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ABSTRACT
The huge variance of human pose and the misalignment of de-
tected human images signi�cantly increase the di�culty of person
Re-Identi�cation (Re-ID). Moreover, e�cient Re-ID systems are
required to cope with the massive visual data being produced by
video surveillance systems. Targeting to solve these problems, this
work proposes a Global-Local-Alignment Descriptor (GLAD) and
an e�cient indexing and retrieval framework, respectively. GLAD
explicitly leverages the local and global cues in human body to
generate a discriminative and robust representation. It consists
of part extraction and descriptor learning modules, where several
part regions are �rst detected and then deep neural networks are
designed for representation learning on both the local and global re-
gions. A hierarchical indexing and retrieval framework is designed
to eliminate the huge redundancy in the gallery set, and accelerate
the online Re-ID procedure. Extensive experimental results show
GLAD achieves competitive accuracy compared to the state-of-the-
art methods. Our retrieval framework signi�cantly accelerates the
online Re-ID procedure without loss of accuracy. Therefore, this
work has potential to work better on person Re-ID tasks in real
scenarios.

KEYWORDS
Person Re-Identi�cation; Global-Local-Alignment Descriptor; Re-
trieval Framework

1 INTRODUCTION
Person Re-Identi�cation (Re-ID) targets to probe and return images
containing the identical query person from a gallery set. Because of
its promising applications in video surveillance and public security,
person Re-ID has drawn more and more attention in recent years.
As shown in Fig. 1, the appearance of a person image can be easily
a�ected by various factors like camera viewpoint, human pose, illu-
mination, occlusion, etc. Those make identifying a speci�c person
from the large-scale gallery set a challenging task. To tackle this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MM’17, October 23–27, 2017, Mountain View, CA, USA.
© 2017 ACM. 978-1-4503-4906-2/17/10. . . $15.00
DOI: https://doi.org/10.1145/3123266.3123279

Figure 1: Examples of detected pedestrian images fromMar-
ket1501 (�rst row) and CUHK03 (second row).

challenge, most of person Re-ID works focus on two stages, i.e., de-
scriptor learning and distance metric learning. Descriptor learning
aims to learn a discriminative descriptor to represent the appear-
ances of di�erent persons. Distance metric learning is designed to
reduce the distance among descriptors of images containing the
same person. Traditional descriptor learning methods usually ex-
tract rigid local invariant features. Su�ering from the huge variance
of human pose and camera viewpoint, these descriptors are not
robust enough and often fail to identify person. Most of distance
metric learning methods take a pair of pedestrian images as input,
thus correspond to the high complexity. Inspired by the success of
Convolutional Neural Networks (CNN) in large-scale visual classi-
�cation, latest works start to design deep learning algorithms and
have achieved signi�cant improvements.

Most of deep learning based works learn descriptors from the
whole pedestrian images. Such descriptors thus depict the global
cues but may lose crucial details. This problem has been noticed
in previous works [6, 37, 39, 40], where the researchers divide the
whole pedestrian image into several �xed-length strips. By learn-
ing descriptors on these strips rather than the whole image, these
methods [6, 37, 39, 40] explicitly embed more detailed local cues.
Experiments show such descriptors substantially outperform the
global descriptors. However, �xed-length strips would be sensitive
to the pose variance and person misalignment. As illustrated in Fig.
1, misalignment commonly exists in detected pedestrian images.
Therefore, more delicate ways should be designed to overcome the
pose variance and misalignment issues.

Aiming to solve the above issues, we propose the Global-Local-
Alignment Descriptor (GLAD), which is generated with two mod-
ules, i.e., part extraction and descriptor learning. Part extraction
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module utilizes Deeper Cut [13] to estimate four human key points
that are robust for various poses and camera viewpoints. Three
coarse part regions, i.e., head, upper-body, and lower-body are
hence generated based on the estimated key points. To explicitly
embed part cues in the learned representation, a CNN composed of
four sub-networks is proposed in descriptor learning module. Those
sub-networks share several convolutional layers and are designed
to learn descriptors on three part regions and the global image, re-
spectively. During the training stage, the shared convolution layers
can be e�ciently optimized by multiple learning tasks on di�erent
body regions to avoid over�tting. After network training, we feed
the three part regions and global image into the neural network
to extract four descriptors, which are �nally concatenated as the
GLAD. Therefore, GLAD contains both the global and local cues,
thus is potential to be more discriminative. GLAD also could be
more robust to the pose variance and image misalignment issues
because the human body is divided in a more meaningful way.

