
Pyo, the Python DSP toolbox

Olivier Bélanger
Faculty of Music, University of Montreal

200 rue Vincent d’Indy
Montréal, Québec, Canada

olivier.belanger@umontreal.ca

SOFTWARE SUBMITTED TO ACM MULTIMEDIA 2016
OPEN SOURCE SOFTWARE COMPETITION.

The software presented in this article is free of charge and
open-source.

Please visit http://ajaxsoundstudio.com/software/pyo/ or
the github repository at https://github.com/belangeo/pyo
for source code, downloads, documentation and other re-
sources.

ABSTRACT
This paper introduces pyo, a python module dedicated to the
digital processing of sound. This audio engine distinguishes
itself from other alternatives by being natively integrated to
a common general programming language. This integration
allows incorporating audio processes quickly to other pro-
gramming tasks, like mathematical computations, network
communications or graphical interface programming. We
will expose the main features of the library as well as the
different contexts of use where pyo can be of a great benefit
to composers and audio software developers.

Keywords
Python, Digital Signal Processing, Audio Programming

1. INTRODUCTION
Over the years, several ways and means were developed

to facilitate audio programming. Max Mathews’s MUSIC-
N1 series and Barry Vercoe’s Csound[5] program used the
instrument/score paradigm to allow the user to create syn-
thesizers or processing instruments in one file and specify
the events controlling the notes and parameters over time
into another file. Perhaps more intuitive for musicians, the
patching paradigm implemented in Pure Data[4] lets the
user connect objects in processing chains to generate both
sound and control structures. SuperCollider[2], developed

1https://en.wikipedia.org/wiki/MUSIC-N

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15 - 19, 2016, Amsterdam, Netherlands
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2973804

by James McCartney in 1996, uses an object-oriented pro-
gramming language to allow dynamic real-time audio syn-
thesis and algorithmic composition.

All these tools perform well for a wide variety of tasks in
music composition, audio synthesis, signal analysis and live
digital signal processing. So, what was the motivation for
the development of an entirely new audio engine? The com-
mon thing to all these tools is the specialized language they
each use to perform audio programming tasks. If one wishes
to develop an audio platform answering to needs for general
programming tasks, such as accessing databases, creating a
custom graphical user interface or analyzing the content of
a text file, these languages fall short as they were not de-
signed to efficiently perform these kinds of tasks. They were
purpose-built to perform audio signal processing. Of course,
there are ways to communicate between these programs and
more general programming languages, such as Python. It
can be done either via an application programming interface
(API) or with a communication protocol like Open Sound
Control (OSC), but this can lead to several programming
problems and force the developer to deal with two different
environments at the same time.

The development of pyo as a Python module was moti-
vated by the need to provide a complete audio program-
ming toolkit for a general programming language. Pyo is a
Python module where the logic and API are written in pure
Python while all the signal processing parts are written in
C. The communication between the two layers is entirely
done with the Python C-API. This integration to a popular
language allows the user to concentrate all his efforts on the
development of audio algorithms, without the need to learn
a whole new programming language. The program benefits
from the power and speed of an extended audio toolkit and
from the syntax and versatility of a mature programming
language that is widely used.

This article is divided into three parts. First, we will in-
troduce the programming environment we propose to make
the sound. In the second part, we will explore the possible
applications with pyo and to whom this module can be use-
ful. Finally, we will explain the main features of the library
and illustrate them with simple code examples.

2. PROGRAMMING ENVIRONMENT
Python is a cross-platform, open-source, dynamic pro-

gramming language used in a wide variety of application
domains. His clear and readable syntax makes it a perfect
choice to learn to program. Python offers an intuitive object
orientation that is very suitable for signal processing design

1214

http://ajaxsoundstudio.com/software/pyo/
https://github.com/belangeo/pyo
http://dx.doi.org/10.1145/2964284.2973804

and algorithmic composition. One can use Python to build
sophisticated software or simply as a scripting language for
light duty tasks. An active community of developers regu-
larly updates the source code and provides new versions. It
is well documented and offers extensive standard libraries
and third party modules for virtually any purpose. Because
it allows programmers to write efficient code very quickly,
it’s one of the best choices to start writing audio programs.

Pyo is a Python module written in C to help digital signal
processing script creation. It is entirely integrated, which
means the audio engine has no need for an API or protocol
like OSC to communicate with the language. It contains
classes for a wide variety of signal processing types. With
pyo, users can include signal processing chains directly in
Python scripts or projects and manipulate them in real time
through the interpreter. Tools in the pyo module offer prim-
itives like arithmetic operations on an audio signal, basic
signal processing (filters, delays, oscillators, etc.) and com-
plex algorithms to create sound granulation or other creative
audio manipulations. pyo supports the OSC protocol (Open
Sound Control), to ease communications between programs
and includes a full implementation of the MIDI protocol for
generating sound events and controlling process parameters.
pyo allows the creation of sophisticated signal processing
chains with all the benefits of a mature and widely used
general programming language.

