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ABSTRACT 
The automatic determination of emotional state from multimedia 
content is an inherently challenging problem with a broad range 
of applications including biomedical diagnostics, multimedia 
retrieval, and human computer interfaces.  The Audio Video 
Emotion Challenge (AVEC) 2016 provides a well-defined 
framework for developing and rigorously evaluating innovative 
approaches for estimating the arousal and valence states of 
emotion as a function of time.  It presents the opportunity for 
investigating multimodal solutions that include audio, video, and 
physiological sensor signals.  This paper provides an overview of 
our AVEC Emotion Challenge system, which uses multi-feature 
learning and fusion across all available modalities.  It includes a 
number of technical contributions, including the development of 
novel high- and low-level features for modeling emotion in the 
audio, video, and physiological channels.  Low-level features 
include modeling arousal in audio with minimal prosodic-based 
descriptors.  High-level features are derived from supervised and 
unsupervised machine learning approaches based on sparse 
coding and deep learning.  Finally, a state space estimation 
approach is applied for score fusion that demonstrates the 
importance of exploiting the time-series nature of the arousal and 
valence states.  The resulting system outperforms the baseline 
systems [10] on the test evaluation set with an achieved 
Concordant Correlation Coefficient (CCC) for arousal of 0.770 vs 
0.702 (baseline) and for valence of 0.687 vs 0.638. Future work 

will focus on exploiting the time-varying nature of individual 
channels in the multi-modal framework.   

General Terms 
Algorithms, Experimentation 
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Affective Computing, Emotion Recognition, Speech, Deep 
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1. INTRODUCTION1 
The 2016 Audio-Visual Emotion Challenge (AVEC 2016) [10] 
aims to compare multimedia processing and machine learning 
methods for automatic speech, video, and physiological analysis 
of human emotion measured in arousal and valence.   

Our audio channel approach is first based on acoustic 
analysis of a subject’s speech utterance. In addition to the 
precomputed acoustic features that come with the dataset, we use 
our speech tools to extract acoustic features such as auditory 
loudness, pitch variation, and speaking rate along spectral tilt 
captured in the low cepstral coefficients. Moreover, we apply 
sparse coding, an unsupervised learning method, on the extracted 
audio speech features to compute the input vectors for our 
regressors based on support vector machine (SVM) and softmax 
regression neural network. We find that these features computed 
on the acoustic analysis are particularly superior in arousal 
prediction.  

Both SVM and (recurrent) neural network based regression 
have been known for their robustness in emotion prediction tasks 
[16, 17]. Despite its simplicity, linear SVM (or SVM regression) 
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is proven effective for the past AVEC challenges and chosen as 
the baseline method [10, 18], yielding on par with or better 
prediction performance with many other state of the art machine 
learning approaches.  Mel-Frequency Cepstral Coefficient 
(MFCC) and Shifted Delta Cepstrum (SDC) features are popular 
for many language and speaker identification tasks [20] when 
coupled with higher-level feature learning frameworks such as 
Gaussian mixture model (GMM) [21]. For our case, we employ 
sparse coding as a higher-level learning mechanism for SDC to 
discover useful representations for regressing the emotion 
dimensions by spectro-temporal decomposition of speech signals. 
Sparse coding has been known for state-of-the-art performances 
in discriminative computer vision and object recognition tasks 
[22, 23, 24].  

For our video channel processing our approach primarily 
uses the deep neural network models from Khorrami et al. [6] to 
predict the arousal and valence scores from the video data. 
Previous methods [2, 4, 9] have shown the benefits of using 
recurrent neural networks (RNNs) to improve performance, 
however their methods were trained on hand-crafted features 
(e.g., LGBP-TOP). Recent evidence from various areas of 
computer vision including emotion recognition [5, 7] has shown 
how learned feature representations like convolutional neural 
networks (CNNs) can achieve superior performance to hand-
crafted features. Despite these findings, few works [1, 3] have 
considered the merit of passing CNN features as input to the 
RNN.Our model first trains a single frame CNN to predict the 
output label. The pre-trained network is then used as a frame-wise 
feature extractor in order to generate input for an RNN.  