Person Re-ID is commonly solved as a classi�cation or distance
metric learning problem [1, 15, 18, 24, 27, 36, 40, 41], which suf-
fer from massive computations of classi�er training and the high
time complexity for online pairwise matching. To make our Re-ID
system scalable on large-scale datasets, we regard person Re-ID as
a �ne-grained pedestrian retrieval task, and focus on designing a
more e�cient indexing and retrieval framework. In person Re-ID
gallery sets, each person would has multiple samples. This implies
data redundancy and could be optimized by indexing strategies.
Our indexing algorithm is thus designed to group samples of the
same person into one unit. Speci�cally, we propose a Two-fold
Divisive Clustering algorithm (TDC) to group di�erent samples of
one person together through dividing samples of di�erent persons
in a greedy manner. Finally, a descriptor is generated to depict the
visual cues of each group. The online Re-ID procedure can be re-
garded as a two-folder retrieval, where the coarse retrieval retrieves
image groups, and a �ne retrieval is then conducted to get a precise
image ranklist. In other words, we need not match the query person
image against each gallery image during retrieval procedure. So,
our retrieval strategy can e�ectively speed up the online Re-ID.

Although there are many deep learning based person Re-ID
works, our work di�ers from them in the aspects of introducing a
more e�cient online Re-ID strategy and considering delicate part
cues. Zheng et al. [43] also propose a pose invariant embedding
framework to solve the misalignment issue. Ten �ne-grained parts
are extracted by estimating human key points. These parts are
�rst normalized by a�ne transformation, then are combined to
compose a global pose invariant image. The �nal representation
is hence extracted from the standard pose image. Therefore, the
representation in [43] is not learned explicitly on local parts and
still belongs to the global representation. Moreover, as shown in
our experiments, �ne-grained part extraction is easily a�ected by
image noises, pose and viewpoint variances. For instance, arms can
be invisible due to occlusion or pose changes. Our experiments also
show mandatory detection of �ne-grained parts, e.g., arms, results in
noisy part regions and degrades the Re-ID performance. Extensive
experimental results on three public datasets show our GLAD and
retrieval framework present competitive accuracy and e�ciency
compared to the state-of-the-art methods. Our method also presents

substantial advantages on automatically detected pedestrian images.
Therefore, we conclude this work has potential to be more robust
and e�ective in real scenarios, and our contribution is valuable.

2 RELATEDWORK
This work is related with deep learning based person Re-ID and
human part detection for person Re-ID. The following parts brie�y
review several works on these two categories, respectively.

2.1 Deep Learning based Person Re-ID
Deep learning shows remarkable performance in computer vision
and multimedia tasks and has become the main stream method
for person Re-ID. Current deep learning based person Re-ID meth-
ods can be divided into two categories based on the usage of deep
neural network, i.e., feature learning and distance metric learning.
Feature learning networks aim to learn a robust and discriminative
feature to represent pedestrian images. Cheng et al. [6] propose a
multi-channel parts based network to learn a discriminative feature
with an improved triplet loss. Wu et al. [37] discover hand-crafted
feature is complementary with CNN feature. They thus divide one
image into �ve �xed-length part regions. For each part region, a his-
togram descriptor is generated and concatenated with the full body
CNN feature. Su et al. [25, 26] propose a semi-supervised attribute
learning framework to learn binary attribute features. In [45], iden-
ti�cation model and veri�cation model are combined to learn a
discriminative representation. In [38], a new dropout algorithm is
designed for feature learning on a multi-domain dataset, which is
generated by combining several existing datasets.

Siamese network is commonly used to learn better distance met-
rics between the input image pair. Yi et al. [40] propose a siamese
network composed of three components, i.e., CNN, connection
function, and cost function, respectively. Similar with [6], several
�xed-length part regions are divided and trained independently.
In [36], an end-to-end siamese network is proposed. By utilizing
small �lters, the network goes deeper and obtains a remarkable
performance. Ahmed et al. [1] design a new layer to capture lo-
cal relationships between input image pair. In [20], comparative
attention network is proposed to adaptively compare the similarity
between images.

2.2 Human Part Detection for Person Re-ID
Human parts provide important local cues of human appearance.
Therefore, it is natural to design part detection algorithms for per-
son Re-ID in some early person Re-ID works [3, 7, 8]. Motivated
by the symmetry and asymmetry properties of human body, Faren-
zena et al. [8] propose to detect salient part regions by the per-
ceptual principles of symmetry and asymmetry. In [7], Cheng et
al. propose a pictorial structure algorithm to detect parts. In [3],
deformable part model [9] is utilized to detect six body parts. Most
of recent deep learning based methods directly divide pedestrian
images into �xed-length regions and have not paid much attention
in leveraging part cues [17]. Recently, Zheng et al. [43] adopt the
convolution pose machines [35] to detect �ne-grained body parts
and then generate a standard pose image, which is hence utilized
to generate descriptors. Therefore, the representation [43] is not
learned explicitly on local parts. Also, �ne-grained part extraction
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is expensive and could be easily a�ected by image noises, pose
and viewpoint variance. Those factors would degrade the Re-ID
accuracy and e�ciency.