One significant constraint in audio programming is that
the program must run for an extended period. While most
programs can just quit in a friendly way after the execution
of each line of code, an audio performance must compute
samples as long as they are needed. The Python interpreter
(the engine evaluating the commands) can be invoked di-
rectly in a terminal window and used to create an audio
processing loop. It will stay active until the user explic-
itly asks to terminate. The interpreter is very useful for
live coding or for experimenting with some small functions.
However, most of the time, it will be easier to call a graph-
ical user interface which will keep the interpreter alive as
long as a window is shown on the screen. Pyo provides such
interfaces for the audio server and also for object’s display
and control.

3. APPLICATIONS
Pyo is well suited for any tasks that involve sound and pro-

gramming. One of its primary purposes is for music creation
and algorithmic composition. One can use pyo to process au-
dio inputs and control effect parameters while performing on
stage. Another way of composing with pyo is to take advan-
tage of python’s algorithmic capabilities to create complex
control structures for a synthesis engine. We have created a
web radio continuously processing and playing such algorith-
mic compositions from whoever wants its tune to be played.
The radio can be listened to at http://radiopyo.acaia.ca/.

As part of a larger programming eco-system, pyo can eas-
ily be integrated into the engine of a music software. Here
are some softwares where pyo provides the audio services:

• Cecilia5, a digital signal processing toolbox.
http://ajaxsoundstudio.com/software/cecilia/

• Soundgrain, a granular sound synthesis interface.
http://ajaxsoundstudio.com/software/soundgrain/

• PsychoPy, psychology and psychophysic experiments.
http://www.psychopy.org/

The distribution of pyo comes with E-Pyo, a simple but
powerful text editor offering live coding facilities such as a
background audio server and shortcuts to increase the cod-
ing speed. It’s especially useful for quickly exploring new
processing techniques.

Pyo also offers a simple C-API that allow embedding a
Python interpreter in another application written in C/C++.
There are examples in the sources showing pyo embedded in-
side OpenFrameworks, PureData and in a Juce audio plugin.

4. INTENDED AUDIENCE
The intended audience of a python module like pyo is

vast. Any music composer who wants to build its tools or
to explore with sound can make a good use of pyo. Be-
cause there is libraries for almost any programming task in
python, software developers from a variety of backgrounds
can benefit from pyo if they need to include an audio part in
their projects. Since 2010, I use pyo in my university classes
to teach digital signal processing theory and practice and
to introduce musicians to audio programming. The combi-
nation Python and pyo offers a very gentle learning curve
and one or two semesters are usually enough for students
to produce original and exciting work. In conjunction with
scientific modules like numpy or music21, pyo should be in
the toolbox of any electronic music teacher or researcher.

5. MAIN FEATURES

5.1 The audio engine
Pyo uses a callback function to allow real-time audio pro-

cessing without blocking the main thread. In blocking mode,
the user could not enter new commands from the interpreter
or a graphical interface could not be refreshed until the pro-
cess exit. This function is part of the Server object and is
called by the audio driver, in a high priority thread, every
time a new block of samples is needed. Audio and MIDI
configurations can be modified at the Server’s initialization
if, for example, the default sound card or the default MIDI
interface are not the ones needed by the user. We specify
the sampling rate and the size of each block of samples as
arguments to the Server. Another role of the Server is to
manage the connections between pyo objects and the order
in which they will be computed. The callback function will
ask all registered objects, in the order they were created
by the program, for a new block of samples unless the ob-
jects tree is explicitly modified during the execution. To be
properly registered, the first thing an audio object did at
its creation, is to look for the current server in the program
memory. As a consequence, a server must be present and
booted before creating any audio object. The following se-
quence of instructions create, initialize and start an audio
server:

>>> from pyo import *

>>> # Create a stereo server

>>> s = Server(sr=48000, nchnls=2, buffersize=64)

>>> # Set the audio and MIDI devices

>>> s.setInOutDevice(2)

>>> s.setMidiInputDevice(1)

>>> # Boot the server

>>> s.boot()

>>> # Now we can create a processing chain...

