
Music Recommendations for Groups of Users

Pedro Dias
Dep. Computer Science

Universidade Nova Lisboa
Portugal

p.dias@campus.fct.unl.pt

João Magalhães
Dep. Computer Science

Universidade Nova Lisboa
Portugal

jm.magalhaes@fct.unl.pt

ABSTRACT
This paper presents an algorithm capable of providing mean-
ingful recommendations to small sets of users. We consider
not only rating patterns, bias tendencies, and temporal fluc-
tuations, but also group-leaders. The approach here pre-
sented intends to bring a fresh new look over group recom-
mendations, making use of latent factor space to identify
groups and make recommendations. Although these recom-
mendations are oriented towards a few users, the preferences
of their respective group leaders (users that better repre-
sent the group) are also taken into account to diversify and
smooth these recommendations. In contrast to the major-
ity of group recommender systems described in literature,
our system employs a collaborative filtering approach based
on latent factor space instead of content-based or ratings
merging approaches.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]

Keywords
Collaborative-filtering, groups, recommendations.

1. INTRODUCTION
Recommender systems emerged with the purpose of pro-

viding personalized and meaningful content recommenda-
tions based on user preferences and usage history. Relying
on the closest friends, family members or anyone else with
whom one shares similarities to give trustworthy and useful
advices has always been a characteristic of human behaviour,
and different opinions weigh differently when it comes to
making the final choice. The limitation on receiving good
opinions from other people starts with the fact that, usually,
one does not have many trustworthy or like-minded people
to rely on for getting advice, and those few people have
very limited knowledge, considering everything that exists
and can be recommended, on a global scale point of view.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ImmersiveMe’13, October 22, 2013, Barcelona, Spain.
Copyright 2013 ACM 978-1-4503-2402-1/13/10$15.00.
http://dx.doi.org/10.1145/2512142.2512151.

To explore the large number of ratings available on many
online applications, we followed a collaborative filtering ap-
proach to inter-relate and mine the relations between users
and their preferences.

Within collaborative filtering techniques, latent factor ap-
proaches are very popular. The purpose of latent factor
approaches to recommender systems is to map both users
and products onto the same latent factor space, represent-
ing these as vectors with k dimensions:

~pu = (u1, u2, · · · , uk), ~qi = (i1, i2, · · · , ik) (1)

Here, pu is the user u factors vector, qi is the product i
factors vector and k is the number of latent factors (dimen-
sions) upon which each user u and each product i are repre-
sented. By representing users and products in such way, one
can evaluate the extent to which users and products share
common characteristics by comparing their k factors against
each other. The principle underlying this approach is that
both users and products can be represented under a com-
mon reduced dimensionality space of latent factors that are
inferred from the data and explain the rating patterns. Our
algorithm operates exclusively in the latent-factor space.

In the context of group recommendation, where there is
more than one user to please, recommendations must be
provided in a different way so that the whole group of users
is satisfied. By operating in the latent-factor space one can
easily relate different users. Moreover, by clustering this
space we obtain a set of interest-groups to which users belong
to. The leaders of these interest-groups are later used to
broaden recommendations and cover products that satisfy
all users.

This paper is organized as follows: section 3 describes
the matrix factorization implementation, section 4 presents
the detection of leaders and the group-recommendation, and
evaluation is detailed in section 5. Next, we discuss related
work.

2. RELATED WORK
Although recommender systems have recently attracted a

lot of attention from the scientific community, group recom-
mendation has not been widely addressed, since most recom-
mendation techniques are oriented to individual users and
focus on maximizing the accuracy of their preference pre-
dictions. A. Jameson et al. [2] conducted an enlightening
survey in 2007 presenting the most relevant works on the
field of group recommendation, as well as the most com-
mon issues addressed by the authors of the surveyed group
recommender systems. The main challenges faced when pro-

