60ms . They are both
faster that STN and BilinearCNN, which cost about 80ms and 100ms ,
respectively. CN-Nets is also faster than attribute-based [35] and
part-based [27] methods, which need to �rstly localize the parts and
then generate the description for each part. Therefore, the CN-Nets
is also an e�cient deep network.

Finally, CN-Nets is also easier to train on new datasets, because
it uses simple network structure and involves fewer parameters
by removing the fully connected layers. Consequently, CN-Nets
features better scalability than more complicated networks like
STN and BilinearCNN. As a consequence, the CN-Nets is better
suited for the proposed OSFGIR task.

5.4 OSFGIR Performance
The coarse retrieval extracts a 32-dim feature and trains a three-way
category classi�er for category-speci�c CN-Nets selection. We thus
�rst test the validity of this compact feature and the 3-way clas-
si�er. Table 4 shows that, the original 1024-dim Conv-Net feature
performs well in identifying the coarse object categories. Further
applying PCA to reduce the dimensionality does not degrade the
accuracy, e.g., 32-dim feature achieves a slightly better accuracy of
97.67%. Therefore, the 32-dim feature and the classi�er are e�ective
for coarse retrieval and CN-Nets selection.

We then discuss the accuracy of the coarse-to-�ne retrieval
framework. As shown in Table 5, coarse retrieval achieves the Mean
Average Precision (MAP) of 9.18%. The coarse-to-�ne retrieval with
the 2048-dim feature f imдCN signi�cantly boosts the performance

Table 3: Comparison of classi�cation accuracy (%)with other
deep features. “Time” denotes the feature extraction time.
“Complexity" measures the complexity of deep model train-
ing on a new dataset. “Fused CN-Nets” concatenates the fea-
tures of two CN-Nets sharingC1-I3b andC1-I4e layers, respec-
tively. “CN-Nets” denotes the network sharing C1-I3b layers
(refer to Table 2).

Methods Time(ms) Complexity CUB200 Car196
Res-152 [19] 120 Easy 79.8 90.45
STN [22] 80 Hard 84.1 -
Bilinear [32] 100 Medium 84.1 91.3
Recent Report ≥ 100 85.5 [35] 92.6 [27]
CN-Nets 34 Easy 85.1 92.39
Fused CN-Nets 60 Easy 85.65 93.06

Table 4: The accuracy of the 3-way classi�er with di�erent
feature dimensionality.

Dim 1024 512 128 64 32
Acc.(%) 97.22 97.12 97.25 97.56 97.67

Table 5: The retrieval performance on OSFGIR-378K. “Dim”
denotes the feature dimensionality. “Coarse” and “C-to-F”
denote the coarse retrieval and coarse-to-�ne retrieval, re-
spectively.

Methods Net. input size Dim MAP(%)
Coarse 224×224 1024 11.27
Coarse 224×224 32 9.18
C-to-F_f imдCN 448×448 2048 22.19
C-to-F_f imдCN 448×448 512 22.22
C-to-F_Uni�ed 448×448 2048 16.90

from 9.18% to 22.19%. After reducing the feature dimensionality
to 512, the retrieval performance increases to 22.22%. The large
improvement over coarse retrieval demonstrates the importance
of �ne-gained retrieval stage. The retrieval results with complete
feature f concatenating f imдCN and fr eдCN will be presented in Sec. 5.5.

During �ne-grained retrieval, we use category-speci�c CN-Nets
for feature extraction. To show the validity of this strategy, we com-
pare with the performance of a Uni�ed-CN-Nets �ne-tuned on the
complete auxiliary dataset. As shown in Table 5, category-speci�c
CN-Nets plus the accurate 3-way category classi�er achieves a
signi�cantly better performance, e.g., 22.19% vs 16.90% of Uni�ed-
CN-Nets. The above experiments clearly show the validity of our
coarse-to-�ne retrieval framework.

The online querying time consists of �ve operations, i.e., two
feature extractions, two retrievals, and one classi�cation. We �nally
analyze the time complexity and summarize the details in Table 6.
As shown in the table, our total online query time is about 270ms.
The coarse retrieval returns results in less than 100ms to reduce the
search space. This allows the online retrieval to �nish retrieval in
less than 170ms using more powerful features.
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Table 6: The time complexity of ourOSFGIR system. ∗means
the running-time is evaluated on GPU K40.

