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ABSTRACT
Road detection is one of the most important research areas
in driver assistance and automated driving field. However,
the performance of existing methods is still unsatisfactory,
especially in severe shadow conditions. To overcome those
difficulties, first we propose a novel shadow-free feature ex-
tractor based on the color distribution of road surface pixels.
Then we present a road detection framework based on the
extractor, whose performance is more accurate and robust
than that of existing extractors. Also, the proposed frame-
work has much low-complexity, which is suitable for usage
in practical systems.
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1. INTRODUCTION
Road detection constitutes a basis for many intelligent ve-

hicle applications such as lane departure warning and lane
keeping assistance. The main task of road detection is to
detect the road area from an image captured by a cam-
era mounted behind a car windshield. Although many ef-
forts have been devoted using feature-based methods in this
area, most detection methods suffer from the interference of
shadow [3]. To overcome those difficulties, some researchers
proposed illumination-robust feature extractors [17, 27] while
others introduced shadow-free feature extractors [2, 16]. Al-
though the shadow-free feature extractors can help improve
the performance of illumination-sensitive road detection, they
still cannot perform well in severe shadow conditions. Mean-
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Figure 1: Comparison of various feature extractors.
illumination-sensitive: Y . Illumination-robust: H, S
and S′. Shadow-free: I′θ, I′α and I′b(ours).

while, shadow removal methods, which may perform better,
are too time-consuming for the real-time road detection task.
In this paper, we propose a low-complexity shadow-free fea-
ture extractor with better performance, especially in severe
shadow conditions (cf. Fig.1). Besides, we set up a general
framework for road detection based on the proposed extrac-
tor. Experiments show that road surfaces can be detected
accurately and efficiently through our extractor.

2. RELATED WORK

2.1 Existing Road Detection Methods
Existing road detection techniques can be divided into two

broad categories: feature-based [4, 11, 14, 18, 19, 20, 21, 23,
24, 25] and model-based methods [12, 13, 15, 28]. Feature-
based methods utilize local visual features of interest, such
as gradient, color [11, 18, 20, 22], brightness [21, 24], tex-
ture [14], orientation [4] and their combinations [19, 23, 25],
which are relatively insensitive to road shapes but are sen-
sitive to illumination effects. Especially, those methods are
vulnerable to the interference of severe shadows, which may
lead to false alarms in edge detection, texture extraction,
color segmentation [3], etc. On the contrary, model-based
methods apply global road models to match low-level fea-
tures, which are more robust against illumination effects but
sensitive to road shapes. The reason lies in that the number
of predefined models is limited compared to practical sce-
narios. For example, the geometrical model proposed in [28]
contains only thirteen curvatures, which may not match all
kinds of road shapes such as S-curve. Besides, those meth-
ods may totally fail under severe shadow scenarios because
of model mismatch. As a conclusion, both existing feature-
based and model-based road detection methods suffer from
severe shadows, thus a more robust method is critical to real
applications.
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2.2 Feature Extractors in Severe Shadow Cases
To fight for the severe shadow interferences, feature ex-

tractors are employed in the pre-processing stage to ob-
tain a grayscale feature image, in which illumination effects
are reduced. Two kinds of feature extractors are studied:
illumination-robust and shadow-free extractors.

Illumination-robust feature extractors. In RGB space,
the brightness and color information are mixed together for
three components, thus they are vulnerable to the impact
of shadow. To solve this problem, color space conversion is
often employed [11, 18, 20] to extract the brightness infor-
mation into a separate component, such as I of HSI, L of Lab
and Y of YUV. The remaining two components are suitable
for road detection since they only contain color information
which is relatively illumination-insensitive. Take HSI as an
example, H component can be employed to extract road fea-
tures [20], and S component is suitable to extract roadside
vegetation [26]. However, color components are unstable in
severe shadow cases (cf. Fig.1). An illumination-robust fea-
ture called S’ is presented in [27] to accommodate both the
severe shadow cases and weak shadow cases.