3 PROBLEM FORMULATION
Given a probe image p, person Re-ID targets to identify and return
images containing the identical person in p from a set of gallery
images {(д1, l1), (д2, l2), ..., (дN , lN )}, where дi and li denote the i-
th gallery image and its person ID label, respectively. Person Re-ID
can be tackled by classifying those gallery images [25, 36, 37, 45], or
by an image retrieval procedure, i.e., ranking those images based on
a descriptor and a distance metric d (fp , fi ), where f represents the
generated image descriptor, and d (·) denotes the distance between
probe image and gallery image. The returned ranklist of N images
could be denoted as {r1, r2, ..., rN }, where ri is the sorted index of
image дi . Under the retrieval formulation, the objective function of
person Re-ID can be summarized as Eq. (1), i.e.,

min
N∑
i=1

ri I(lp , li ), I(lp , li ) =
{

1 lp = li
0 lp , li

, (1)

where lp is the person ID label of the probe image p.
Compared with person classi�cation, treating person Re-ID as a

retrieval task has potential to better cope with large-scale data and
present improved generalization ability to unseen samples. There-
fore, the retrieval formulation may work better in real scenarios,
because the probe persons commonly do not exist in the training
set. Under the retrieval formulation, person Re-ID consists of two
critical steps: 1) robust and discriminative descriptor generation,
and 2) e�cient image similarity computation and ranking.

Targeting to deal with the image misalignment and pose variance
issues, we present Global-Local-Alignment Descriptor in Sec. 4.
Most of previous Re-ID works focus on descriptor generation, and
has not paid much attention to e�cient gallery image indexing and
ranking. In Sec. 5, we propose an e�cient indexing and retrieval
framework that makes person Re-ID using GLAD more e�cient.

4 GLOBAL-LOCAL-ALIGNMENT
DESCRIPTOR

The framework of GLAD extraction is summarized in Fig. 2. It
can be observed that, we �rst detect several body parts from an
input person image, then learn descriptors from both the global and
local regions. Through detecting more subtle body parts, GLAD
has potential to be robust to the misalignment and would gain
more discriminative power by explicitly embedding global and
local cues. In the following, we present the part extraction module
and descriptor learning module, respectively.

4.1 Part Extraction
Body part extraction has been studied by many pose estimation
works [13, 21, 22, 29, 30]. However, the pedestrian images in person
Re-ID are taken in unconstrained environment, and are easily af-
fected by occlusions, viewpoint changes, and pose variances. Those
factors make it di�cult to detect �ne-grained parts. For example,
either the left or right arms cannot be detected in side view images
of pedestrian. Mandatory detection of such parts results in noisy
part regions and may degrade the Re-ID performance. The above
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Figure 2: Framework of GLAD extraction, which includes
two modules, i.e., part extraction and descriptor learning.
Three parts are extracted based on four detected key points.
A four-streamCNN is designed to generate descriptors from
both the global and local regions.

issues motivate us to consider parts that could be easily and reliably
detected under various viewpoint and pose changes.

Speci�cally, we utilize Deeper Cut [13] to estimate only four key
points, i.e., upper-head, neck, right-hip, left-hip, respectively on
the pedestrian image. As shown in Fig. 3, based on those four key
points, we can coarsely divide a pedestrian image into three part
regions: head, upper-body, and lower-body, respectively. The head
region can be located based on upper-head point and neck point.
Suppose the size of person image is H ×W and the coordinates of
upper-head point and neck point are (x1,y1) and (x2,y2), we crop
the head region Bh with Eq. (2), i.e.,

Bh = [(xc −w/2,y1 − α ), (xc +w/2,y2 + α )],
w = y2 − y1 + 2 · α ,
xc = (x1 + x2)/2,

(2)

where the Bh is located by coordinates of the upper-left and bottom-
right points. α is a parameter controlling the overlap between neigh-
boring parts regions. α is experimentally set as 15 for the 512 × 256
sized person image.

Suppose the coordinates of left-hip and right-hip points are
(x3,y3) and (x4,y4), the upper-body region Bub and the lower-
body region Blb can be captured in similar way with Eq. (3), i.e.,

Bub = [(0,y2 − 2 · α ), (W − 1,yc + 2 · α )],

Blb = [(0,yc − 2 · α ), (W − 1,H − 1)],
yc = (y3 + y4)/2,

(3)

Examples of detected keypoints and part regions are illustrated
in Fig. 3. It can be observed that, the four key points, i.e., upper-
head, neck, right-hip, left-hip are more robust to pose and viewpoint
changes than the other keypoints. The three part regions hence
could be reliably extracted. Because the keypoints on human foot
are not stable, it is di�cult to con�rm the bottom coordinate of
lower-body region. We thus simply set the bottom of the image as
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Head region Upper-body region Lower-body region

Figure 3: Examples of detected keypoints and generated
three part regions. The four keypoints used in our method
are emphasized with large size.

the bottom of lower-body region. More extensive evaluations on
the validity of part extraction will be given in Sec. 6.4.

