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ABSTRACT
Different types of multimedia data express high-level semantics
from different aspects. How to learn comprehensive high-level
semantics from different types of data and enable efficient cross-
media retrieval becomes an emerging hot issue. There are
abundant correlations among heterogeneous low-level media
content, which makes it challenging to query cross-media data
effectively. In this paper, we propose a new cross-media retrieval
method based on short-term and long-term relevance feedback.
Our method mainly focuses on two typical types of media data, i.e.
image and audio. First, we build multimodal representation via
statistical canonical correlation between image and audio feature
matrices, and define cross-media distance metric for similarity
measure; then we propose optimization strategy based on
relevance feedback, which fuses short-term learning results and
long-term accumulated knowledge into the objective function.
Experiments on image-audio dataset have demonstrated the
superiority of our method over several existing algorithms.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval Models

General Terms
Algorithms, Design.
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1. INTRODUCTION
Cross-media retrieval is emerging as a new search paradigm

that enables seamless information processing from different types
of data. Plenty of work has been done on cross-media retrieval
[1][5][7][14], and these methods do provide effective ways to
better manage multimodal data. However, there are two issues
mostly remain uncovered.
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The first issue is: most of the existing works focused on web
images and their tagging texts, while the analysis of images and
other types of multimedia data was mostly ignored. For example,
[2] proposed supervised coupled dictionary learning with group
structures for Wiki Text-Image data; [3] proposed effective
multimodal stacked auto-encoders for retrieval among web
images and associated tags. Very limited research efforts were
devoted to content-based cross-media retrieval among other types
of media data, such as image-audio database [9][14]. In fact,
audio is an important kind of sensory information, which affects a
lot on human perception [4]. It is interesting and challenging to
learn cross-media semantics for retrieval from image and audio
data simultaneously.

The other issue is that most related works do not pay enough
attention to long-term optimization of cross-media retrieval results.
Generally, these works share a similar two-step processing
strategy [3][5]. First, they learn a set of mapping functions to
project high-dimensional features into a common low-dimensional
latent space. Second, a multi-dimensional index in the metric
space is built for applications like efficient retrieval [3][9],
classification [7], event detection [8], etc. User interactions in
relevance feedback provide useful prior knowledge that could be
used to narrow the semantic gap [1]. However, it turns out to be a
great challenge to mine accumulated prior knowledge with long-
term relevance feedback because there are abundant correlations
among heterogeneous media data.

Regarding above two issues, we propose a new cross-media
retrieval and optimization method for image and audio data based
on relevance feedback. For example, users can query images of an
animal by submitting either its images or a sound of its roaring.
Specifically, we first analyze underlying statistical correlation
between visual feature matrix of images and auditory feature
matrix of audios, find a correlation-preserved mapping to a low-
dimension isomorphic space where the cross-media distance is
define for similarity retrieval. Furthermore, we propose short-term
learning within a single query session and long-term learning over
the course of many query sessions for performance optimization.
For long-term learning, we classify positive and negative
feedbacks into pair-wise constraints, based on which two
discriminative functions are defined. The short-term optimizing
results are fused into the objective function together with the long-
term learning results to improve multimodal data representation.
Our approach not only explores global statistical cross-media
correlation between image and audio data, but also optimizes data
representation via relevance feedback.
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2. MULTIMODAL REPRESENTATION
In this section, we analyze statistical correlation between image

features and audio features to construct multimodal representation
and estimate cross-media distance, based on which cross-media
retrieval is generated.

Since different types of multimedia data are heterogeneous in
low-level features, cross-media distance in feature level is not
directly measurable. Therefore, we first analyze canonical
correlation between image feature vectors and audio feature
vectors to generate a correlation-based unified multimodal
representation for all training samples. Formally, let I denote
image feature matrix, A denote audio feature matrix. Motivated
by CCA (Canonical Correlation Analysis) which has been used in
many data mining applications[12][14], we calculate basis vectors
for image and audio samples such that the correlation between the
projections of the two sets of samples onto the basis vectors are
mutually maximized, that is:
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where C is covariance matrix, 1W and 2W are the
transformation matrices. Since the solution of equation (1) is not
affected by re-scaling 1W or 2W either together or independently,
the optimization of (1) is equivalent to maximizing the numerator
subject to 1 1' 1 IIW C W  and 2 2' 1AAW C W  . Then with Lagrange
multiplier method we can find solutions for 1W and 2W by

1 2
1 1IA AA AI IIC C C W C W  , which is a generalized Eigenproblem. By

choosing the same number of eigenvectors, we not only maximize
canonical correlation between image and audio feature matrices,
but also transfer them into the same dimensions.

Let 1 2{ , ,..., }' R   n d
nX x x x denote the isomorphic multimodal

representation of image and audio data with the total number of n
where d is the dimension after CCA process. We calculate the
Euclidean distance between any two samples , , ( , [1, ], )i jx x i j n i j  ,
and obtain the corresponding distance matrix R  n n .