21

viding group recommendations are (1) capturing user pref-
erences, (2) combining user preferences into a representation
of group preferences, (3) defining criteria to assess the ad-
equacy of recommendations, and (4) delivering recommen-
dations. Group recommender systems can be compared ac-
cording to how they deal with these challenges. In 2002, the
Flytrap system was proposed by A. Crossen et al. [1], pre-
senting a simple system designed to build a soundtrack that
would please all users within a group in a target environ-
ment. In Flytrap system, user preferences were obtained by
registering what they listen to on their private computers, in
an implicit fashion. Recommendations were then computed
by comparing songs within the system database to those lis-
tened to by the group members based on artist and genre.
Songs whose artist or genre are known to please more users
within the target group were then more eligible to be recom-
mended automatically, without the user having any control
over what’s being recommended. The content-based nature
of recommendations provided by Flytrap is a constant in
most group recommender systems described in literature. A
similar approach was taken in the system CATS (Collabora-
tive Advisory Travel System) by McCarthy et al. [7]. CATS
is a system designed to recommend travel packages to groups
of users. It relies on a form of user feedback named cri-
tiquing, which consists in having the group users give their
real-time opinion about some features associated with the
recommended products in a more of this / less of that fash-
ion. For example, when presented with a travel package
recommendation a user can let the system know about his
preference for a cheaper or shorter plan, without specify-
ing price or duration values. This user feedback is recorded
and linearly combined between all users within the group
to be afterwards compared against the set of features that
represent each travel package. The CATS systems can then
recommend the travel packages that suit better the groups’
critiques. Another example of group recommender systems
is the system Bluemusic proposed by Mahato et al. [6]. In
this system users are detected via bluetooth and the aware-
ness of their presence has direct influence on a playlist which
is being played on a public place. To be taken into account,
a user must register his preferences beforehand. The con-
cept introduced by the Bluemusic system is very simple but
introduces an interesting alternative for incorporating tran-
sient awareness of user presences into a real-time playlist
recommendation scenario.

In presented approaches either a content-based method
or a simple collaborative approach merging the ratings of
users was applied, which contrasts with our method that we
tackles the problem in the latent factor space.

3. THE USER-MEDIA LATENT SPACE
In the context of recommender systems, matrix factoriza-

tion is mainly performed through methods that approximate
Singular Value Decomposition (SVD). SVD is a technique to
decompose a matrix into the product UΣV , where U con-
tains the left singular vectors, Σ contains the singular values
and V contains the right singular vectors of the original ma-
trix. The application of SVD to recommender systems is
motivated by the desire of decomposing the ratings matrix
into a 2-matrices representation, as in eq. 2:

R = P ·QT (2)

Here, matrix R is the ratings matrix where each rui value
represents a rating given by user u to product i, expressed
by a real value. In this modified version of SVD, we have
P = U ·

√
Σ and Q =

√
Σ · V . Each vector (row) pu of P

represents a user u and each vector (row) qi of Q represents a
product i, as in eq. 1. The goal of using matrix factorization
in recommendation problems is to enable the assessment of
user preferences for products by calculating the dot product
of their factor representations, as defined by eq. 3:

ru,i = pu · qTi , (3)

Here, ru,i is the preference of user u for product i, both
represented as vectors as described in eq. 1. Based on the
time-aware model proposed by Y. Koren [5], the minimiza-
tion to be pursued is modified into:

[P,Q] = arg min
pu,qi

∑
rui(t)∈R

(rui(t)− µ− bu(t)− bi(t)− pu · qTi)2+

(4)

λ · (‖pu‖2 + ‖qi‖2 + bu(t)2 + bi(t)
2)

where µ is the mean rating average, bu(t) represents user
biases and bi(t) represents product biases.

4. GROUP-BASED RECOMMENDATIONS
When there is more than one user to please, recommenda-

tions must be provided in a different way so that the whole
group of people is satisfied. Our approach to group-based
recommendation considers a small number of users and a set
of leaders to smooth recommendations. The six main steps
of the group recommendation process can be described next,
see Figure 1. First, a predictive model based on SVD is ob-
tained (step 1) and from it groups of users are discovered
(step 2) applying k-means algorithms over the latent factor
space created. Afterwards target users are detected within
the context (step 3) and the system identifies the groups
which these users belong (step 4). Finally, the preferences
of the detected users and respective group leaders are com-
bined (step 5) and the products that better match those
preferences are recommended (step 6).

Figure 1: The proposed algorithm dataflow.