4.2 Descriptor Learning
Existing deep neural networks such asAlexNet [16],GoogLeNet [28],
VGGNet [23], and ResNet [12] have been utilized to learn descriptors
on the global image for person Re-ID. To explicitly leverage global
and local cues for descriptor learning, we propose a four-stream
CNN. As illustrated in Fig. 2, the proposed network includes one
sub-network for global descriptor learning and three sub-networks
for part descriptor learning, respectively. These sub-networks share
the identical structure and can be initialized by exiting network
structures and parameters.

Speci�cally, our network is modi�ed and initialized from GoogLe-
Net [28] by replacing its fully connected layers with two convo-
lutional layers as classi�er. As shown in Fig. 2, we call the �rst
convolutional layer as feature layer because it is used for feature
extraction. The latter convolutional layer directly produces C fea-
ture maps corresponding to C classes in the training set. Therefore,
we call those feature maps as con�dence maps, which essentially
show the classi�cation con�dences.

Based on the con�dence maps, we apply Global Average Pool-
ing (GAP) to generate the classi�cation score for each class. GAP
averages the responses on each two-dimensional feature map, i.e.,

Sc =
1

X × Y

X∑
x=1

Y∑
y=1

Mc (x ,y), (4)

where Sc denotes the classi�cation score of the c-th class, and
Mc (x ,y) is the response value at location of (x ,y) on the con�dence
map corresponding to the c-th class. X and Y are the width and
height of the con�dence map, respectively. Following GAP, softmax
loss function is used to compute the network loss.

This updated architecture removes the fully connected layers and
shows several advantages for feature learning. 1) It has fewer pa-
rameters, thus could better avoid over�tting on small training sets.
2) Without fully connected layers, it accepts images with arbitrary
scales as input. We thus could resize the input image into larger
scales to allow the neural network capture more detailed cues. Ex-
periment result shows our network generates more discriminative
feature than many existing algorithms.

For the global descriptor learning, the input image is the original
image with scale resized to 512 × 256. For descriptor learning on

head, the head region is resized to 96 × 96 as the network input.
For upper-body and lower-body sub-networks, the input size is
set as 224 × 256, respectively. These sub-networks are trained in
di�erent classi�cation tasks, i.e., each task aims to classify the global
or local input regions into correct person classes. As illustrated in
Fig. 2, instead of training the four sub-networks alone, we train
them together with sharing weights in convolution layers. This
optimizes the convolutional layers in di�erent tasks and hence
better avoids over�tting. We evaluate this strategy in Sec. 6.3.

During testing, we use the feature maps produced by feature
layer to generate descriptors. Suppose M channels of feature maps
are generated in the feature layer, we �nally generate an M di-
mensional feature descriptor by GAP on each feature map. The
descriptors extracted on four regions are concatenated as the �nal
GLAD, i.e.,

fGLAD = [fG ; fh ; fub ; flb ], (5)

where fGLAD denotes the �nal GLAD. fG represents the learned
feature on the global image, fh , fub and flb are descriptors gener-
ated from the three sub-networks, respectively. Therefore, GLAD is
an 4 ×M dimensional vector, which explicitly contains global and
local cues. We experimentally set M as 1024, which generates an
4096-dim GLAD.

By only detecting robust coarse part regions, GLAD seeks a rea-
sonable trade-o� between part detection accuracy and robustness
to misalignment and pose changes. Therefore, GLAD would be
more robust to misalignment issues than global features. Moreover,
GLAD is trained with multiple losses computed on di�erent regions.
This essentially enforces the network to focus on di�erent parts and
learn discriminative feature for each of them. This training strategy
has potential to learn more discriminative features than previous
deep features, which may get over�tted to the most discriminative
parts on the training set and ignores the others. Detailed evaluations
on GLAD will be presented in Sec. 6.3.

5 RETRIEVAL FRAMEWORK
Based on the GLAD, we proceed to propose a hierarchical indexing
and retrieval framework illustrated in Fig. 4. As shown in Fig. 4, the
o�ine indexing stage clusters similar images into the same group.
This is motivated by the fact that, each person has multiple samples
in the gallery set, e.g., one person can be recorded for multiple times
by di�erent cameras. Carefully grouping these samples together
thus reduces the data redundancy and improves the online retrieval
e�ciency. Moreover, sample grouping is potential to signi�cantly
improve the accuracy of person Re-ID. For each person in the gallery
set, the generated group may contain both his/her samples that
can be easily identi�ed and samples that can be hardly identi�ed.
Those hard samples thus can be retrieved together with the easy
samples as one group during online retrieval. Therefore, e�cient
o�ine grouping algorithms should be designed.

There are many ways to cluster the images into groups [42]. Be-
cause the number of identities in person Re-ID gallery is unknown,
it is hard to set the group number manually and makes cluster-
ing methods like K-Means [11] not optimal for this task. We thus
propose a clustering method, called Two-fold Divisive Clustering
(TDC) that does not need to manually specify the group number.
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Figure 4: Our retrieval frameworkmainly contains twomod-
ules, i.e., o�line grouping and coarse-to-�ne online retrieval.
Two-fold Divisive Clustering (TDC) gathers similar images
into groups. Images in returned groups are retrieved with
original GLAD to generate an image ranklist.

