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ABSTRACT

Higher-level semantics such as visual attributes are crucial
for fundamental multimedia applications. We present a novel
attribute discovery approach that can automatically iden-
tify, model and name attributes from an arbitrary set of
image and text pairs that can be easily gathered on the
Web. Different from conventional attribute discovery meth-
ods, our approach does not rely on any pre-defined vocabu-
laries and human labeling. Therefore, we are able to build a
large visual knowledge base without any human efforts. The
discovery is based on a novel deep architecture, named In-
dependent Component Multimodal Autoencoder (ICMAE),
that can continually learn shared higher-level representa-
tions across the visual and textual modalities. With the help
of the resultant representations encoding strong visual and
semantic evidences, we propose to (a) identify attributes and
their corresponding high-quality training images, (b) itera-
tively model them with maximum compactness and compre-
hensiveness, and (c) name the attribute models with human
understandable words. To date, the proposed system has
discovered 1,898 attributes over 1.3 million pairs of image
and text. Extensive experiments on various real-world mul-
timedia datasets demonstrate the quality and effectiveness
of the discovered attributes, facilitating multimedia applica-
tions such as image annotation and retrieval as compared to
the state-of-the-art approaches.

Categories and Subject Descriptors

H.3.3 [Content Analysis and Indexing]: Abstracting
methods
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1. INTRODUCTION

With the evolution of machine understanding of visual
attributes (e.g., concepts, objects, and visual patterns) over
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Figure 1: Problems with the conventional Web-scale
attribute learning paradigm. (a) The pre-defined vocab-
ularies (i.e., items) hardly cover the user-generated tags
with 623,464 non-repeated terms from Flickr. (b) Im-
ages collected from Google search engine hardly repre-
sent user-generated images from Flickr. Images averaged
over the most relevant results are shown on the left.

the years', we have witnessed the advances in content-based
multimedia applications such as annotation and retrieval,
which have been reforming the way we interact with the
world [26, 40]. It is believed that the success is mainly de-
rived from the intelligent machinery built on large and di-
verse databases with high-quality attribute annotation. But
constructing such databases is a challenging and expensive
task. Recent studies, using crowdsourcing and bootstrap-
ping strategies to collect attributes from the Web data at a
vast scale with minimum human intervention, offer a promis-
ing route towards this task [8, 24, 28].

However, as we migrate these collected attributes to real-
world applications, we may find that they adapt poorly to
the ever-evolving visual world [35]. One fundamental issue
is that until recently researchers have no idea on how many
attributes are enough for multimedia applications. They
generally resort to a pre-defined vocabulary constructed by
domain experts. Since it is manually built with limited scale,
the resultant attributes can hardly keep up with the ever-
evolving interests of the general users. For instance, the
overlap between the items of ImageNet [8]/LSCOM [24] and
user-provided tags crawled from Flickr is only 1.4%/7.6%,

!Besides the conventional attribute definition such as object
parts, visual properties [12], we refer the term “attribute” to more
general semantic meanings such as concepts, objects.
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Figure 2: Illustrative examples of 5 discovered attributes. Our approach can automatically identify, model and name
attributes without any human efforts. We show 10 representative images with the most model confidence, top 2 names
and the performances of attribute models in terms of Average Precision (AP).

as shown in Figure 1(a). On the other hand, due to the
noisy tags of the Web images, people exploit search engines
to collect much more relevant images given the attributes as
queries and invite human labelers to refine the results. How-
ever, despite the expensive human labor, the search results
may not be informative and comprehensive because of du-
plicate or near-duplicate visual contents of images, resulting
in attribute models heavily biased towards them [16]. For
example, as shown in Figure 1(b), given certain attributes
as queries, images from a photo sharing community (e.g.,
Flickr) and a search engine are very different (e.g., Google),
causing the models built on the latter can hardly adapt to
applications in the former, which nevertheless has begun to
dominate the Web content [7].

Intrigued, we raise a question: is it possible to start from
scratch to discover and build up the visual attributes directly
from the data? In other words, we want to develop an intel-
ligent system that can automatically acquire user-interested
attributes solely from images and tags, which can be easily
crawled on the Web without any constraints. Here, we re-
fer the “unconstrained crawling” to dataset collection from
any sources, rather than need to leverage on search engines
to gather data related to a pre-defined set of attributes. In
this paper, we describe a novel approach that automatically
harvests visual attributes without any human supervision.
Figure 2 shows some examples of attributes discovered by
our system. We want to highlight three key components of
our approach that make it effective and distinguishable from
state-of-the-art methods [6, 20].