The evaluation criteria for the AVEC Emotion Challenge are 
dependent upon an estimation of the subject’s arousal and valence 
states as a function of time.  Various fusion approaches [34, 35] 
have been applied to this challenge, including state space 
approach such as Kalman Filtering [12-14] and Particle Filtering 
[14].  Kalman Filters are the optimal solution to the recursive 
linear systems estimation problem where process and 
measurement noise are Gaussian [11], and are utilized in our 
score fusion approach. 

1.1 RECOLA Dataset 
The Remote Collaborative and Affective Interactions (RECOLA) 
database [15] provides the dataset for the AVEC 2016 Emotion 
Challenge [10]. The corpus contains multimodal signals–audio, 
video, electro-cardiogram (ECG), and electro-dermal activity 
(EDA)–recorded synchronously from 27 French-speaking 
subjects. The subjects have French, Italian or German 
nationalities to provide some diversity in the expression of 
emotion.  The 27 subjects were broken into three groups of 9 
different subjects each: a train (TRAIN) set, a development 
(DEV) set, and a test (TEST) set. 

Ground-truth labeling of the corpus has been performed by 
six gender balanced French-speaking assistants. Time-continuous 
ratings of emotional arousal and valence measures are recorded 
using a 40-msec frame. The corpus provides inter-rater reliability 
measured by the intra-class correlation coefficient and the 
Cronbach’s α. Ratings are concatenated over all subjects. The 
root-mean-square error (RMSE), the Pearson Correlation 
Coefficient (CC), and the Concordant Correlation Coefficient 
(CCC) values are averaged over all possible pair of raters. In 
particular, the CCC is chosen as the emotion challenge measure 

The rest of this paper is organized as follows. Section 2 
provides an overview of the system architecture.  Next, we 
present technical overviews of our audio (Section 3), video 
(Section 4), physiological (5), and fusion (Section 6) approaches.  
This includes descriptions of our data processing pipelines, 
features, and machine learning approaches for training arousal 
and valence regressors.   Section 7 reports our results for an 
evaluation on the AVEC Emotion Challenge development set and 
makes comparisons with the AVEC baseline results.  Section 8 
provides concluding remarks for this work.   

2. MITLL-UIUC AVEC ARCHITECTURE 
An architectural overview for the channel-level processing of our 
emotion recognition system for AVEC 2016 is illustrated in 
Figure 1. Our approach is to integrate multiple machine learning 
pipelines as well as several different data input processes. Our 
system takes as input precomputed audio, video, and 
physiological features from the AVEC 2016 corpus.  

 

Figure 1. Emotion Recognition System Architecture 

 

Sections 3-5 will discuss the specifics of each of these pipelines, 
while Section 6 will discuss how to fuse the outputs of each of 
these systems into a single fused estimate of emotional state. 

 

3. AUDIO PROCESSING 
 

3.1 Overview 
For the audio channel, four different sets of audio features were 
considered for our system, which are discussed later in this 
section: 

1. Baseline AVEC features [10]. 

2. MFCC features. 

3. SDC features 

4. Prosody-based audio features. 

For each of these audio feature sets, higher-level features are 
extracted.  Our approach is principled in statistical machine 
learning and discussed in greater detail later in this section. In 
particular, we employ SVM-based regression. We have 
implemented high-level feature learning, namely sparse coding, 
on both the precomputed and extracted multimodal features. This 
is due to our hypothesis that regression on the learned high-level 
feature vectors should be more beneficial to emotion recognition 
than regressing directly on the raw features.    

Another important aspect of our system is the early and late 
fusion. Since we allow multiple feature formats, it is natural to 
integrate these features before a regression algorithm. This is 
known as early fusion. Also, since we implement multiple 
regression algorithms, it makes sense to combine their different 
regression outputs in a complementary way for the overall 
improvement in prediction. This late fusion comprises our 
system’s post-processing. 
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3.2 Audio Feature Extraction 
3.2.1 MFCC Feature Extraction 
MFCCs of speech frames are computed using a mel-scale 
filterbank. We extract 20-dimensional cepstral coefficients with a 
sliding Hamming window that takes in a 20-msec speech frame. 
The Hamming window is shifted forward with a 10-msec frame 
rate, resulting in a 50% overlap between the consecutive 
windowed frames.  In addition, we extract 20-dimensional delta 
cepstral coefficients. The final feature vectors have 40 dimensions 
formed by stacking the cepstral and delta cepstral coefficients. 