We further analyze multimodal geometrical structure of all
samples based on the matrix R  n n . Specifically, we construct a
multimodal adjacency graph ( , )G V E : for any sample ix , there is
a corresponding vertex iv V and for any two vertices , i jv v V ,
we put an edge between them with distance ijc which is defined
as follows:
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where  is a distance reflecting the measurement of locality. To
model the global geometrical structure, we define the length of a
path as the sum of all pair-wise distances along the path, and
replace the value of ijc with the length of the shortest path
between ,i jv v . So far, cross-media retrieval can be generated
based on the geodesic distance on the multimodal graph.

3. RELEVANCE FEEDBACK
Although in recent years, relevance feedback has been studied

from the perspective of machine learning, most of which are used
for application of content-based image retrieval [13]. However, in
cross-media retrieval that we target at, relevance feedback covers
not only images but also audios. Besides, most learning methods
only take into account current query session and the knowledge

obtained from the past user interactions with the system is
forgotten. Therefore, in this section, we propose both short-term
and long-term strategies to further explore prior knowledge over
the course of many query sessions so as to improve cross-media
retrieval performance.

3.1 Short-term Refinement
Here we present a simple way to update distance ijc gradually.

Intuitively, the samples marked by the user as positive examples
in a query session share some common semantics. Therefore, in
short-term relevance feedback, we shorten the distance between
them. Similarly, we can lengthen the distances between the
positive examples and negative examples, as follows:

/  (  , )  ij ij i jc c if x x (3)

 (  &  )     ij ij i jc c if x x (4)

where 1  and 1  .  and  represent positive feedbacks
and negative feedbacks respectively. Then we define the weight of
edges on the multimodal graph as below:
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where ,t  are suitable constants.
Let 1 2{ , ,..., }' R   n k

nY y y y denote the optimized multimodal
representation. Then the objective of the whole relevance
feedback strategy is to learn a mapping from 1 2{ , ,..., }'nX x x x to

1 2{ , ,..., }'nY y y y . That is, for any (1 )ix X i n   we have:
T

i iy M x (6)

where R  d kM is the projection matrix.
It is reasonable that a “good” mapping should minimize the

objective function 2( )i j ijy y w , which incurs a heavy penalty if
neighboring data i and j are mapped far apart. Then we have:
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where [ ]ijW w , L D W  is a Laplacian matrix and D is a
diagonal matrix defined as ii ji

j
D w . Thus the minimization

problem is:
min ( )
T

T T

M M I
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(8)

3.2 Long-term Relevance Feedback
Formally, we define two sets of data pairs tP and tN based on

the positive and negative sample sets the user labels in the t-th
round of relevance feedback. In tP each pair of data is of the
same labels, and in tN each pair of data is of different labels. For
long-term relevance feedback we define:

,   t t
t t

P P N N   (9)

In this way, data pairs in P are semantically similar to each
other and those in N are semantically dissimilar to each other,
which can be used as pairwise constraints. The sum of squared
distances of data pairs ( , )i jx x P can be calculated as follows:
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where
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   and tr is the trace operator. The

distances among data pairs ( , )i jx x P should be as small as
possible. Thus we have the following function:
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in which the constraint TM M I is imposed to prevent arbitrary
scaling of the projection. Similarly, the distances between data
pairs from N should be as large as possible. Thus we have:
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3.3 Combining Short- & Long-term Learning
So far, the relevance feedback strategy should satisfy not only

(8) but also (11)(12) in order to preserve refined locality structure
and benefit from accumulated pairwise constraints. Motivated by
[6] which proposed an image classification method via cluster
distance optimization, we merge (8)(11)(12) into an overall
discriminative objective function as below:

where t b wS S S  denotes the total scatter matrix and the
coefficient  balances the model complexity and the empirical
loss. Then the solution of the optimal matrix M is given by the
maximum eigenvalues to the generalized eigenvalue problem in
form of MXLIXMXLX TT )(   . Based on above discussions,
the optimization process is listed below.

Algorithm 1. Relevance feedback algorithm
Input: distance matrix ][ ijcC  ;

similar set P and dissimilar set N ;
Output: optimized multimodal representation Y .
1. Calculate the weight matrix [ ] ijW w in (5), and

obtain the Laplacian matrix L in (8);
2. Calculate data sets P and N in Eq.(9) based on long-

term relevance feedback;
3. Calculate pairwise constraint matrices ,t bS S ;
4. Compute 1 2[ , ,..., ] cM m m m , in which 1 2, ,..., cm m m are

the eigenvectors corresponding to the c largest non-
zero eigenvalues of (13), and map ix to the optimized
multimodal subspace with  (1 )  T

iiy M x i n .