22

4.1 Discovering groups of users
The discovery of groups of user, which corresponds to step

2 of the algorithm, is performed after the matrix factor-
ization stage, when user-factor and product-factor matrices
are already computed. Group discovery was performed with
three variants of the k-means (Lloyd’s) algorithm. A well-
known setback of this technique is that the k-means algo-
rithm can get stuck at local minima, far from the optimal
solution. For this reason it is common to consider heuris-
tics based on local search, in which centroids are randomly
swapped in and out of an existing solution. New solutions
are accepted if they decrease the average distortion, and
otherwise they are ignored. It is also possible to combine
these two approaches (Lloyd’s algorithm and local search),
producing a type of hybrid solution. In this paper we used
Mount’s [3, 4] implementation of k-means. Besides standard
k-means, we also applied two other variants of k-means, as
listed below:

• Swap: A local search heuristic, which works by per-
forming swaps between existing centroids and a set of
candidate centroids.

• Hybrid: A more complex hybrid of Standard k-means
and Swap, which performs some number of swaps fol-
lowed by some number of iterations of algorithm.

The distance measure between centroids and data points,
in this case users, used on this implementation was the Eu-
clidean distance. This choice was motivated by the fact that
during the matrix factorization process, the minimization
earlier described in eq. 4 is obtained by recurrently mea-
suring the squared euclidean distance to compute the latent
space (i.e., the (rui− pu · qTi)2 part in eq. ??). In the end of
each run, smaller clusters were eliminated and the users as-
signed to these were reallocated to the nearest cluster. The
minimum number of users per cluster was set to 150.

4.2 Computing group-based recommendations
Computing group-based preferences comprises detecting

the presence of users (step 3), relating them to the respective
groups (step 4) and combining the preferences of those users
with the preferences of their groups, represented by group
leaders (step 4). If the system already has some knowledge
regarding these detected users’ preferences, such knowledge
shall be used to produce a playlist.

An early fusion approach was taken, where the combi-
nation of target users latent-factor vectors was performed
through a linear weighted combination, assigning more weight
to more participative users, i.e., users that gave more ratings
to products, as expressed by eq. 5.

g =

n∑
i

(αui · ui) (5)

After detecting users and assessing to which groups these
belong, the system identifies the group leaders. For each
group, the group leader is the user that is closer to the
respective cluster centroid, thus rendering this user as the
most representative one. Group leaders’ preferences are used
to add diversity and smooth the group recommendations by
combining these with detected users’ preferences, extending

eq. 5 into eq. 6:

g =

n∑
i

(αui · ui + αli · li) (6)

In eqs. 5 and 6, n is the number of target users and αui

and αui are the weights assigned to the factor vectors of
target user ui and group leader li. As mentioned earlier, the
weights assigned to each target user and group leader latent-
factor vectors depend on the relation between the number
of ratings given to products by these users and leaders and
the total number of ratings given by all referred users and
leaders αu = nRatingsu

totalGroupRatings
.

Once obtained the latent-factor vector representing the
users and leaders combined preferences, recommendations
can be computed (step 6) by calculating the dot product
between this vector and all product vectors contained in the
product-factor matrix as expressed by eq. 7:

rg,i = g · qTi , (7)

Now we can assess which products are more likely to satisfy
this group. The products with higher predicted score can
then be selected to build a playlist.

5. EVALUATION
The dataset used for this experiment is the one provided

by Yahoo! to contestants of the KDD Cup 2011. From this
dataset we used 3,867,473 ratings given by 20,000 users to
624,961 products to train the temp-SVD model and 80,000
ratings given by the same 20,000 users for validation during
the learning process. All rating entries have a timestamp
that was used to capture the temporal dynamics. The metric
chosen to assess the accuracy of the time-SVD model was
the root mean squared error (RMSE), which is the most
commonly used accuracy measure for recommender systems.

5.1 Group discovery
Tests to evaluate the different variants of k-means assessed

the division of users into clusters. Standard k-means, Swap
and Hybrid variants were tested with 200 initial random
centroids and 15,000 users, leaving out the remaining 5,000
users for further tests. Fig. 2 illustrates a comparison be-
tween the results obtained for the k-means variants Standard
k-means, Swap and Hybrid.

Figure 2: Comparison between Standard k-means,
Swap and Hybrid variants of k-means clustering.