Shadow-free feature extractors. Since shadows still
exist in the extracted component via illumination-robust ex-
tractors, the road boundary may not be recovered well in
some cases [27]. To completely remove the shadow inter-
ferences, some researchers try to find underlying features
which are invariant to illumination effects. Log-chromaticity
space (LCS) [7] is often employed to recover a shadow-free
image. Under the condition that an image is captured by
a narrow-band camera with approximately Planckian illu-
mination and Lambertian surfaces, Finlayson et al.[7] show
that the set of color surfaces of different chromaticities forms
parallel straight lines in the LCS. The band-ratio chromatic-
ity is defined as

χj =
ρq
ρp
, qε{1, 2, 3}, q 6= p, j = 1, 2, (1)

where ρ1, ρ2 and ρ3 are matrices respectively representing
the red(R), green(G) and blue(B) components of the raw im-
age, p is the index of the normalizing components and index
q points to the remaining two components. The shadow-free
image I proposed in [7] is derived from the aforementioned
linear relationship as

I = exp(cosθ · log(χ1) + sinθ · log(χ2)), (2)

where θ is a camera-dependent parameter.
Álvarez and Ĺopez [2] applied that method to their shadow-

free extractor I′θ for road detection. As shown in Eq.3, G is
used for normalization (p = 2; q = 1, 3) and the outermost
exponential operation is removed to improve the speed.

I′θ = cosθ · log(R/G) + sinθ · log(B/G) (3)

Maddern et al.[16] proposed another form of illumination
invariant imaging and applied it to vision-based localization,
mapping and classification for autonomous vehicles. Their
extractor I′α is defined as

I′α = (1− α) · log(R) + α · log(B)− log(G) + 0.5, (4)

where α is a camera dependent parameter (α = sinθ
cosθ+sinθ

)
and 0.5 is an offset term.

As shown in Fig.1, shadow-free feature extractors perform
better than illumination-robust extractors in weak shadow
cases since the shadows are completely removed. However,
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their performance in severe shadow cases still needs to be
improved. To find why existing shadow-free extractors [2,
16] fail in severe shadow cases, we choose a shadowy road
image from ROMA dataset [21] and then map pixels of road
and vegetation regions into LCS. According to their ba-
sic assumption, the set of color surfaces of different chro-
maticities will form parallel straight lines in LCS. However,
the distribution is more like a quadratic function in severe
shadow conditions, and the two classes are mixed together
indistinguishably (cf. Fig.2 (left) ).

3. OUR APPROACH
To obtain a new shadow-free feature extractor which is

robust against severe shadows, a more proper relationship
is required. Healey et al.[10] proved that the measured col-
ors of homogeneous dielectric surfaces lie on a line passing
through the origin of RGB space. To verify that, we map
the road and vegetation pixels from aforementioned shad-
owy road image into RGB space. Since road and vegetation
can be treated as homogeneous dielectric surfaces, their cor-
responding pixels should be arranged in line shapes. Our
experimental results are in agreement with [10] except for
an offset between the intersection and origin (cf. Fig.3).

To see the offset more clearly, we project the pixels onto
the GB plane (cf. Fig.2 (right)), where the G and B compo-
nents of the same material are distributed along a straight
line with an offset shown as the intercept of B axis. That
offset is ignored in [10]. We can use a linear function to accu-
rately describe the relationships among road surface pixels
as

Gr,c ≈ k ∗Br,c + b, (r, c) ∈ road, (5)

where r and c are the indexes of row and column indicating
the location of a road pixel, k is the slope of the straight line
and b is the intercept.

Define a matrix K as

K ,
G− b
B

, (6)

Figure 3: Road and vegetation pixels in RGB space.
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Figure 4: Histogram of K (left) and the optimal
range (m∗, n∗) for ROMA dataset (right).

whose elements in the road area are approximately a con-
stant (cf. Eq.7). The intercept b can be obtained by poly-
nomial fitting among the road pixels on GB plane. Besides,
experiments show that all images captured by the same cam-
era can share one b, so b can be explained as an intrinsic
parameter of each color camera like θ of I′θ (Eq.3) and α
of I′α (Eq.4). Therefore, we only need to do an off-line
calibration once for one camera.

∀(r, c) ∈ road→ Kr,c =
Gr,c − b
Br,c

≈ k (7)

To design an efficient extractor, we need to analyze the
distribution of K. For each sub-dataset of ROMA, we plot
the histogram of K to each pixel in all images as shown in
Fig.4 (left). Let Kmin and Kmax be the minimum and maxi-
mum of K. Unevenly distributed of K makes it inefficient to
use the whole range [Kmin,Kmax] to form the shadow-free
component. Thus, we need to choose a dominant subrange
(m,n) to make it more compact.

Let H be the overall histogram of ROMA dataset. We
compute the optimal range [m∗, n∗] ⊂ [Kmin,Kmax] for
ROMA dataset via

(m∗, n∗) = argmax
(m,n)

{g(m,n)− c(m,n)}, (8)

where g(m,n) is defined as

g(m,n) ,
n∑

i=m

H(i)/

Kmax∑
i=Kmin

H(i), (9)

and c(m,n) is defined as

c(m,n) , (m− n)/(Kmax −Kmin). (10)
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Figure 5: Shadowy images and the results of extrac-
tors. Complete results can be found on our website.