>>> s.start() # Start the audio callback loop

1215

http://radiopyo.acaia.ca/
http://ajaxsoundstudio.com/software/cecilia/
http://ajaxsoundstudio.com/software/soundgrain/
http://www.psychopy.org/

5.2 Everything is computed at audio rate
One significant difference between pyo and older audio en-

gines is the removal of the control rate. The control rate is
a second rate, slower than the audio rate, used to compute
variations over time for some parameters of the generators or
the effect processors. The control rate is cheaper to process,
as it computes only a single floating-point value instead of
a block of samples, and therefore uses fewer CPU resources.
The cost for this gain in CPU is that the control rate can
causes artifacts, like zipper noise, in the sound when values
are changing too fast. With computers growing more pow-
erful, the need for saving CPU resources is less significant,
and the audio quality can be prioritized at a reasonable cost.
Within pyo, every object generates an audio signal, and al-
most all parameters accept audio as a control signal. This
flexibility allows a broad range of modulations without hav-
ing to care about audio degradation by a downsampled sig-
nal given as a modulator of a parameter such as a filter’s
frequency. In the example below, an oscillator modulates
the center frequency of a bandpass filter to create a kind of
FM (frequency modulation) effect on the microphone input:

>>> from pyo import *

>>> s = Server().boot()

>>> src = Input()

>>> mod = Sine(freq=500, mul=250, add=500)

>>> filter = ButBP(src, freq=mod, q=5).out()

>>> s.start()

5.3 Sample-accurate timing
One of the benefits of the fact that everything is an audio

signal is the trigger framework, with which it is possible
to create sample-accurate timing structure. A trigger is a
signal with a value of one, surrounded by zeros. All trigger
generators, such as a metronome or a step sequencer, are
sampled at the audio rate, allowing the most precise possible
timing. A lot of objects in the library are configured to
respond to this kind of signal, so, one could create a tempo-
style control structure with the guarantee of the best timing
accuracy. The following piece of code generates a polyphonic
melody with an exponential envelope and a square wave:

>>> from pyo import *

>>> s = Server().boot()

>>> wav = SquareTable()

>>> env = ExpTable([(0,0), (64,1), (8191,0)])

>>> met = Metro(time=.125, poly=8).play()

>>> amp = TrigEnv(met, table=env, dur=1, mul=.1)

>>> mid = TrigRandInt(met, max=12, add=48)

>>> hz = Snap(mid, [0,2,3,5,7,8,10], scale=1)

>>> out = Osc(table=wav, freq=hz, mul=amp).out()

>>> s.start()

5.4 List expansion
A powerful property, called “multichannel expansion,” in-

troduced in the textual synthesis language SuperCollider
uses an array to duplicate processes on a single line of code
[3]. If we give an array of frequencies to a resonator, it will
create as many resonators as there are values in the array.
Pyo uses the python’s list type to implement a similar dupli-
cation of object’s processing. Almost all parameters accept
a list as an argument, creating as many audio streams as
necessary to process all values in the list. A stream is a

monophonic audio signal container, and a pyo object can
manage any number of these streams. One can create two
hundred oscillators in one line by giving a list of two hun-
dred values to the frequency parameter of a Sine object.
A pyo object is also considered as a list by Python, which
means that if an object receives another pyo object in one of
its parameters, the receiver will generate the same number
of streams, each one with its audio variation. This system
is very expressive and allows to create highly flexible and
compact scripts. The next example generates a chorus of N
oscillators with random frequencies, phases, and amplitudes.

>>> from pyo import *

>>> from random import random, uniform

>>> s = Server().boot()

>>> N = 200

>>> freqs = [uniform(100, 900) for i in range(N)]

>>> phases = [random() for i in range(N)]

>>> amps = [uniform(.001, .02) for i in range(N)]

>>> oscs = Sine(freqs, phases, amps).out()

>>> s.start()

5.5 Multichannel environment
Pyo can be turned into a multichannel environment, in-

stead of stereo, simply by giving the desired number of chan-
nels as an argument to the Server object. When a pyo object
is asked to send its audio streams to the sound card, the
default behavior is to alternate its streams over the avail-
able channels cyclically. This behavior can be overridden in
many ways, either with random functions, or by specifying
the exact output for each stream managed by the object,
or with the available panning functionalities of the library.
The panning objects take the number of channels as an ar-
gument, allowing one to switch quickly between a stereo and
a multichannel workstation.

>>> from pyo import *

>>> CHNLS = 8

>>> s = Server(nchnls=CHNLS).boot()

>>> n = Noise(.5)

>>> lfo = Sine(.1, mul=0.5, add=0.5)

>>> pan = Pan(n, outs=CHNLS, pan=lfo).out()

>>> s.start()

5.6 Arithmetic with audio objects
Pyo objects also override the basic math operators (∗,

/, +, −, ∗∗, %), meaning you can do arithmetic involving
audio objects. When math operations contain pyo objects,
a new audio object, called Dummy, is automatically created
to hold the result of the computation. The action leaves the
original object untouched. This behavior can be very useful
as a single audio object can be multiplied by a list of floats to
return a list of similar, but slightly different, audio objects.
Arithmetic operations can involve only audio objects or both
audio objects and floats.