Identification. We do not need any pre-defined vocabulary
of semantic attributes or search engines to collect attribute-
related images. Instead, our system can automatically iden-
tify a set of attributes from a large number of image-text
pairs. Motivated by the psychological and cognitive find-
ings [23] that attributes are shared and constructive higher-
level abstractions of multi-source sensory perceptions, we
develop an unsupervised deep architecture that correlates
image and textual data through the shared hidden layer,
where the variables are encouraged to be de-correlated from
each other. In this way, we are able to fully exploit the rich
but noisy visual and semantic information of Web-scale mul-
timodal data to discover useful patterns. Then, the hidden
variables are expected to be informative semantic represen-
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tations for both modalities and are thus ideal surrogates for
identifying attributes. For example, a hidden variable may
jointly represent the occurrence of the words “furry dog” and
the visual properties of a furry dog image.

Modeling. As compared to recent automatic attribute mod-
eling methods that rely on search engines to refine attribute
training images [6, 20|, our modeling approach incorporates
the inherent correlations of visual and textual data encoded
in the shared hidden variables, resulting in training im-
ages of larger diversity and leading to more generalizable
attribute models that are evident in both modalities. More-
over, we propose a model update mechanism for the new
data. Hence, besides discovering new attributes, our system
can also update old attribute models by merging new but
redundant ones. Therefore, the attributes can evolve into a
more compact and comprehensive knowledge base from the
inexhaustible amount of data.

Naming. Yet, the attributes discovered are not applica-
ble to end-user applications since they have no meaningful
utterable names. In order to make the machine-recognized
attributes understandable by humans, we propose to name
the attributes by using the associated tags of images. For
each attribute, we rank the tags as tentative attribute names
not only based on their noisy frequencies but also on their
relatedness to the corresponding visual properties, namely
visualness. This results in more accurate and informative
names. It is worth noting that our naming strategy does
not rely on any pre-defined vocabularies but directly mines
from the user-generated data. The key advantage of this
approach is that the attributes are no longer limited in se-
mantic scale and are able to cover general user interest.

The overview of the proposed fully automatic approach is
illustrated in Figure 3. We start with nothing but an arbi-
trary set of image-text pairs as the input data. In order to
mine the correlations of the multimodal data, we propose
a novel unsupervised deep architecture, called Independent
Component Multimodal Autoencoder (ICMAE), which un-
derpins the overall automatic system. ICMAE has two path-
ways for image and text modalities. The two pathways are
then merged into a shared hidden layer. Given the higher-
level representations of both pathways (i.e., “Layer 2” as
shown in Figure 3), we can learn higher-order correlations
across modalities through the shared layer.
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Figure 3: The overview of the proposed system towards automatically identifying, modelling and naming visual at-
tributes. The proposed unsupervised deep architecture, Independent Component Multimodal Autoencoder (ICMAE),
underpins the overall system. The number of neurons in each layer is marked.

Based on ICMAE, the attribute discovery works as fol-
lows. First, in order to constrain the hidden variables of
the shared layer as potential attributes to be identified, we
propose to impose Independent Component Analysis (ICA)
constraints in the architecture to de-correlate the relation-
ships among the variables (colored connections in Figure 3).
Then, given a set of images, the response values of the hid-
den variables of an attribute indicate how strong the at-
tribute is present, guiding us to divide the images into two
clusters, namely, positive and negative samples, which are
used to model the attribute. Finally, for naming an at-
tribute, we provide the most confident images of the at-
tribute model as input to the image pathway of ICMAE
to reconstruct the textual counterpart. The reconstructed
textual data of the images are considered as most visually
related to the attribute. Together with their term frequen-
cies, we finally score the text as potential attribute names.
So far, the system has discovered 1,898 attributes from 1.3M
images and tags pairs. Experimental results on real-world
datasets demonstrate that the discovered attributes are ef-
fective in supporting fundamental multimedia applications
such as image annotation and retrieval.

In the era of big data, we believe that our work has a
great potential in relieving human labor for learning visual
semantics, due to the following contributions.

e We propose a novel attribute discovery system that can
constantly and automatically identify, model and name vi-
sual attributes from the exhaustible amount of Web data.
To the best of our knowledge, this is the first work to ex-
plore the possibility of a fully machine-built visual knowl-
edge base.

e We develop a novel deep architecture named ICMAE that
effectively mines the higher-level correlations of noisy mul-
timodal data from the images and the corresponding tags.

e Through fundamental applications such as image anno-
tation and retrieval, we demonstrate that the attributes
discovered by our automated system considerably outper-
form others with human efforts.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 describes the machine learn-
ing framework of the proposed ICMAE. Section 4 illustrates
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the proposed automatic attribute discovery approach based
on ICMAE, including identifying, modeling, and naming at-
tributes. Experimental results and analysis are reported in
Section 5, followed by conclusions in Section 6.