3.2.2 SDC  Feature Extraction 
We perform the shifted delta cepstral feature extraction using 

a spectral-based technique by Torres et al. [28]. Speech is 
analyzed with a Hamming window of 20-msec duration at a 10-
msec frame rate. The windowed speech waveforms pass through a 
mel-scale filterbank and RASTA filtering with per-utterance 
normalization to zero mean and unit variance. The SDC 
coefficients are calculated using the 7-1-3-7 scheme [19]. 
Concatenating with static cepstra, the spectral features extracted 
from speech form a 56-dimensional vector.  

3.2.3 Prosody Feature Extraction      
Using our audio/speech tools, we extract audio features from the 
wave files provided in the corpus. The audio preprocessing used 
in acoustic feature extraction involved estimation of low-level 
crosstalk in the signal. To isolate regions in which the person of 
interest is speaking, a simple energy-based method was used as 
follows.  First, the absolute value of the signal is raised to the 1/3 
power (an approximation to auditory loudness processing used 
Todd and Brown [29]) and convolved with a 100 ms Gaussian 
window. The result is normalized to have a maximum value of 1 
and, after informal analysis a threshold of 0.45 was applied to 
indicate low-energy regions of the audio. Finally, the cross talk 
regions were estimated as contiguous regions of detected low-
energy that were greater than 150ms. Subsequent acoustic 
analyses of the individual’s speech do not consider these crosstalk 
regions. Rather, for feature time instants that lie within these 
crosstalk regions, nearest neighbor interpolation was performed. 

The acoustic analyses follow a simple, interpretable 
framework similar to the ideas in [32].  Features are based on 
vocal effort, variations in intonation and speaking rate. First, 
vocal effort is captured by loudness and spectral tilt. The loudness 
is the total loudness output from the perceptual evaluation of 
audio quality (PEAQ) standard [25]. The spectral tilt is captured 
with the low order cepstral coefficients (CC0, CC1, and CC2) 
from a True envelope analysis [26]. The corresponding features 
are the mean loudness and cepstral coefficients in a 3 second 
trailing time interval with a 40ms step (to match challenge scoring 
conditions). Second, variations in intonation are captured by the 
range and standard deviation of pitch within these 3 second 
trailing analysis windows. The pitch is extracted using Praat and 
the top and bottom 5% of the values are removed to mitigate 
doubling and halving effects. The range (Rf0) and standard 
deviation (Sf0) of the (log) pitch form the intonation variation 
features. Finally, in the absence of phonetic alignments, an 
acoustic measure for speaking rate was estimated by counting the 
mean number of peak nonstationarities over the 3 second trailing 
window intervals. Peak nonstationarities are detected from the 
measure described in [27], smoothed with an 80 ms Gaussian 
window (to limit any variation within individual phones, e.g. sub 
50ms). Together, the loudness, low order cepstral, pitch variation 

and acoustic speaking rate features represent a set of simple, 
interpretable measures that inform the emotion prediction.  

3.3 High-level audio feature learning 
We adopt a semi-supervised approach that uses an unsupervised 
method, namely sparse coding, followed by a rather simplistic 
linear regression. The premise of unsupervised learning is to 
figure out a useful representational mapping by running through 
unlabeled and unbiased (e.g., uniform mix of various ground-truth 
labels) examples.  To avoid overfitting resulting from inevitably 
many learned features; we perform max or average pooling before 
regression. 

3.3.1 Sparse coding 
Sparse coding aims to learn an efficient data representation 

using a small number of basis vectors. Given a data input x ∊ RN, 
sparse coding solves a representation y ∊ RK (i.e., sparse feature 
vector of x) while simultaneously updating the dictionary D ∊ 
RNxK of K basis vectors in the L1-regularized optimization: 

idtsyDyx i
yD

 ,1..min
21

2

2,
  

where di is the ith dictionary atom in D, and λ is the penalty that 
induces a sparse solution y for a given x. We note that the sparse 
coding dictionary is an overcomplete matrix, meaning K > N. 
Hence, the solution y is larger in dimensionality than the input x, 
but only S << N elements in y are nonzeros. Sparse coding can 
alternatively be based on the L0-regularization, although the 
optimization problem that minimizes the L0 pseudo-norm of a 
solution in general is known to be intractable. We use the least 
angle regression (LARS) algorithm for solving the sparse coding 
problem and Mairal’s online dictionary learning method [30].  