In a similar way, conditional operators (<, <=, >, >=,
==, !=) are overridden in pyo objects to return an audio
stream containing zeros and ones, depending on the result
of the comparison.

The next sample illustrates some arithmetics with audio
objects by creating a complex tone with the summation of
three sine waves. The frequency of each oscillator is a har-
monic of a given fundamental with an independent jitter and
a common vibrato.

1216

>>> from pyo import *

>>> s = Server().boot()

>>> f = 100

>>> vib = Sine(5, mul=0.02, add=1)

>>> jit = Randi(min=0.99, max=1.01, freq=[1,2,3])

>>> a1 = Sine(freq=f * vib * jit[0], mul=0.5)

>>> a2 = Sine(freq=f * 2 * vib * jit[1], mul=0.3)

>>> a3 = Sine(freq=f * 3 * vib * jit[2], mul=0.1)

>>> total = (a1 + a2 + a3).out()

>>> s.start()

5.7 MIDI and OSC support
Music is all about instrument and control. In this regards,

pyo offers a complete support for MIDI and OSC[6] (Open
Sound Control) communication. These two protocols are
widely used and incorporated into many commercial and
custom musical interfaces. It is a very efficient way to modify
and generate sound events in real-time. Here is the bare
minimum to play notes in pyo with a MIDI keyboard:

>>> from pyo import *

>>> s = Server()

>>> s.setMidiInputDevice(99) # open all devices!

>>> s.boot()

>>> note = Notein(poly=10, scale=1)

>>> amp = MidiAdsr(note[’velocity’], mul=0.2)

>>> osc = RCOsc(freq=note[’pitch’], mul=amp)

>>> out = osc.mix(2).out()

>>> s.start()

5.8 Other features
After several years of development of pyo, it is now a DSP

toolkit pretty complete. In addition to essential processes
like soundfile players, filters, wave shapers, oscillators, ran-
dom generators, reverbs, etc., there is an all set of objects
to do spectral transformations with the phase vocoder tech-
nique[1]. Scientists and psychoacoustics will find analysis
tools to retrieve and display sound characteristics such as
fundamental frequency, spectrum envelope, amplitude enve-
lope, brightness and spectral center of gravity. Pyo also has
many built-in operators to create and manipulate tables or
matrices and much more. See the documentation for the
detail about the hundreds of objects in the library.

6. CONCLUSION
In this article we have introduced a new audio engine that,

developed as a Python module, is part of a larger program-
ming environment than the sound itself. It is a dedicated
module amongst thousands of other specialized modules.
We have also demonstrated that this integration to a gen-
eral and common language can be of a great benefit. There
is no need to learn a new syntax and new paradigms before
starting to make sound with code; we just need to write pro-
grams in a familiar language. Crunching numbers to store
in an audio table can be easily done with the numpy mod-
ule. Creating audio software with a sophisticated graphical
user interface become an easy task because there is already
plenty of GUI modules available. Python is very powerful
when comes the time to develop algorithms and pyo now
provides a complete and high quality DSP toolbox to pro-
duce sound within Python.

7. REFERENCES
[1] R. Boulanger and V. Lazzarini. The audio programming

book. MIT Press, Cambridge, Massachussets, 2010.

[2] J. McCartney. Supercollider: a new real time synthesis
language. In ICMC’96 Conference Proceedings, pages
257–258. International Computer Music Association,
1996.

[3] J. McCartney. Continued evolution of the supercollider
real time environment. In ICMC’98 Conference
Proceedings, pages 133–136. International Computer
Music Association, 1998.

[4] M. Puckette. Pure data: another integrated computer
music environment. In Conference Proceedings, pages
37–41. Second Intercollege Computer Music Concerts,
1996.

[5] B. Vercoe and D. Ellis. Real-time csound: Software
synthesis with sensing and control. In ICMC’90
Conference Proceedings, pages 209–211. International
Computer Music Association, 1990.

[6] M. Wright, A. Freed, and AliMomeni. Opensound
control: State of the art. In NIME’03 Conference
Proceedings. Conference on New Interfaces for Musical
Expression, 2003.

1217

	Introduction
	Programming environment
	Applications
	Intended audience
	Main features
	The audio engine
	Everything is computed at audio rate
	Sample-accurate timing
	List expansion
	Multichannel environment
	Arithmetic with audio objects
	MIDI and OSC support
	Other features

	Conclusion
	References