Similar with H-LDC [34], TDC is a greedy strategy that divides im-
ages in galley into groups and ensures samples in each group share
strong similarity with each other. For TDC, the group dissimilarity
degree measurement is de�ned as

Ddis =
1

N × (N − 1)

N∑
i=1

N∑
j=1

dis (дi ,дj ), (6)

where Ddis denotes the dissimilarity degree within a group, and N
is the number of images in the group. dis (·) represents the squared
Euclidean distance between two images in the group, i.e., дi and дj .

TDC is conducted to divide the image gallery into groups in a
greedy manner, and �nally ensures the dissimilarity degree within
each group below a threshold θ . Details of TDC are summarized in
Algorithm 1. Compared with K-Means related methods, TDC does
not require the pre-de�ned cluster number and only has one pa-
rameter, i.e., the dissimilarity degree threshold θ . Our experiments
in Sec. 6.6 show that this parameter could be easily tuned. Our
current work computes dis (дi ,дj ) with GLAD. More discriminative
features could be leveraged to further improve the quality of groups.
This will be studied in our future work.

After o�ine clustering images into groups, we generate a group
descriptor to depict the visual appearance of each group. We gener-
ate the group descriptor wth Eq. (7), i.e.,

fG (i ) =
1
N

N∑
j=1

fGLADj (i ), (7)

where fG (i ) denotes the i-th dimension of group descriptor fG .
N is the number of samples in the group, and fGLADj (i ) is the i-
th dimension in GLAD of the j-th sample. For every group, we
can get an 4096-dim feature descriptor. To speed up the similarity
computation, we reduce the dimensionality of fG into 128 with
PCA for fast online retrieval.

Algorithm 1 Two-fold Divisive Clustering
Input: Gallery {д1,д2, ...,дN }, dissimilarity threshold θ
Output: Group set R

1: Initialization: G1 = {д1,д2, ...,дN }, R = {G1}, Count = 1
2:
3: while True do
4: ∀G∗ ∈ R: compute Ddis

∗ according to Eq. (6)
5: if ∃Ddis

∗ > θ then
6: for each G∗ with Ddis

∗ > θ do
7: Choose the furthest two samples (дl ,дr ) in G∗
8: GCount+1 = {}, GCount+2 = {}
9: for дj ∈ G∗ do

10: if dis (дj ,дl ) < dis (дj ,дr ) then
11: GCount+1 ← GCount+1 ∪ дj
12: else
13: GCount+2 ← GCount+2 ∪ дj
14: end if
15: end for
16: R ← R ∪ GCount+1 ∪ GCount+2
17: R ← R \ G∗

18: Count = Count + 2
19: end for
20: else
21: Break
22: end if
23: end while

As shown in Fig. 4, the online retrieval �rst retrieves image
groups. GLAD is �rst extracted from the query, then is converted
into an 128-dim vector with PCA. The 128-dim feature is used
to retrieve relevant image groups. Because the number of image
groups is signi�cantly smaller than the number of images, this
procedure can be e�ciently �nished. After the coarse retrieval, the
top K relevant groups are selected for �ne retrieval, i.e., the original
4096-dim GLAD is used to rank the images contained in the K
groups to get a precise image ranklist. We experimentally set K as
100. The two stages are performed to �rst quickly narrow-down the
search space, then re�ne the initial result, respectively. Thus, they
are combined to improve both the Re-ID e�ciency and accuracy.
This retrieval framework is evaluated in Sec. 6.6.

6 EXPERIMENTS
6.1 Datasets
We evaluate the proposed methods on three widely used person
Re-ID datasets, i.e., Market1501 [44], CUHK03 [17], and VIPeR [10].

Market1501 [44] is composed of 1,501 identities automatically
detected from six cameras. The dataset clearly de�nes and splits
training and testing sets. The training set contains 12,936 images
of 751 identities. 19,732 images of 750 identities are included in the
testing set. Market1501 is a large-scale dataset and is designed for
pedestrian retrieval task. Therefore, mean Average Precision (mAP)
is also used to evaluate person Re-ID algorithms.

CUHK03 [17] consists of 1,467 identities captured from two cam-
eras. Automatically detected images by pedestrian detector and
human labeled bounding boxes are both provided. On average,
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Table 1: Comparison of di�erent feature fusion and training
strategies on Market1501. Baseline denotes the descriptor
generated by our modi�ed GoogLeNet [28] on the original
image.

Training Strategy Descriptor mAP Rank-1
- Baseline 60.3 80.7

Global 60.3 80.7
Upper+Lower body 53.8 79.8

WO/S Head+Upper+Lower body 49.6 77.3
Head+Upper+Lower body (W) 55.7 81.0

GLAD 71.0 87.9
Global 66.1 84.6

Upper+Lower body 60.9 84.2
W/S Head+Upper+Lower body 55.6 81.8

Head+Upper+Lower body (W) 62.8 85.5
GLAD 73.9 89.9

each person has 4.8 images under each camera. CUHK provides 20
split sets, each randomly selects 1,367 identities for training and the
rest fort testing. We choose the �rst split set and report the average
accuracy after repeating the experiments for 1,000 times.