3.4 Regression methods 
We use a linear support vector machine (SVM) to perform the 
regression task for arousal and valence. Under this regression 
framework, we optimize the following:  

2
2

1min w  

  tbxwandbxwtts ,,..  

where w is the regression weight applied to an input x for 
regression target t within a margin parameter ξ. Note the bias unit 
b for the regression. Specifically, we consider the L2-regularized 
L2-loss linear SVM with a unit bias. The SVM complexity 
parameter has been chosen between 10–5 and 1.  

We also use support vector regression (SVR). There are two 
commonly used versions of SVM regression, namely -SVR and 
-SVR. The original SVM formulations for regression use the 
cost parameter C with penalty  for the points that are incorrectly 
predicted. An alternative version of the SVM regression applies a 
slightly different penalty . The  value represents an upper 
bound on the fraction of training examples that are errors 
(significantly deviated predictions) and a lower bound for the 
support vector data points. Nevertheless, the same optimization 
problem is solved for either case. We have empirically decided to 
go with -SVR.  
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4. VIDEO PROCESSING 
4.1 Regression using video data 
4.1.1 Single Frame Regression CNN 
We first train a CNN on a single frame to regress the output label. 
The CNN has 3 convolutional layers consisting of 64, 128, and 
256 filters respectively, each of size 5x5. The first two 
convolutional layers are followed by a 2x2 max pooling while the 
third layer is followed by quadrant pooling. After the 
convolutional layers is a fully-connected layer with 300 hidden 
units and a linear regression layer to estimate the arousal/valence 
label. All layers save the last one use a rectified linear unit 
(ReLU) as the nonlinearity function. Our cost function is the 
mean squared error (MSE). All of our CNNs were trained using 
stochastic gradient descent with batch size of 128, momentum 
equal to 0.9, weight decay of 1e-5, and a constant learning of 
0.01. All of our CNN models were trained using the anna 
software library2. 

Prior to passing the video frame to the CNN, we first detect the 
face in each video frame using face and landmark detector in 
Dlib-ml [8]. Frames where the face was not detected were 
dropped. Their scores are later computed by linearly interpolating 
the scores from adjacent frames. We then use the detected 
landmarks to normalize the eye and nose locations across faces. 
We apply mean subtraction and contrast normalization prior to 
passing each face image through the CNN.  

4.1.2 CNN Features as input to an RNN 
In order to incorporate temporal information, we have the CNN 
act as a feature extractor for each video frame and use the 
resulting feature representation as inputs to an RNN. Specifically, 
we fix all of the CNN parameters and remove the regression 
layer. This way, when a frame is passed to the CNN, we extract a 
300 dimensional vector from the fully-connected layer. Then, for 
a given time t, we consider T frames from the past (i.e. [t-T, t]). 
We pass each frame from time t-T to t to the CNN and extract T 
vectors in total, each of size 300 dimensions. Each of these 
vectors is then passed as input (xt) to a node (ht) of the RNN. The 
hidden state (ht) is computed as the sum of the input via the input 
weight matrix (Wx) and the previous hidden state via the 
recurrent matrix (Wh) and a bias (b). The sum is then passed 
through a nonlinearity (f).  Each hidden state in the RNN then 
regresses the output label (ot).  Once again we use the mean 
squared error (MSE) as our cost function during optimization. 
 

1( )t x t h th f W x W h b    

t o to W h  

Our CNN+RNN model has a single layer RNN with 100 hidden 
units and a temporal window of size T=100 frames. The model we 
use for predicting arousal initializes its weights using a Normal 
distribution, has biases equal to 0, and uses a hyperbolic tangent 
(tanh) nonlinearity. In contrast, our model for predicting valence 
initializes its weights using a Uniform distribution, has no bias, 
and uses a rectified linear unit (ReLU) nonlinearity. 