2. RELATED WORK
2.1 Attribute Discovery

The research trend of learning semantic attributes has
changed from using small benchmark datasets to large-scale
knowledge base, towards real-world applications [35, 38].
However, constructing a desired large dataset is challenging.
With the development of crowdsourcing techniques such as
Mechanical Turk, large-scale high-quality datasets in terms
of size and diversity such as ImageNet [§8], LSCOM [24] and
Visipedia [28] are constructed at a reasonable cost. Such
valuable datasets have successfully spawned many widely-
used attribute models such as Classemes [36], Picodes [4],
and DeCAF [10]. On the other hand, several studies focus
on automatically mining attributes from the Web. For ex-
ample, Li et al. [20] used a multiple instance learning frame-
work to learn sub-image-level features from images returned
by querying attribute names from the search engine. More-
over, some bootstrapping strategies are applied to improve
the quality of the collected data and their induced attribute
models. Li et al. [19] developed a system that incrementally
updates attribute models, which in turn refines the collected
data. Chen et al. [6] developed a never-ending image learner
that cycles between discovering attribute relationships and
then retrain attribute models constrained by the relation-
ships.

However, all the above methods start from a pre-defined
vocabulary with poor coverage on general user interests and
rely on the less informative images retrieved by search en-
gines. Alternatively, we are able to harvest attributes di-
rectly from image-text pairs without the help of any vocab-
ularies and search engines. In this way, our work relates to
several recent studies, such as Bergamo et al. [4] and Raste-
gari et al. [30] that considered attributes as random split [12]
of the visual space enhancing the classification performance.
But these discovery methods require class-level image anno-
tations and the discovered attributes have no human under-
standable names. Instead, our approach does not only dis-



cover them but also name them explicitly. Parikh and Grau-
man [27] invited humans in the discovering process to name
attributes by active learning strategy. Similarly, Kankuekul
et al. [17] incrementally labeled attributes via online inter-
action with users. As compared to these semi-automatic
methods, our naming is fully automatic. There are also au-
tomatic attribute discovery and naming methods that fall
into specific domains like butterfly [37] and fashion prod-
uctsbengio2009learning recogntion [3]. However, we tackle
the problem in general domain which is more fundamental
and challenging.

2.2  Multimodal Deep Learning

Recent advances in machine learning community have ex-
amined that deep architecture can be trained to produce
useful representations for visual [14], acoustic [9] and tex-
tual [21] modalities. However, there are only few studies
focusing on multimodal deep learning. Ngiam et al. [25]
proposed a deep autoencoder that jointly learns shared rep-
resentations from visual and acoustic modalities. This model
correlates the multimodalities by reconstructing one modal-
ity given that others missing. Our deep architecture fol-
lows this cross-modality reconstruction strategy since it is
very similar to the reconstructive and reusable properties
of attributes. Andrew et al. [1] proposed to use Canoni-
cal Correlation Analysis criterion in the overall fine-tuning
of independent deep networks of multimodalities. But this
model is not reconstructive and hence fails to learn represen-
tations optimized for attributes. Srivastava and Salakhutdi-
nov [32] developed a multimodal Deep Boltzmann Machines
that jointly model the image and text data. This model
learns similar representations as that of Ngiam et al. [25]
but it may suffer from the early-stopping issue since there
is no explicit objective when training Deep Boltzmann Ma-
chines. It is worth noting that the learnt representations by
the above models are not optimized for identifying informa-
tive attributes since the shared representations are highly
correlated, resulting in very redundant attributes. There-
fore, we propose to incorporate the Independent Correlation
Analysis criterion [18] in a deep Multimodal Autoencoder to
overcome this issue.

3. INDEPENDENT COMPONENT MULTI-

MODAL AUTOENCODER

In this section, we introduce the architecture and details of
the proposed Independent Component Multimodal Autoen-
coder (ICMAE), which underpins the subsequent attribute
discovery. Technically, learning ICMAE includes layer-wise
pre-training and overall fine-tuning. Note that this learn-
ing procedure can be applied once again to update the old
ICMAE if a new batch of crawled data comes in. Here, we
use the parameters of the old model as initializations for the
new round of pre-training using the new data. Thus, we
can always obtain an updated ICMAE that adapts to the
ever-evolving visual world. Without loss of generality, in
this section, we only introduce how we train ICMAE based
on one batch of training data.