VIPeR [10] is smaller than Market1501 and CUHK03. It contains
632 identities and 1,264 images taken by two cameras. 316 identities
are randomly chosen as training data, the rests are hence used as
testing data. Because of its small size, the training set in VIPeR is
enhanced to make deep model training possible. More details of
training procedure on VIPeR are summarized in Sec. 6.2.

6.2 Implementation Details
We use Ca�e [14] to implement the neural networks. To estimate
keypoints for GLAD extraction, we use Deeper Cut [13] model
pre-trained on the MPII human pose dataset [2]. During GLAD
learning procedure, an initial learning rate is set as 0.001, and is
divided by 2 after every 20,000 iterations. Fine-tuning is applied
on the target training set to avoid over�tting. On Market1501 and
CUHK03, we train our network with 100,000 iterations. On VIPeR,
we combine VIPeR training set with the training sets of CUHK03
and Market1501, then train the neural network on this mixed dataset
with 100,000 iterations. All experiments are conducted on a server
equipped with GeForce GTX 1080 GPU, Intel i7 CPU, and 32GB
memory.

6.3 Evaluation on Descriptor Learning
Our descriptor is learned by a four-stream neural network on the
global and local regions. The four neural networks are trained with
shared parameters in convolutional layers. We thus �rst compare
di�erent feature fusion and training strategies to test the validity
of our descriptor learning method. The experimental results on
Market1501 are shown in Table 1. In Table 1, WO/S denotes training
without parameter sharing, and W/S denotes training with shared
parameters. “Global” denotes f G extracted by our four stream net-
work on the global image. “Upper+Lower body” fuses f ub and f lb .
“Head+Upper+Lower body” fuses features on three local regions,
and “GLAD” fuses the four descriptors in Eq. (5).

In Table 1, it is obvious that, sharing parameters during train-
ing substantially boosts the performance of learned descriptors.

Probe

Probe

Probe

Probe

False Positive True Positive

Figure 5: Examples of Re-ID results on Market1501. In each
example, the �rst row and second row show top-10 retrieved
images of baseline and GLAD, respectively.

This might be because, the shared convolution kernels are forced to
learn both global and local cues, thus are trained with more samples
and could better avoid over�tting. We also observe that, the global
feature performs better than features on local regions. This might
be because the global image contains more visual cues thus rea-
sonably conveys stronger discriminative power. This also explains
why the discriminative power of descriptor on the head region is
weaker than the ones on upper and lower body regions. As a result,
“Upper+Lower body” outperforms “Head+Upper+Lower body”, i.e.,
equally fusing another descriptor with low discriminative power de-
grades the performance of f ub and f lb . “Head+Upper+Lower body
(W)” denotes fusing the three descriptors with di�erent weights
decided by the size of the three regions, i.e., we set three weights
as 0.2, 0.4, 0.4, respectively. It is can be observed that, weighted
fusion results in better accuracy than both “Upper+Lower body”
and “Head+Upper+Lower body”. This means, with proper weight,
the descriptor on head region is still helpful in improving the Re-ID
performance.

By combining both the global and local descriptors, GLAD out-
performs all of the global and fused local descriptors. For instance,
GLAD signi�cantly outperforms our baseline by 13.6% on mAP and
9.2% on Rank-1 accuracy. The above experiments show the validity
of our descriptor learning strategy, i.e., embedding local and global
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Table 2: Performance of descriptors considering �ne-
grained part cues on Market1501. “*” denotes descriptors
are extracted from the standard pose image [43] generated
based on �ne-grained part cues.

Training Strategy Descriptor mAP Rank-1
- Baseline* 51.3 72.6

Global* 55.2 76.8
Upper+Lower body* 41.2 68.9

W/S Head+Upper+Lower body* 37.7 67.4
Head+Upper+Lower body (W)* 44.2 72.0

GLAD* 61.2 81.5

cues in a four-stream network with shared convolutional layers.
Examples of Re-ID results produced by our baseline and GLAD are
shown in Fig. 5.

6.4 Evaluation on Part Extraction
Because it is di�cult to detect accurate �ne-grained parts on per-
son Re-ID data, GLAD should be extracted on three coarse parts
rather than the �ne-grained parts. To estimate the validity of our
part extraction strategy, the most intuitive way is to compare our
descriptor with descriptors learned on �ne-grained parts using the
GLAD structure. Thus, we compare with a recent work that consid-
ers �ne-grained part cues for descriptor learning [43]. In [43], 10
parts are captured and normalized with a�ne transform to achieve
pose invariance. The normalized parts then compose a standard
pose image, which is expected to be invariant to misalignment and
pose changes. For fair comparison, we input the original image
and the standard pose image generated by [43] into our descriptor
learning module, then compare the learned GLAD descriptors on
these two inputs. In other words, the two GLADs are learned with
the same setting but on di�erent inputs, i.e., our method embeds
coarse part cues, and the other considers �ne-grained parts and
extra a�ne transformation. If the �ne-grained part cues are helpful
to learn robust descriptor, the GLAD considering �ne-grained part
cues should outperform the GLAD generated from coarse parts.