Like our single frame CNN models, our RNN models are trained 
using stochastic gradient descent with a constant learning rate of 

                                                                 
2 https://github.com/ifp-uiuc/anna 

0.01, a batch size of 128 and momentum equal to 0.9. All of the 
RNNs in our experiments were trained using the Lasagne library.3 
 

5. PHYSIOLOGICAL SENSORS 
When considering the physiological sensor modalities (ECG, 
HRHRV, EDA, SCR, SCL), we used the features extracted by the 
challenge organizers [10]. We elected to use the provided baseline 
predictions for the ECG, SCR, and SCL features and for the 
HRHRV and EDA features we trained a Long Short Term 
Memory network (LSTM) [31], to perform the regression 
operation.  

An LSTM is comprised of a series of cells, each of which has an 
internal state (ct) that is updated based on the current input (xt) 
and the previous cell state (ct-1). The network then determines 
how much the previous cell state and the current input contribute 
to the new cell state using gates. The forget gate (ft) calculates a 
value between 0 and 1 using a sigmoid function (σ), which 
determines the contribution of the previous cell state (ct-1). The 
input gate (it) performs the same operation, but for the current 
input (xt). The equations for these operations are shown below: 

1 1

1 1

1

1

( )

( )

tanh( )

t xi t hi t ci t i

t xf t hf t cf t f

t xc t hc t c

t t t t t

i W x W h W c b

f W x W h W c b

c W x W h b

c f c i c




 

 





   
   

  
   





 

The model then uses the cell state (ct) to compute its output 
representation for time t (ht). The current cell state’s contribution 
is determined by an output gate (ot). 

1( )

tanh( )
t xo t ho t co t o

t t t

o W x W h W c b

h o c

    
 

 

In our experiments, we trained single layer LSTM networks. For 
the HRHRV features, our networks had 50 hidden units and used 
a window length of 10 samples. Our arousal model normalized 
the input data on a per-subject basis and used a constant learning 
rate of 0.01, while our valence model normalized the input data 
using all of the subjects in the training set and also had a constant 
learning rate of 0.001.  

For the EDA features, our models, once again, had 50 hidden 
units. Both models normalized the input data on a per-subject 
basis and used a constant learning rate of 0.01. Our arousal model 
had a window length of 10 samples while our valence model had 
a window length of 50 samples. 

All of the models were trained using stochastic gradient descent 
with momentum. We used a batch size of 128 and momentum 
value of 0.9. All of the LSTM models were trained using the 
Lasagne library.3 

6. MULTIMODAL FUSION 
The previous audio, video, and physiological sections discussed 
distinct and complementary approaches for estimating emotional 

                                                                 
3  https://github.com/Lasagne/Lasagne 
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state as a function of time.  Fusing those emotional measures [34, 
35] into a single fused measure is important for improving overall 
performance and providing robustness in time regions where any 
given sensor may be faulty or does not provide meaningful 
information.  For example, there are regions where the face is not 
visible to support feature extraction for the video modality; 
regions where the person is not speaking to support the audio 
modality; and instances where there is poor contact for various 
physiological modalities.  Our multimodal fusion approach is 
used to combine the estimates from these individual channels 
AND exploit the time-series nature of the data.  Our approach 
leverages a Kalman Filter-based approach [11] for estimating the 
emotional state (x) as a function of time from the information (z) 
from the respective channels using the standard state space 
framework.  The state transition equation models the time-varying 
nature of the emotional states, where A is the transition matrix and 
w(k) is the zero-mean process noise perturbing the system: 

        )()()1( kwkAxkx   

The measurement equation relates how the measures (z) from the 
individual measurement channels relate to the underlying 
emotional state (x): 

        



























)(

)(

)(

)(

)()()(

log

_

_

kz

kz

kz

kz

kvkCxkz

icalphysio

geometricvideo

appearancevideo

audio

  

The measurement matrix (C) relates the underlying emotional 
states to the measurements and v(k) is the zero-mean measurement 
noise term.  In practice, we found that the measurement noise was 
often non-zero, so a bias term () has been added to the model, 
which has proven useful to the AVEC problem. 