3.1 Architecture Overview

The basic architecture of the network we use is similar
to the one used in [25]. As shown in Figure 3, it has two
parallel pathways for two input modalities and one shared
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hidden layer. Each input datum is a feature pair of image
x? € R and its associated text t° € R?%® (cf. Sec-
tion 5.1.2 for details of feature extraction from noisy data).
Then, (x°,t°) is encoded (i.c., fed forward) to the shared
layer along both pathways, namely, (x°,t%) — (x',t') —
(x%,t?) — z, where the dimensions of the variables x* (or
t') and x> (or t?) are respectively 2048 (or 1024) and 1024
(or 512), and the dimensions of the hidden variable z is 768.
Here, we gradually reduce the dimensionality through each
pathway in order to learn higher-level, nonlinear abstrac-
tions [14], and merge them into the shared hidden layer to
model the relationships between the two modalities. Finally
the stimuli of the shared layer is decoded (i.e., fed backward)
through the two pathways to reconstruct the input data of
both modalities, namely, z — (X2,t?) — (X', t!) — (X°,t°).
Such multimodal deep autoencoder aims to jointly model the
distributions of the image and text data, resulting in shared
hidden variables that have strong connections to variables
from both modalities. Interestingly, this property meets the
meanings of semantic attributes [23] and therefore the vari-
ables of the shared hidden layer are ideal as attribute candi-
dates. Next, we detail the encoding and decoding functions
of ICMAE.

Without loss of generality, we only formulate the image
pathway. The encoding functions are computed as

x'=o(Wix? 4+ c'), x* = o(Wix' +c?),
2
z=0 <[W3 w3 h{?] + c3> 7

where o(-) is the element-wise sigmoid function that has
been shown to be useful for autoencoders [14]. W% and c’,
i = 0,1 are trainable weights and encoding biases of the
image pathway, respectively. W2 and W? are the weights
of the image and text pathways, respectively. ¢3 is the bias
of the shared layer. The decoding functions are computed
as

(1)

%% = o(W2 z4+b?), %' = o(WL %%+b1), R° = WO R%+b°,

| (2)
where b’ is the decoding bias. Note that the decoding func-
tion from Layer 1 to the input Layer 0 is not sigmoidal. This
is because we need to retain the intrinsic Gaussian distribu-
tion for the features of the input data.

3.2 Layer-wise Pre-training

It is well-known that deep architecture only works well if
the trainable parameters are properly initialized to a good
solution. In this section, we introduce how to use the Re-
stricted Boltzmann Machine (RBM) [2] to pre-train the pro-
posed ICMAE. The RBM is an undirected graphical model
that connects two layers of random variables. Without loss
of generality, we denote v as visible variables and h as
hidden variables corresponding to any two connected lay-
ers in ICMAE. In particular, for the combined image and
text variables at Layer 2, we have v < [sz,tzT]T, and for
the shared hidden layer, we have h < z. The connections
in RBM are parameterized by W between v and h. The

optimization is to minimize the negative logarithm of the
efE(v,h)

likelihood p(v) = >, p(v,h) = >, &—
partition function.

One form of RBM is to assume that v and h are {0,1}-
valued binary variables. This RBM type is consistent with
the sigmoidal decoding/encoding functions in Eq. (1) and (2).

, where Z is a
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Figure 4: Illustration of the two objectives of ICMAE.
(a) Three types of cross-modality reconstruction error
as shown in Eq. (3). The solid and dashed arrows de-
note encoding and decoding, respectively. The lighter
font color denotes missing modalities. (b) Visualizations
of the correlation matrices of the resultant hidden vari-
ables of MAE (Multimodal AE [25]) and the proposed
ICMAE. We can see that most of the hidden variables of
ICMAE are de-correlated with each other by the use of
independent component constraints as shown in Eq. (4).

MAE

Another form of RBM is to assume h as binary but v as real-
valued Gaussian variables with unit variance and is consis-
tent with the linear encoding/decoding functions in Eq. (2).
Therefore, we use the Gaussian-binary RBM to initialize
the parameters that connect between Layer 0 and Layer
1 of ICMAE and use the binary-binary RBM to initialize
parameters of other layers. In total, we train 5 RBMs (4
along the two pathways, and 1 for the joint layer and the
shared hidden layer) for ICMAE pre-training. As it is in-
tractable to compute the gradient of the log-likelihood, we
learn the parameters of the RMBs using contrastive diver-
gence as in [34]. Moreover, in order to learn sparse models
in an efficient way, we set the initial biases of the RMBs as
sufficiently small (e.g., -2).

3.3 Opverall Fine-tuning

After pre-training ICMAE by using RBMs as above, we
are able to fine-tune the entire ICMAE using stochastic gra-
dient descent to minimize the objective function of ICMAE.
If we only define the objective function as the reconstruc-
tion error between the mutimodal input (x°,t°) and output
(i()7/t\0)7 the deep autoencoder may easily overfit to each of
the modality and fail to learn useful cross-modality corre-
lations. For example, it is possible for shared hidden layer
to find representations such that some of the variables are
tuned only for images while others are tuned only for tags.
So, the shared hidden variables may result in attributes that
are only responsive to one single modality, thus losing im-
portant information for the subsequent attribute discovery.
Inspired by [25], we propose to encourage cross-modality re-
construction. As shown in Figure 4(a), given one modality
present and the other one absent, we hope to reconstruct
both modalities. According to the encoding/decoding func-
tions in Eq. (1) and (2), we can see that the reconstructed
of any modality is a function of both input modality, i.e.,
X0 =x° (xo7 to). For example, we can define the reconstruc-
tion error when the image modality is present while the text
modality is absent as

Lot = [x° = =° (x°,0) |3 + It” - £° (x",0) 3. (3)
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where the subscript vt denote the presence of the image and
the absence of text modalities. L.,; and Ls: can be defined
in a similar way.