We find that the optimal range for ROMA dataset is
[m∗, n∗] = [0.84, 1.58], as shown in Fig.4 (right). To fa-
cilitate normalization (cf. Eq.11) and make our extractor
more concise, [m,n] = [1, 2] are used to approximate the
[m∗, n∗] and our extractor I′b is derived (cf. Eq.12).

1 6 K 6 2⇒ 0 6 2−K 6 1 (11)

I′b , 2−K (12)

To apply our extractor to road detection task, we present
a general road detection framework based on feature extrac-
tors. The framework takes an RGB image as input and
outputs a binary image where 1 denotes road pixel and 0
denotes non-road pixel. Our road detection framework is
summarized as follows:

1. Region of interest (ROI) determination. Limit the fol-
lowing processing in ROI to avoid meaningless opera
tions on irrelevant regions.

2. Feature Extraction. Apply an extractor to the image
in ROI and output a grayscale image.

3. Filtering. Remove the noise introduced when perform-
ing feature extraction.

4. Segmentation. Segment the grayscale image into sev-
eral regions (set of pixels) and output a labeled image.

5. Connected Component Analysis. Find the region with
the largest area (cardinality of set) and output a binary
image indicating that region.

6. Morphological Filtering. Applying morphology image
operation using a structuring element to separate the
road from other areas.

7. Holes filling. Road markings will produce holes in the
obtained area. Filling the holes to obtain a complete
road area.

4. EXPERIMENTAL RESULTS

4.1 Shadow-Free Extractor
Effectiveness. We test our extractor on a public dataset

[9]. Different from all other extractors, our results look like
a natural image except that the shadows are disappeared.
As sample images shown in Fig. 6, our extractor is robust
against images of a wide range of materials and surface tex-
tures. It also retains the texture (e.g. road, brick and wood)
and details (e.g. handwriting) well compared to other ex-
tractors, as shown in Fig.5.

Time Efficiency. We measure the average time and vari-
ance (µ ± σ) for extractors implemented with MATLAB
to process an image having 1280 × 1024 dots with a PC
equipped with an i7-3770 3.40 GHz CPU and 16GB RAM
(GPU acceleration is not used). Due to the low-complexity
of our extractor, it achieves the fastest speed compared with
others (cf. Table 1).

Table 1: Processing speed of feature extractors.
Extractors S′ [27] I′θ [2] I′α [16] I′b (Ours)
Time/ms 21.3±0.2 52.2±0.4 54.9±3.6 12.9±0.1
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Table 2: Pixel-wise measures (right) defined using
entries of a contingency table (left).
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Measure Definition

Quality ĝ = TP
TP+FP+FN

Precision DR = TP
TP+FP

Recall DA = TP
TP+FN

Effectiveness F = 2DR×DA
DR+DA

Valid VRI = TP+TN
TP+TN+FP+FN

≥ 0.8

4.2 Road Detection
To evaluate the performance of road detection, we adopt

pixel-wise measurements shown in Table 2. Quantitative
evaluations are provided using four error measurements: qual-
ity ĝ, precision DR (also known as detection rate), recall DA
(also known as detection accuracy) and effectiveness F . We
also use a qualitative measurement called valid road result
index VRI [1]: a detection result is valid (VRI = 1 ) if and
only if at least 80% of pixels are correctly classified. As [1]
suggested, road boundary pixels should be discarded when
computing those measurements to reduce the inherent error
of manual segmentation.

ROMA dataset. There are 10 sub-datasets of various
scenes, road types and illumination conditions in ROMA.We
manually labeled road area ground truth of all sub-datasets.
To make a fair comparison, different extractors are employed
in the same road detection framework under the same pa-
rameter settings. In our implementation, the lower half of
image is selected as ROI in step 1. A graph-based image
segmentation algorithm introduced in [6] with the param-
eters σ = 1.2, k = 300 and min = 1000 is employed in
step 4. Since the algorithm already has a parameter σ to
smooth the image, a 5× 5 median filter is employed in step
3 to filter the extracted feature image. Finally, morphology
opening using a structuring element of 8× 8 disk is applied
in step 6 to separate the road from other areas. As shown in
Table 3, detection results based on the proposed extractor
outperform the others in both quantitative and qualitative
measurements, especially in adverse lighting conditions.