Held out data is used to perform the system identification problem 
of determining the system matrices and noise terms.  Held out 
data from the TRAIN and/or DEV sets are used to model x from 
the gold standard (annotated truth for the emotions) and z from 
the corresponding measurements from the individual channels:   

         NN xxX 1,1   

         NN zzZ 1,1   

In some cases the different z’s may correspond to different sensor 
channels, though may also be different models for the same 
sensor channel (e.g. audio MFCC and audio SDC).  For example, 
xm would correspond to a scalar value representing the emotional 
state (e.g. arousal, valence) for sample m, while zm would 
correspond to a vector of emotional state measurements 
corresponding to each of the applied sensor channels/models.  
This enables us to model the state transition matrix (A) and the 
variance of the process noise (Q): 

           1

1,11,11,1,2



 T
NN

T
NN XXXXA  

           1,1,2cov,cov  NN AXXwwQ  

If we make the following substitutions: 
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N
N

X
X

1

,1
,1

1
 

         CC   

We can rewrite the measurement equation as follows: 

        )(,1,1 kvXCZ NN   

This enables a convenient form factor for deriving the 
measurement matrix (C), the bias term (), and the variance of the 
measurement noise (R): 

           1
,1,1,1,1


 T

NN
T

NN XXXZC  

            NN CXZvvR ,1,1cov,cov  

This model provides a useful approach for fusing sensor channel 
measurements per time step, and also models the time-varying 
nature of the model to further improve system performance.  
Backward smoothing [11] was also used to further improve 
system performance by leveraging future measurements to 
improve current estimates. 

 

7. RESULTS 
7.1 Dataset and Evaluation 
The experiments in this section use the RECOLA dataset [15] for 
training and evaluation.  The experiments in this section use the 
evaluation protocol defined in the AVEC 2016 Emotion 
Challenge [10].  Our models were trained on the provided TRAIN 
set and were evaluated on the DEV set.  Note that baseline system 
results are available for this evaluation paradigm [10], as listed in 
Table 1. 

Table 1. Baseline CCC results [10] for AVEC Emotion 
Challenge on the DEV Set 

Modality Arousal Valence 

Audio 0.796 0.455 

Video (appearance) 0.483 0.474 

Video (geometric) 0.379 0.612 

ECG (electrocardiogram) 0.288 0.153 

HRHRV (heart rate & heart rate 
variability) 

0.382 0.293 

EDA (electrodermal activity) 0.077 0.104 

SCL (skin conductance level) 0.101 0.124 

SCR (skin conductance resistance) 0.071 0.110 

Multimodal 0.820 0.702 

 

7.2 Audio Results 
We report the emotion prediction performance by the audio 
features only. We have achieved particularly strong performance 
from the MFCC and SDC feature sets, both of which are followed 
by sparse coding. These results exceed the arousal score for the 
baseline system.  For valence, we also achieve the best 
performance for the MFCC and SDC feature sets. We have 
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optimized sparse coding for SDC using 256 to 512 dictionary 
atoms with the regularization parameter λ = 0.2.  A linear kernel 
was used for the SVM that performed the back end regression.  

 

Table 2. Performance on AVEC 2016 DEV Set Using only 
Audio Features 

  RMSE PCC CCC 

 

 

Arousal 

Baseline Features 0.138 0.771 0.751 

MFCC Features 0.107 0.846 0.846 

SDC Features 0.123 0.807 0.800 

Prosody Features 0.186 0.718 0.608 

 

Valence 

Baseline Features 0.135 0.441 0.433 

MFCC Features 0.132 0.456 0.450 

SDC Features 0.133 0.445 0.443 

 

7.3 Video Results 
In Table 3, we show how well our CNN+RNN architecture 
performs at predicting the arousal and valence scores of subjects 
in the DEV set. We see that the CNN+RNN does a much better 
job at predicting valence than arousal. This is not surprising as 
many previous works have shown this to be the case. We also see 
that our learned CNN+RNN feature representation outperforms 
the baseline trained on handcrafted video appearance features 
(CCC=0.511 vs. CCC=0.474). 