Table 1 shows the performance of GLAD extracted on coarse
parts. The performance of GLAD considering �ne-grained part
cues is summarized in Table 2. The comparison between Table 1
and Table 2 obviously shows that, descriptors generated on coarse
parts gets better performance than those considering �ne-grained
parts cues. This conclusion thus supports our discussions, i.e., �ne-
grained part region detection is unstable and may degrade the
performance of person Re-ID.

6.5 Comparison with Other Methods
To test the discriminative power of GLAD, we use the 4096-dim
GLAD and squared Euclidean distance for person Re-ID. On mar-
ket1501, we compare GLAD with many state-of-the-art works be-
longing to two categories, i.e., distance metric learning based meth-
ods and deep learning based methods, respectively. In the compari-
son, the metric learning based methods include Bow+Kissme [44],
WARCA [15], LOMO+XQDA [18], Null Space [41], SCSP [4]. Deep
learning based methods include Gated Siamese [31], LSTM Siamese
[32], PersonNet [36], DLCNN [45] and PIE [43]. The results are

Table 3: Comparison on Market1501 in single query mode.

Methods mAP Rank-1
BoW+Kissme [44] 20.8 44.4
WARCA [15] - 45.2
LOMO+XQDA [18] 22.2 43.8
Null Space [41] 35.7 61.0
SCSP [4] 26.4 51.9
PersonNet [36] 26.4 37.2
Gated Siamese [31] 39.6 65.9
LSTM Siamese [32] 35.3 61.6
DLCNN [45] 59.9 79.5
PIE [43] 56.0 79.3
Baseline 60.3 80.7
GLAD 73.9 89.9

shown in Table 3. In the table, we observe that our method out-
performs these previous works by large margins. For example, our
method outperform the best result of those compared works by
10.4% on Rank-1 accuracy and 14.0% on mAP, respectively.

On CUHK03, we compare GLAD with recent distance metric
learning based methods, including WARCA [15], LOMO + XQDA
[18], Null Space [41] and MLAPG [19]. Deep learning based methods
including PersonNet [36], SI-CI [33], Gated Siamese [31], LSTM
Siamese [32], Improved Deep [1], DGD [38] and PIE [43] are also
compared. Experiments are conducted on both the datasets with
labeled and detected bounding boxes. The results are show in Table
4 and Table 5, respectively. From the two tables, it is clear that GLAD
achieves promising performance. We achieve Rank-1 accuracy of
85.0% on the labeled dataset and Rank-1 accuracy of 82.2% on the
detected dataset, which outperform all the other works.

The comparisons on VIPeR are summarized in Table 6. WARCA
[15], Null Space [41], LOMO+XQDA [18], Mirror-KMFA [5], MLAPG
[19], SCSP [4] are compared as distance metric learning based
methods. Deep learning based methods include Gated Siamese [31],
LSTM Siamese [32], SI-CI [33], PIE [43] and PIE+Mirror+MFA [43].
We can observe that traditional distance metric learning based meth-
ods show substantial advantages over deep learning based methods.
This is mainly because VIPeR is not large enough for deep model
training. However, GLAD still achieves the best Rank-1 accuracy
among all of those methods, and constantly outperforms all the
other deep learning based methods at di�erent rank levels.

It is also necessary to note that, PIE [43] considers �ne-grained
parts to learn global descriptors. Our method substantially outper-
forms PIE on the three datasets. This also shows the advantages of
considering coarse part cues and explicitly embedding both local
and global cues for descriptor learning.

6.6 Performance of Retrieval Framework
Market1501 allows to implement person Re-ID as a pedestrian re-
trieval task. Therefore, we use Market1501 to evaluate our retrieval
framework. Our indexing and retrieval method involves one param-
eter θ in TDC, which is the threshold of dissimilarity degree within
each group. We thus �rst test the impact of θ on Re-ID performance.
Experimental results are summarized in Table 7.

Table 7 shows di�erent θ a�ect the number of generated groups.
Smaller θ requires larger similarity within each group, thus divides
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Table 4: Comparison on CUHK03 labeled dataset.

Methods Rank-1 Rank-5 Rank-10 Rank-20
LOMO + XQDA [18] 52.2 82.2 94.1 96.3
WARCA [15] 78.4 94.6 - -
MLAPG [19] 58.0 87.1 94.7 96.9
Null Space [41] 62.6 90.1 94.8 98.1
PersonNet [36] 64.8 89.4 94.9 98.2
Improved Deep [1] 54.7 86.5 93.9 98.1
DGD [38] 72.6 91.6 95.2 97.7
Baseline 74.4 95.4 97.9 99.1
GLAD 85.0 97.9 99.1 99.6

Table 5: Comparison on CUHK03 detected dataset.