On the other hand, we want to regularize the hidden vari-
ables to be statistically independent with each other. Intu-
itively, attributes in nature are independent semantic mean-
ings that constitute the visual or semantical world [23]. For
example, an image of “beach sunset” may be composed by
independent attributes such as “round”, “water”, “sun”, “hor-
izontal line”. Therefore, we propose to impose the Inde-
pendent Component Analysis (ICA) criterion on the over-
all objective function of ICMAE. Different from traditional
ICA [15] that optimizes a ¢1-norm penalty with “hard” or-
thonormality constraints, we use a “soft” version with the
reconstruction cost [18], which meets our formulation in
Eq. (3). In particular, the penalty term is the sum of the
activation value of the hidden variables z. For example,
when the input modality is image while the text modality is
absent, the ICA regularization term is defined as

I;= HZ(XO70)H17 (4)

and I, I+ can be defined in a similar way.

Hence, the overall objective function of ICMAE that we
are going to minimize is

F(x,t;W) = Lyt+Lyg+Lot+ALve+ 1+ Ioe) +yR(OWV), (5)

where W = {W'} = {(Wi, Wi, b’,c")}, i = 0,1,2, is the
set of trainable parameters, R(W) is an f2-norm regularizer,
A and v are trade-off parameters. We update VW using the
stochastic gradient descent method with a dynamic momen-
tum tric [29].

4. ATTRIBUTE DISCOVERY

The deep architecture ICMAE have mined the strong cor-
relations of multimodal data and learnt useful higher-level
representations, in which the attributes are encoded. In this
section, we will detail how we identify, model and name at-
tributes based on ICMAE.

4.1 Identification

Recall that we identify attributes without any pre-defined
vocabularies. Instead, we identify them from the learnt
shared hidden variables of ICMAE. Recall that such vari-
ables are (a) higher-level features which can reconstruct both
modalities; and (b) as independent as possible with each
other. On one hand, the hidden variables are high-level
abstractions of visual and semantic evidences from a large
amount of image-text data and are in turn encouraged to
reconstruct these evidences [23]. For example, attribute
“furry” is abstracted from visual and semantic cues such as
furry animals. Meanwhile, “furry” is indispensable to com-
pose those evidences. On the other hand, we humans in
nature hope that attributes are compact and independent
semantic meanings which compose the world. Therefore, the
hidden variables are expected to be an ideal feature pool to
extract attributes.

However, there are still correlated hidden variables relat-
ing to the same attribute. Hence, it is possible to iden-
tify several clusters, each of which holds the variables with
large correlation values. We adopt the Affinity Propagation
(AP) [13] that can cluster data given a pair-wise similar-
ity matrix without fixing the number of clusters. In our
case, the similarity matrix is the correlation matrix of the



Figure 5: Illustrations of an attribute identified in the
hidden space and modeled in the visual space. The at-
tribute corresponds to two hidden variables, which are

strongly correlated (left). Images that are sufficiently
far from the MMC boundary are chosen. Then, the at-
tribute is modeled by the chosen samples in the visual
space using SVM (right, visualized by using PCA to 2-
D). The support vectors of images (marked near the hy-
perplane) are considered as the attribute model repre-
sentations, which are used to check model redundancy.

hidden variables based on training data. Then, each resul-
tant cluster is considered as an attribute, denoted as a while
its hidden variables is denoted as a, where a C z. For an
identified attribute a, we should further identify its positive
and negative samples for the subsequent attribute model-
ing. To achieve this, we use Maximum Margin Clustering
(MMC) [41] to automatically divide samples in the hidden
space into two clusters with maximum marginal separation.
Denoting {a;} as the hidden representations of samples with
respect to attribute a, MMC iteratively seeks for two clus-
ters by Support Vector Regression (SVR) [31]. It is worth
noting that, as shown in Figure 5, images associated with
the hidden variables near the decision boundary are ambigu-
ous and not as visually separable as those associated with
the hidden variables far from the boundary. Therefore, for
better attribute modeling, we identify the high-quality pos-
itive and negative images with respect to the attribute as
Pos(a) = {xilw%a; > T} and Neg(a) = {x;|wra; < =T},
where w is the model parameter of SVR and T > 0 is a
positive threshold.