Stages Operations Time(ms )
Coarse Feature Extraction 21∗

Retrieval Retrieval 73.1
Classi�er 8

Fine-Grained Feature Extraction 68∗
Retrieval Retrieval 100

Total 270.1

Table 7: Comparison with other methods on OSFGIR-378K.

Methods Net. input size Dim MAP(%)
VGG19+VLAD [53] 224×224 512 4.14
VGG19+MAC [44] 224×224 512 9.6
VGG19+NeuralCode [3] 224×224 4096 10.17
VGG19+CROW [26] 224×224 512 10.73
Res-152 [19] 224×224 1024 12.13
L2_fCN 224×224 2048 12.93
GoogLeNet 448×448 1024 14.9
Res-152 448×448 1024 14.7
CompactBilinear CNN [13] 448×448 8192 15.06
L2_fCN 448×448 2048 16.90
C-to-F_f 448×448 1024 23.68
C-to-F_f+QE 448×448 1024 26.31

5.5 Comparison with Existing Methods
To further test the performance of our OSFGIR system, we com-
pare with recent image and instance retrieval methods including
NeuralCode [3], CROW [26], CNN+VLAD [53], MAC [44], and
CompactBilinear CNN [13]. To make the comparison fair, we �ne-
tune the network of each method on the auxiliary dataset. For
NerualCode, we use the output of the f c6 layer in VGG19 as the
feature. For the method of [44, 53], we employ the output of the last
convolutional layer, i.e., conv5_4 to extract feature. The CROW is
implemented based on the pool5 of VGG19. The comparsions with
di�erent network input sizes are summarized in Table 7.

L2_fCN denotes directly using Euclidean distance and the 2048-
D original CN-Nets feature extracted from the entire image for
retrieval. The comparison shows our work outperforms existing
retrieval methods by large margins, e.g., our work achieves the MAP
of 23.68% using the �nal 1024-dim CN-Nets feature f . This is signi�-
cantly better than 14.7% of Res-152, and 15.06% of CompactBilinear
CNN [13].

Referring to the results in Table 5, we can infer that the �nal
1024-dim CN-Nets feature f boosts the retrieval performance from
22.22% to 23.68%. Additionally, applying QE further improves the
retrieval performance to 26.31%. Therefore, we can conclude that,
CN-Nets is a powerful feature extractor, and our coarse-to-�ne
retrieval work is e�ective and e�cient for OSFGIR. Therefore, this
work proposes an e�ective and e�cient solution to the challenge of
large-scale �ne-grained identi�cation of unseen objects. Retrieval
examples of our work can be found in Fig. 7, where our method
substantially outperforms the CompactBilinerCNN [13].

Query

Query

Query

Query

Query

Query

Figure 7: Several examples of Top-5 retrieved images of our
method (�rst row) and CompactBilinearCNN [13] (second
row). Green solid and red dashed bounding boxes denote
true positive and false positive, respectively.

6 CONCLUSION
This paper presents a novel OSFGIR approach to tackle the challeng-
ing large-scale �ne-grained identi�cation of unseen objects. OSF-
GIR aims to return a ranked list of images containing the identical
�ne-grained specie in the query from a large-scale dataset. We �rst
de�ne the OSFGIR problem and construct a OSFGIR-378K dataset
containing about 378K images and 1,985 �ne-grained species. To
extract discriminative descriptors for the �ne-grained species, we
propose the Convolutional and Normalization Networks (CN-Nets).
CN-Nets conducts one-shot learning on the auxiliary dataset to
extract two complementary deep features as the representation of
target testing data. A coarse-to-�ne retrieval framework is hence
proposed to chase a reasonable trade-o� between e�ciency and ac-
curacy. Experiments on OSFGIR-378K show that our descriptor and
retrieval framework achieve signi�cantly better performance than
existing FGVC and image retrieval methods. Further works will be
conducted to explore more e�cient one-shot learning algorithms
to optimize both the feature extraction and indexing modules.
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