4. EXPERIMENTS
We test our proposed algorithm for cross-media retrieval

between image and audio data, and provide an extensive
performance study of our algorithm in comparison with the state-
of-the-art methods. Precision is defined as the percentage of
correctly retrieved samples in the top-k-returned results.

4.1 Datasets
The image-audio dataset is collected from Corel image gallery,

Webpages, etc. There are 4800 image and audio samples in total,
which are grouped into 12 categories, such as zither, dog, dolphin,
bird, elephant, tiger, explosion, car, train etc. In our experiments,
if a returned result and the query example are in the same category,

Figure 1(a)(b)(c)(d). Retrieval performance comparison of
different algorithms in different retrieval scenarios

it is regarded as a correct result. Two types of visual features are
extracted and normalized, including color correlogram in Hue
Saturation Value color space and Tamura Texture. Auditory
features include Mel-frequency Cepstral Coefficients (MFCC),
Centroid, Rolloff and Spectral Flux. Since audio is a kind of time
series data, we employ Fuzzy Clustering method [10] on original
auditory features to get isomorphic indexes.

4.2 Performance Comparison
We compare our method with three content-based cross-media

retrieval and relevance feedback methods: the Multimedia
Document (MMD) method in [9], the Isomorphic and Sparse
Multimodal Data Representation (ISMDR) method in [14] and
Tagging-based Nonnegative Subspace Learning (TNSL) method
in [11]. We randomly choose 20% of images and audios in each
category as query examples to perform cross-media retrieval, and
for each query, we select at most 3 positive and 3 negative
multimedia objects, which could be images or audios, from
returned results. The user’s relevance feedbacks are used for both
sort-term and long-term learning.

Since query examples and retrieval results could be images or
audios, we generate four types of queries to give detailed
comparisons, namely Q(I-A), Q(I-I), Q(A-I), Q(A-A). For instance,
Q(I-A) searches relevant audio samples given an image example.
Figure 1 shows the average precision-scope curves of different
algorithms after relevance feedback. We have the following
observations from Figure 1: our method outperforms the other
three methods in four retrieval scenarios. For example, in Figure
2(c) Q(A-I), when the number of returned images is 15 the
precision is 0.712 with our method, while the MMD, ISMDR and
TNSL methods achieve precision of 0.611, 0.564 and 0.543
respectively. The performance gain of our method is probably
attributed to the following reasons:

(1) ISMDR, TNSL and MMD methods optimize cross-media
similarity with the help of surrounding texts or strictly selected
auxiliary tags which express semantic information more directly
than audios do; (2) our algorithm utilizes feature-level image-
audio statistical correlation and optimizes multimodal data
representation in relevance feedback, which are ignored in the
other three methods; (3) the MMD method takes a global view on

1[ ( ) ]max
T

T T T T
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M M I
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Figure. 2 An example of Q(A-I)

Figure. 3. Average results of querying by new examples

different objects in the multimedia documents, thus it is more
flexible and capable to different retrieval scenarios compared to
ISMDR and TNSL methods.

Figure 2 gives an example of Q(A-I). We submit an example of
a 3.2-second audio clip selected from elephant category, and the
first 12 returned images are shown in Figure 2. It can be seen that
10 images are corrected returned.

4.3 Query Example outside the Database
Above results are obtained when the query examples are in the

database. If a query example is out of the database, we call it a
new sample. We perform retrieval with new samples to evaluate
the generalization capability of our algorithm. 360 images and 360
audios are used as queries outside the training database for testing.
Although the testing set have no optimized multimodal
representations, we can use the transformation matrices learned in
equation (1) for initial feature mapping, and then calculate the
Euclidean distances between testing set and training set, based on
which cross-media retrieval could be generated. Further, we make
use of relevance feedback to narrow the semantic gap. We classify
cross-media retrieval into querying by new audio examples and
querying by new image examples.

Figure 3 shows precision performance by looking at the top 20
returns. It can be seen that the performances of querying by new
examples are good overall. Although when no relevance feedback
is involved, some new images and audios are well recognized, the
precision performances climb to 0.592 and 0.553 for querying
with new audios and querying with new images respectively at the
third round of relevance feedback. As users interact with the
system, querying with new images and new audios can be further
optimized with our long-term learning model.

5. CONCLUSIONS
In this paper, we propose a new cross-media retrieval method

based short-term and long-term relevance feedback. Our approach

first learns a multimodal representation via statistical correlation
analysis between image and audio features, and generates flexible
cross-media retrieval; more importantly, by fusing both
accumulated discriminative knowledge and local data structure
into the objective function of relevance feedback, we improve
multimodal representation for retrieval performance optimization.
Experiment results of cross medial retrieval on image-audio
dataset confirm the improvements of our method over previous
works in search accuracy.
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