4.2 Modeling

Provided with the training samples Pos(a) and Neg(a) of
attribute a, we use a linear Support Vector Machine (SVM)
to model the attribute in the visual space. Due to the im-
perfection of AP clustering of the hidden variables, some
attributes may still correlate with each other, resulting in re-
dundant attribute models. In order to obtain a compact set
of attribute models, we propose to merge redundant models.

Our merging strategy is based on checking the Mutual
Information (MI) shared between model M, of attribute
a and model M, of attribute b. MI measures how much
information the knowledge of either M, or M, provides for
the other. For instance, if the MI between M, and M, is
small, it indicates that M, provides minimal information for
determining whether M, is redundant as compared to M,.
Specifically, we represent any model M by a set of images
which are support vectors S of the model since the support
vectors sufficiently characterize the decision boundary of the
attribute model (see the right of Figure 5). Therefore, the
MI between attribute model M, and M, is defined as

< p(x,x’)

I(Ma; M) = Z Zp(x,x')log m), (6)

x' €Sy xESa
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where we use kernel density estimation [22] to estimate the
distribution p(x), p(x’) and p(x,x’). Note the estimation
is efficient since the number of support vectors is relatively
small as compared to the number of training samples. We
accept to merge two attribute models if the MI between
them is larger than a pre-defined threshold. For merging the
two models, we first align the direction of their hyperplanes
and then combine the samples on either side with response
concensus on both models. Finally, we train a merged at-
tribute model with the combined samples.

We can also use this merging strategy to update old at-
tribute models by merging new but redundant ones which
are discovered from a new batch of data. Thus, we will
acquire more compact and comprehensive attribute models
from the inexhaustible amount of Web data.

4.3 Naming

Yet, the discovered attributes are not assigned with any
human nameable annotations. In this section, we show how
to name attributes directly from the tags associated with
representative images (i.e., images with the most confidence
of the attribute models). Since the attribute models are
binary classifiers, representative images on both sides are
considered. That is to say, we will assign two names for
one identified attribute. As compared to standard attribute
naming that only express one property (e.g., “green” or “not
green”), our naming is more descriptive. Note that this
is reasonable since images on the opposite side of “flower”
could be endowed various semantics and thus should not be
coarsely named as “non-flower” [30].

A straightforward approach to name an attribute is to
mine highly frequent tags associated with the representative
images of the attribute. However, the user-generated tags
are very noisy and thus are usually irrelevant to the visual
properties of the attribute. For example, as illustrated in
Figure 6, highly frequent words in user tags can be very
general concept (e.g., “nature”, “sky”), device (e.g., “can-
non”, “nikon”), or sentiment (e.g., “a-big-fave”, “diamond-
class photographer”). Moreover, some obvious visual prop-
erties are unlikely to ever be mentioned by users. For ex-
ample, the frequencies of “green”, “violet” are low as shown
in Figure 6. Therefore, naming attributes only from tag
frequency is not a proper approach.

We propose to incorporate the visualness of words to name
attributes. Here, visualness refers to how strong the textual
words relate to visual properties. Conventional visualness
measurement methods [39, 16, 3] still fundamentally rely on
word statistics and hence cannot recover missing words with
high visualness. Fortunately, thanks to ICMAE that corre-
lates the cross-modality data of images and textual tags, we
can directly choose tags which are responsive to the target
visual attributes. First, as shown in Figure 6, we feed the
representative images of the attribute into ICMAE and re-
construct the text counterpart. In particular, the textual
reconstruction is formulated as t° (x°,0), which is the cross-
modality reconstruction given images but missing text (cf.
Section 3.3). Then, since each dimension of the textual data
refers to several words (cf. Section 5.1.2), the value of the
dimension is considered as the visualness of these words with
respect to the attribute. As analogous to word frequencies,
we can also visualize the visualness of words in Figure 6.
We can see that words like flower names (e.g., “fuchsia”,
“rosebuds”) are strongly related to the images. Moreover,
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Figure 6: Illustration of attribute naming by jointly con-
sidering word visualness and frequency, which are visu-
alized as word clouds. Images shown on the left are rep-
resentative samples on one side of the attribute model.

some obvious properties like “colored”;, “green” and “red”
have emerged. Finally, we respectively normalize visualness
and frequencies, and add the two scores as the final scores
for potential attribute names. Figure 2 illustrates the top 2
ranked names for several discovered attributes.

S. EXPERIMENTS

We systematically evaluate the effectiveness of the pro-
posed ICMAE deep architecture and the quality of attribute
identification, modeling and naming methods.