KITTI-ROAD dataset [8]. To test the performance on
challenging KITTI-ROAD dataset, we compare our result
with that of the state-of-art top 3 methods accessible on

Table 3: Performance on ROMA Dataset.
Complete dataset

ĝ DR DA F V RI
Y .79 ± .17 .91 ± .12 .86 ± .17 .87 ± .12 63%
S′ [26] .85 ± .18 .94 ± .11 .90 ± .17 .91 ± .12 75%
I′θ [2] .82 ± .23 .94 ± .12 .87 ± .23 .88 ± .18 72%
I′α [16] .79 ± .14 .83 ± .13 .95 ± .11 .87 ± .09 59%
I′b (Ours) .92±.11 .96±.07 .96±.09 .96±.07 93%

Adverse lighting conditions
ĝ DR DA F V RI

Y .76 ± .16 .88 ± .14 .85 ± .18 .85 ± .12 48%
S′ [26] .81 ± .20 .91 ± .14 .88 ± .19 .88 ± .14 67%
I′θ [2] .81 ± .20 .93 ± .11 .87 ± .21 .88 ± .14 65%
I′α [16] .77 ± .14 .81 ± .14 .95 ± .10 .86 ± .09 48%
I′b (Ours) .92±.09 .96± .07 .96±.07 .96±.05 96%

SSL

DDN

UpConvPoly

ours

Figure 6: Comparison with state-of-art methods.
Red areas denote false negatives, blue areas corre-
spond to false positives and green areas represent
true positives.

Sobel Canny StructuredEdge

Ours Ours+ Sobel Ours+Canny Ours+ StructuredEdge

RGB

Figure 7: Improve edge detection via our extractor.

the KITTI benchmark website1. As shown in Fig.6, our
detection result shows more accuracy than that of the state-
of-art methods. Besides, we test three edge detectors (Sobel,
Canny and Structured Edge [5]) in severe shadow cases. As
shown in Fig.7, using the shadow-free image obtained by our
extractor can achieve a better result. Also, the false color
segmentation caused by severe shadow can be avoided by
employing our extractor as a preprocessing step, as shown
in Fig.8.

To encourage future works, we make the source code open,
as well as our labeled ground-truth for ROMA. More testing
results can be found on our project website2.

Figure 8: Improve segmentation via our extractor.

5. CONCLUSIONS
In this paper, we propose a novel shadow-free feature ex-

tractor to improve the performance of road detection under
severe shadow conditions. The proposed extractor shows
robustness against different materials and illumination con-
ditions. A road detection framework based on the proposed
extractor is built. Experimental results on public datasets
demonstrate the superior performance compared to other ex-
isting extractors. As a result, the novel extractor is well suit-
able to other computer vision tasks as well as autonomous
driving applications by its good performance and computa-
tional efficiency.

1http://www.cvlibs.net/datasets/kitti/eval road.php
2https://github.com/baidut/OpenVehicleVision/
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[1] J. M. Álvarez, T. Gevers, and A. M. Lopez. 3d scene

priors for road detection. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference
on, pages 57–64. IEEE, 2010.

[2] J. M. Álvarez and A. M. Ĺopez. Road detection based
on illuminant invariance. Intelligent Transportation
Systems, IEEE Transactions on, 12(1):184–193, 2011.

[3] A. Bar Hillel, R. Lerner, D. Levi, and G. Raz. Recent
progress in road and lane detection: a survey. Machine
Vision and Applications, 25(3):727–745, 2014.

[4] B. Benligiray, C. Topal, and C. Akinlar. Video-based
lane detection using a fast vanishing point estimation
method. In Multimedia (ISM), 2012 IEEE
International Symposium on, pages 348–351, Dec 2012.

[5] P. Dollár and C. Zitnick. Structured forests for fast
edge detection. In Proceedings of the IEEE
International Conference on Computer Vision, pages
1841–1848, 2013.

[6] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
graph-based image segmentation. International
Journal of Computer Vision, 59(2):167–181, 2004.

[7] G. D. Finlayson, S. D. Hordley, C. Lu, and M. S.
Drew. On the removal of shadows from images.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(1):59–68, 2006.

[8] J. Fritsch, T. Kuhnl, and A. Geiger. A new
performance measure and evaluation benchmark for
road detection algorithms. In Intelligent
Transportation Systems-(ITSC), 2013 16th
International IEEE Conference on, pages 1693–1700.
IEEE, 2013.