Methods Rank-1 Rank-5 Rank-10 Rank-20
LOMO + XQDA [18] 46.3 78.9 88.6 94.3
MLAPG [19] 51.2 83.6 92.1 96.9
Null Space [41] 54.7 84.8 94.8 95.2
SI-CI [33] 52.2 84.3 92.3 95.0
Gated Siamese [31] 61.8 80.9 88.3 -
LSTM Siamese [32] 57.3 80.1 88.3 -
PIE [43] 67.1 92.2 96.6 98.1
Baseline 70.4 93.3 97.0 98.7
GLAD 82.2 95.8 97.6 98.7

Table 6: Comparison on VIPeR dataset.

Methods Rank-1 Rank-5 Rank-10 Rank-20
LOMO + XQDA [18] 40.0 67.4 80.5 91.1
WARCA [15] 40.2 68.2 80.7 91.1
Null Space [41] 51.2 82.1 90.5 95.9
MLAPG [19] 40.7 - 82.3 92.4
Mirror-KMFA[5] 43.0 75.8 87.3 94.8
SCSP [4] 53.5 82.6 91.5 96.7
SI-CI [33] 35.8 67.4 83.5 -
Gated Siamese [31] 37.8 66.9 77.4 -
LSTM Siamese [32] 42.4 68.7 79.4 -
PIE [43] 27.4 43.0 50.8 60.2
PIE+Mirror+MFA [43] 43.3 69.4 80.4 89.9
Baseline 39.2 63.3 75.6 82.9
GLAD 54.8 74.5 83.5 91.8

the samples in gallery into more groups. Note that, the group num-
ber equals to the sample number when θ = 0. It is obvious that
smaller θ improves the Re-ID performance. This is because smaller
θ tends to exclude outliers in each group and produces more ac-
curate coarse retrieval results. It also can been seen that, the �nal
accuracy is mainly decided by the �ne retrieval and is not sensitive
to θ . θ obviously a�ects the retrieval e�ciency. Larger θ generates
fewer groups, i.e., produces smaller search space for coarse retrieval.

To further show the bene�t of coarse retrieval, we test the impact
of feature dimensionality in coarse retrieval in Table 7. With low
dimensionality, the retrieval speed is substantially improved. For
example, with θ = 0.0015, reducing the dimensionality from 4096
to 128 substantially reduces the retrieval time from 176ms to 31ms.
The mAP and Rank-1 accuracy are almost unchanged, e.g., 73.2% vs.
73% on mAP and 89.9% vs. 89.8% on Rank-1 accuracy, respectively.

Table 7: Re-ID performance with di�erent θ and feature di-
mension in coarse retrieval.

θ Group Number Dim mAP Rank-1 Times(ms)
0.0000 19732 4096 73.9 89.9 368
0.0010 13509 4096 73.7 89.9 267
0.0015 8509 4096 73.2 89.9 176
0.0020 2558 4096 71.7 89.8 101
0.0015 8509 512 73.1 89.9 50
0.0015 8509 128 73.0 89.8 31
0.0020 2558 512 71.6 89.7 69
0.0020 2558 128 71.4 89.7 61

Such accuracy is similar to the one of GLAD in Table 3. With 128
or 512-dim feature, increasing θ does not constantly improve the
e�ciency, because �ne retrieval dominates the query time. Higher
θ generates larger group size, and enlarges the search space of �ne
retrieval, i.e., images in top-100 relevant groups.

Those comparisons imply our indexing and retrieval framework
e�ectively accelerates the online Re-ID without degrading the accu-
racy. We thus conclude that, our proposed person Re-ID procedure
is e�cient and expected to work well in large-scale person Re-ID
tasks.

7 CONCLUSION AND FUTUREWORK
This paper presents a GLAD descriptor and an e�cient indexing
and retrieval framework for pedestrian image retrieval. We �rst
discuss that person Re-ID can be tackled in a retrieval task. GLAD is
hence proposed with the motivation of generating a discriminative
feature descriptor robust to misalignment and pose change issues.
GLAD is extracted by explicitly learning the global and coarse part
cues in human body through a four-stream CNN model. An e�cient
indexing and retrieval framework is �nally proposed to accelerate
the online Re-ID procedure. In this framework, the pedestrian im-
ages in gallery set are �rst divided into groups with TDC for o�ine
indexing. Online retrieval �rst retrieves groups, then conducts �ne
retrieval to get a precise image ranklist. Extensive experiments
show the strong discriminative power of GLAD and high speed of
person Re-ID based on our indexing and retrieval framework.

Our current o�ine indexing needs to compute the pair-wise
similarity between images, thus requires high o�ine complexity.
Although this does not a�ect the online e�ciency, more e�cient
strategies like hashing and approximate k-NN methods will be
explored in our future work. Moreover, better o�ine grouping and
group feature extraction strategies will be studied, e.g., considering
extra features like time stamp and location cues.
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