5.1 Data and Methodology

5.1.1 Experimental Data Sets

We crawled the image-text multimodal data from a photo-
sharing website Flickr. The crawling protocol is as follows.
First, we started from 500 seed users who contribute most
interesting photos using Flickr API. Next, for each of the
seed user, we select at most 100 users from his/her contact.
This results in around 50,000 users. Finally, we crawled
all their uploaded photos which have tags. In this paper,
we used 1,321,496 pairs which are crawled in 10 continuous
days of Jan, 2014. In order to examine how our approach
can evolve to new data, we split the data into four batches of
equal size from earlier to latter periods. We trained ICMAE
and discovered attributes from one batch to another. The
trained parameters of ICMAE using the former batch were
used to initialize the training using the next one.

In order to quantitatively evaluate the quality of the dis-
covered attributes, we conducted two fundamental multime-
dia tasks, i.e., image annotation and content-based image re-
trieval, on two benchmark data sets: MIR-Flickr that con-
tains 25,000 images across 24 concepts, and NUS-WIDE
that contains 269,648 images across 81 concepts. For anno-
tation experiments, we followed the “train/test” split pro-
tocol in the official documentary, i.e., “15,000/10,000” for
MIR-Flickr and “161,789/107,859” for NUS-WIDE. For re-
trieval experiments on both data sets, we randomly selected
10% images from each concept as query examples.

5.1.2 Visual and Textual Features

For image features, we adopted the 4096-D DeCAF generic
visual feature [10], which is the activations of the 6-th layer
of a deep CNN trained in a fully supervised fashion on Ima-
geNet [8]. This feature has been demonstrated to be effective
on modern benchmark data sets. For each batch of the im-
age data, we normalized the visual features into a zero-mean
unit-variance Gaussian distribution. For textual feature, we
developed a novel feature towards extreme sparse and noisy
tags. The extraction pipeline was conducted as follows.
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First, we transformed each word in a tag list into a 300-
D vector using Word2Vec [21], which is a model trained on
Google News data of 100 billion words. Note that there are
about 100,000 words from our data contained in this model.
Second, we learnt a 2048-D dictionary from the overlapped
100,000 words using K-means. Third, for each word in a
tag list, we obtained a 2048-D sparse codes using any off-
the-shelf sparse coding toolbox. Finally, each tag list can be
transformed into a 2048-D textual feature by max pooling all
the words in it. As compared to traditional word-frequency
feature which is extremely sparse (e.g., 1-5 non-zero dimen-
sions using most frequent 2,048 words), our textual features
have 30-50 non-zero dimensions. The features have richer
semantic meanings, resulting in better representation of tex-
tual data. We normalized the textual features into a zero-
mean unit-variance Gaussian distribution.

5.1.3 Implementation Details

For training the RBMs (cf. Section 3.2), we initialized
the weights uniformly as in the range of [—0.05, +0.05] and
the biases as —2. For stochastic gradient of the likelihood,
we used Persistent Contrastive Divergence (PCD) [34] with
5-step Gibbs sampling of 100 Markov chains, and the coeffi-
cient of the f2-norm weight decay was set as 0.0001. There
were 500 training data in a mini-batch. The initial learning
rate was set as 0.1 and we decayed it by dividing 1.000015
at each epoch. We stopped the training of each RBM after
1000 epochs. It took about 5 days to train RBMs on each
batch of the multimodal data along each modality pathway.

For training the ICMAE (cf. Section 3.3), we initialized
the parameters using the pre-trained RBMs. The hyper-
parameters A and v in Eq. (5) are set as 1 and 0.0001,
respectively. The size of the mini-batch of the stochastic
gradient descent is 500 and the initial learning rate was set
to 0.001, which will be dynamically adjusted by monitoring
the objective function. We stopped the training of ICMAE
after 600 epochs. It took about 6 days to train on each batch
of the multimodal data. The above deep architectures were
built using PyLearn2 and trained on an NVIDIA TITAN
600 GPU.

For attribute identification (cf. Section 4.1), the AP [13]
and MMC [41] clustering was implemented by using the
codes provided by the authors. Besides using the default
parameters, we set the preference in AP algorithm as 0.5
to obtain clusters of hidden variables with sufficient corre-
lations. The threshold 7' was set as such that the selected
samples contribute at least 90% of the sum of the confidence
scores. For attribute modeling (cf. Section 4.2) and image
annotation experiments (cf. Section 5.2.2), we used the lin-
ear SVMs and tuned the trade-off parameter within the set
logC € {—3,-2,...,3} on the 10% training data, which were
used as the validation set.