The Standard k-means algorithm broke de set of users
down into 11 clusters. As we can see, its larger cluster con-
tains more than 50% of all 15,000 users, which suggests that

23

Single-user + leader Group of users
k-Means Swap Hybrid k-Means Swap Hybrid

Accuracy 76.5% 77.3% 73.6% 68.0% 77.4% 70.8%
Users per Clusters n.a. n.a. n.a. 1404 1501 2783
Products per Clusters n.a. n.a. n.a. 45 118 83
Common-ratings n.a. n.a. n.a. 103 360 233

Table 1: Accuracy of group recommendation for different variants of k-means.

standard k-means cannot capture the details of the data
structure in the latent space. Obtaining one very large clus-
ter is a recurrent issue in clustering problems, and that is one
of the reasons behind our decision of experimenting different
variants. The Hybrid variant of k-means clustering yielded
similar results to those obtained with Standard k-means al-
gorithm, which possibly suggests a poor performance of the
clustering process. However, the Swap variant produces the
best cluster model, breaking the set of users down into 16
more balanced clusters, with its larger cluster containing
only 21.4% of the total number of users. Thus, the underly-
ing data structure is better captured by the Swap variant.

5.2 Group-based recommendation
The evaluation criteria used to assess the quality of playlists

was the percentage of positive ratings given to songs (on the
validation set only) by the users that belong to the tar-
get groups, within the set of songs contained in the recom-
mended playlists. A rating equal to or higher than 3, on a
scale from 0 to 5, is considered a positive rating. The statis-
tics of clusters and users involved, as well as the ratios of
rated songs within the recommended playlists songs will be
disclosed along this evaluation process, in an attempt to pro-
vide a reasonable notion of the confidence levels associated
with these experiments.

The chart illustrated by Fig. 3 establishes a comparison
between the results of group recommendation oriented to
single users and smoothed by taking into account their re-
spective group leaders, and group recommendation oriented
to several users from different groups. Moreover, the 3 vari-
ants of k-means were tested. Overall, the Swap variant of

Figure 3: Comparison between single-group and
multi-group recommendations using 3 different vari-
ants of k-means.

k-means obtained higher percentages of good recommenda-
tions. Additionally, for the Standard k-means and Hybrid
variants, recommendations oriented to several users from
different groups obtained higher percentages those oriented
to single users We observe that the success of this system is
dependent on whether the clustering algorithm breaks the
set of users into meaningful groups or not. As we can observe
on Fig. 2, which illustrates the results of k-means cluster-

ing with the Standard k-means variant, the largest cluster
holds more than 50% of the total number of users, which
may eventually indicate an inefficient clustering. If that’s
the case, such inefficient clustering would inevitably carry a
negative impact to the resulting recommendations.

6. DISCUSSION
In this paper we addressed predictive models based on la-

tent factor approaches, namely matrix factorization inspired
by SVD, taking into account the rating biases and tempo-
ral fluctuations. We also addressed clustering by perform-
ing variants of the k-means algorithm over the latent space
representation of users and the combination of users’ and
group leaders’ preferences to obtain group-oriented recom-
mendations. The use of latent space to solve group recom-
mendation problems introduced in this paper was our most
significant accomplishment, encouraging further research on
the subject.

7. REFERENCES
[1] A. Crossen, J. Budzik, and K. J. Hammond. Flytrap:

intelligent group music recommendation. In
International Conference on Intelligent User Interfaces,
IUI ’02, pages 184–185, New York, NY, USA, 2002.

[2] A. Jameson and B. Smyth. The adaptive web. chapter
Recommendation to groups, pages 596–627.
Springer-Verlag, Berlin, Heidelberg, 2007.

[3] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D.
Piatko, R. Silverman, and A. Y. Wu. An efficient
k-means clustering algorithm: Analysis and
implementation. IEEE Trans. Pattern Anal. Mach.
Intell., 24:881–892, July 2002.

[4] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D.
Piatko, R. Silverman, and A. Y. Wu. A local search
approximation algorithm for k-means clustering. In
Annual Symposium on Computational Geometry, SCG
’02, pages 10–18, New York, NY, USA, 2002. ACM.

[5] Y. Koren. Collaborative filtering with temporal
dynamics. Commun. ACM, 53:89–97, April 2010.

[6] H. Mahato, D. Kern, P. Holleis, and A. Schmidt.
Implicit personalization of public environments using
bluetooth. In CHI ’08 extended abstracts on Human
factors in computing systems, CHI EA ’08, pages
3093–3098, New York, NY, USA, 2008. ACM.

[7] K. McCarthy, M. Salamó, L. Coyle, L. McGinty,
B. Smyth, and P. Nixon. Cats: A synchronous
approach to collaborative group recommendation. In
International Florida Artificial Intelligence Research
Society Conference, Melbourne Beach, Florida, USA,
May 11-13, 2006, pages 86–91. AAAI Press, May 2006.

24