[9] H. Gong and D. Cosker. Interactive shadow removal
and ground truth for variable scene categories. In
BMVC 2014-Proceedings of the British Machine
Vision Conference 2014. University of Bath, 2014.

[10] G. Healey. Segmenting images using normalized color.
Systems, Man and Cybernetics, IEEE Transactions
on, 22(1):64–73, 1992.

[11] J. Huang, B. Kong, B. Li, and F. Zheng. A new
method of unstructured road detection based on hsv
color space and road features. In Information
Acquisition, 2007. ICIA ’07. International Conference
on, pages 596–601, July 2007.

[12] S.-N. Kang, S. Lee, J. Hur, and S.-W. Seo. Multi-lane
detection based on accurate geometric lane estimation
in highway scenarios. In Intelligent Vehicles
Symposium Proceedings, 2014 IEEE, pages 221–226,
June 2014.

[13] Z. Kim. Robust lane detection and tracking in
challenging scenarios. Intelligent Transportation
Systems, IEEE Transactions on, 9(1):16–26, March
2008.

[14] H. Kong, J.-Y. Audibert, and J. Ponce. General road
detection from a single image. Image Processing,
IEEE Transactions on, 19(8):2211–2220, 2010.

[15] Z. Li, Z. xing Cai, J. Xie, and X. ping Ren. Road
markings extraction based on threshold segmentation.
In Fuzzy Systems and Knowledge Discovery (FSKD),
2012 9th International Conference on, pages
1924–1928, May 2012.

[16] W. Maddern, A. Stewart, C. McManus, B. Upcroft,

W. Churchill, and P. Newman. Illumination invariant
imaging: Applications in robust vision-based
localisation, mapping and classification for
autonomous vehicles. In Proceedings of the Visual
Place Recognition in Changing Environments
Workshop, IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, China, 2014.

[17] C. Oh, J. Son, and K. Sohn. Illumination robust road
detection using geometric information. In Intelligent
Transportation Systems (ITSC), 2012 15th
International IEEE Conference on, pages 1566–1571.
IEEE, 2012.

[18] C. Rotaru, T. Graf, and J. Zhang. Color image
segmentation in hsi space for automotive applications.
Journal of Real-Time Image Processing, 3(4):311–322,
2008.

[19] T. Scharwachter and U. Franke. Low-level fusion of
color, texture and depth for robust road scene
understanding. In Intelligent Vehicles Symposium
(IV), 2015 IEEE, pages 599–604. IEEE, 2015.

[20] T.-Y. Sun, S.-J. Tsai, and V. Chan. Hsi color model
based lane-marking detection. In Intelligent
Transportation Systems Conference, 2006. ITSC ’06.
IEEE, pages 1168–1172, Sept 2006.

[21] T. Veit, J.-P. Tarel, P. Nicolle, and P. Charbonnier.
Evaluation of road marking feature extraction. In
Intelligent Transportation Systems, 2008. ITSC 2008.
11th International IEEE Conference on, pages
174–181, Oct 2008.

[22] B. Wang, V. Frémont, and S. A. Rodŕıguez.
Color-based road detection and its evaluation on the
kitti road benchmark. In Intelligent Vehicles
Symposium Proceedings, 2014 IEEE, pages 31–36.
IEEE, 2014.

[23] J. Wang, Z. Ji, and Y.-T. Su. Unstructured road
detection using hybrid features. In Machine Learning
and Cybernetics, 2009 International Conference on,
volume 1, pages 482–486. IEEE, 2009.

[24] J. Wang, T. Mei, B. Kong, and H. Wei. An approach
of lane detection based on inverse perspective
mapping. In Intelligent Transportation Systems
(ITSC), 2014 IEEE 17th International Conference on,
pages 35–38, Oct 2014.

[25] Y. U. Yim and S. young Oh. Three-feature based
automatic lane detection algorithm (tfalda) for
autonomous driving. Intelligent Transportation
Systems, IEEE Transactions on, 4(4):219–225, Dec
2003.

[26] Z. Ying and G. Li. Robust lane marking detection
using boundary-based inverse perspective mapping. In
2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
1921–1925, March 2016.

[27] Z. Ying, G. Li, and G. Tan. An illumination-robust
approach for feature-based road detection. In 2015
IEEE International Symposium on Multimedia (ISM),
pages 278–281, Dec 2015.

[28] S. Zhou, Y. Jiang, J. Xi, J. Gong, G. Xiong, and
H. Chen. A novel lane detection based on geometrical
model and gabor filter. In Intelligent Vehicles
Symposium (IV), 2010 IEEE, pages 59–64, June 2010.

615