 

Table 3. CNN+RNN Performance for video appearance on the 
AVEC 2016 DEV Set 

 RMSE PCC CCC 

CNN+RNN 
(arousal) 

0.201 0.415 0.346 

CNN+RNN 
(valence) 

0.107 0.549 0.511 

 

7.4 Physiological Results 
We report the performance on the DEV set for our LSTM models 
trained on the HRHRV and EDA features in Table 4. When 
generating our predictions, we employed the same post-
processing pipeline used by the challenge organizers [10] which is 
described in [33]. It consists of (i) smoothing with a median filer 
(ii) centering (iii) scaling and, in the case of the EDA features, 
(iv) time-shifting the predictions. Each post-processing step was 
kept and applied to the TEST set if it improved the CCC score on 
the DEV set.  We see that by using an LSTM we achieve 
comparable performance with baseline when estimating arousal 
and improve performance considerably when estimating valence. 
The reason for the marked improvement in valence may be due to 
the fact that predicting valence requires more temporal 
information (longer window lengths), thus, having a model that 
explicitly models the temporal dynamics of the features (LSTM) 
is preferable to a model that considers the time window all at 
once. 

 

 

Table 4. LSTM Performance for physiological sensors on the 
AVEC 2016 DEV Set. 

  RMSE PCC CCC 

 

Arousal 

HRHRV 0.218 0.407 0.357 

EDA 0.250 0.089 0.082 

 

Valence 

HRHRV 0.117 0.412 0.364 

EDA 0.124 0.267 0.177 

 

7.5 Multimodal Results 
Our multimodal system fuses the emotional states derived from 
the individual audio, video, and physiological sensors discussed 
in the previous subsections using the Kalman Filter framework 
discussed in Section 6.  Models for the transition matrix (A), 
measurement matrix (C), measurement bias (), process noise 
(Q), and measurement noise (R) are estimated from the TRAIN 
and DEV set subjects.  (For DEV set evaluation we have 9 
partitions of the DEV subjects where we hold out the subject 
under evaluation and use the remaining DEV subjects and all of 
the TRAIN subjects.)  Backward smoothing was found to improve 
performance, as did the bias compensation for the individual 
channels.  The channels fused for arousal and valence for the 
multimodal system include the feature channels discussed in 
Sections 3-5, as well as the AVEC baseline features [10] for video 
appearance, video geometric, and ECG.  We also included a 
sparse coding backend to the baseline video geometric system, as 
we did for the audio channels as discussed in Section 3.  

The arousal and valence results for our multimodal systems are 
contained in Table 5 for both DEV set and TEST set data.  The 
DEV set results are self-reported, while the TEST set results are 
official results from the AVEC Evaluation.  For comparison, 
baseline system performance results [10] are also included in 
Table 5. 

The multimodal results exhibit meaningful improvements over the 
unimodal results, particularly for valence.  They also demonstrate 
significant performance results over the baseline cases for both 
arousal and valence on both the DEV set and TEST set partitions. 

 

Table 5. Multimodal results on the DEV and TEST sets, 
including MITLL-UIUC and Baseline scores 

  RMSE PCC CCC 

(Baseline) 

 

Arousal 

DEV SET 0.103 0.862 0.862 

(0.820) 

TEST SET 0.115 0.774 0.770 

(0.702) 

 

Valence 

DEV SET 0.089 0.751 0.750 

(0.682) 

TEST SET 0.100 0.689 0.687 

(0.638) 
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8. CONCLUDING REMARKS 
This paper provided an overview of our AVEC 2016 Emotion 
Challenge technical approaches and corresponding results that 
exceeded the CCC baseline results on the TEST set.  The MFCC 
and SDC audio approaches with sparse coding backends provided 
significant performance improvements for arousal on the DEV set 
over the baseline scores.  Likewise, the deeply learned models for 
video appearance, HRHRV, and EDA provided significant 
performance improvements for valence on the DEV set over the 
baseline scores.  The fusion approach enabled the multi-sensor 
fusion of emotional state while leveraging the time-varying nature 
of the emotional states. 

Near term work includes further refinement to the individual 
sensor channel approaches introduced in this paper.  It will also 
include an improved noise model to account for the non-
stationary nature of the noise in the various sensor channels.  This 
would include the exploitation of speech activity detection (SAD) 
and adjusting the video noise model where the face is 
unobservable. 
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