5.1.4 Compared Methods

To evaluate the effectiveness of the proposed ICMAE
in attribute identification, we compared it against the fol-
lowing three state-of-the-art multimodal deep architectures:
a) DCCA, Deep Canonical Correlation Analysis [1], which
exploits Canonical Correlation Analysis to connects the hid-
den layer of the two pathways of multimodal data in order
to fine-tune the overall deep networks, b) MDBM, Mul-
timodal Deep Boltzman Machine [32], which connects two
Deep Boltzmann Machine of multimodalities by a shared
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hidden layer, and ¢) MAE, Multimodal Autoencoder, [25]
which connects two deep autoencoders of multimodalities
by a shared hidden layer. For fair comparisons, all the com-
pared deep architectures have the same number of layers
and the same number of neurons in each layer, and we used
the same pre-training methods (cf. Section 3.2). We used
Average Precision (AP) of the discovered attribute models
to evaluate the quality, i.e., the strength of the visual sepa-
rability of the automatically identified attributes.

To evaluate the effectiveness of attribute modeling, we
represented images by the responses of the discovered at-
tribute classifiers. Such representations of images can be
considered as semantic features, which are expected to sup-
port high performance image annotation and retrieval tasks.
We compared our semantic features, named Auto, with
three state-of-the-art semantic features: a) Classeme [36],
the 2659-D output of classifiers trained on images collected
from Bing Image Search by querying 2,659 concepts from
LSCOM [24], b) DeCATF [10], the 1000-D output of a deep
CNN trained on 1,000 classes of ImageNet [8], and ¢) Pi-
CoDes [4], the 2048-D binary codes obtained by optimizing
the classification across 2,659 classes of ImageNet. All the
above three compared features were extracted by the soft-
ware provided by the authors. For annotation, we trained
1-vs-all concept classifiers using the semantic features and
used the mean AP (mAP) of the classifiers as the evaluation
metric. For retrieval, all the query images and the gallery
images are represented using these features and then the
retrieval was then performed by similarity search. In par-
ticular, we used ¢1-norm distance for Classeme, DeCAF and
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the proposed Auto since they are classifier outputs and used
Hamming distance for PiCoDes since it is binary code. We
used the mAP at top K, for K € {1,..,100}, and averaged
over all the queries as the evaluation metric for retrieval.

To evaluate the quality of attribute naming, we conducted
two experiments: quantitative evaluation and human evalu-
ation. For quantitative evaluation, given an image in MIR-
Flickr or NUS-WIDE, we calculated the average cosine sim-
ilarities of the predicted attribute names and the ground-
truth labels. Specifically, we applied all the discovered at-
tribute classifiers on an image and collected the correspond-
ing top 5 names of each attribute. Recall that each at-
tribute name or the ground-truth label can be represented
by a 300-D vector, we then calculated the cosine similar-
ity between any pair of a name and the label. We aver-
aged the similarities over all the pairs as the final similarity
between the attribute names and the ground-truth label.
For human evaluation, we invited 30 graduate students and
showed them 20 representative images and top 5 names of
each attribute. We asked them to judge whether the nam-
ing is “good”; “fair” or “bad”. We compared the proposed
naming strategy using term frequency and visualness (cf.
Section 4.3), named Freq+Visual with that using only
term frequency (Freq) or visualness (Visual). Note the
Freq naming method is widely adopted in state-of-the-art
attribute naming approaches [37, 3].

5.2 Experimental Results

5.2.1 Evaluations of Identification

Figure 7(a) plots the distributions of the number of the
discovered attributes by four multimodal deep architectures:
the proposed ICMAE, DCCA [1], MDBM [32] and MAE [25].
We can see that all the multimodal deep learning methods
can identify a lot of attributes with good AP (e.g., above
0.9). This demonstrates that jointly deep learning represen-
tations from visual and textual modality is useful in iden-
tifying meaningful visual patterns. In particular, there are
1898, 1691, 1502 and 1778 attributes identified by ICMAE,
DCCA, MDBM and MAE, respectively. We can also see
that the discovered attributes by ICMAE have stronger vi-
sual evidences in terms of the number of good attribute
models and the overall mAP. The superiority of ICMAE to
other methods arises from the following aspects. a) ICMAE
is designed to learn strong cross-modality representations
that can reconstruct any of the modality while the other is
missing. This guarantees that the identified attributes are
good higher-level abstractions from both visual and textual
sources, resulting in high-quality labeled images which are
strongly related to attributes. b) ICMAE aims to learn hid-
den representations that are as independent as possible and
thus the resultant attributes will have less redundant infor-
mation. This helps to identify a compact and comprehensive
set of attributes.

Figure 2 shows some successful examples of the discovered
attributes. However, there are also some attributes with rel-
ative low AP (e.g., below 0.7). Figure 7(b) illustrates some
examples of attributes with AP around 0.65. We can ob-
serve that there is no consistent visual patterns on either
side of the attribute model hypothesises. This indicates that
the corresponding hidden variables fail to capture any stable
semantic meanings. One possible reason is that these vari-
ables are isolated from clusters to which they are supposed
to belong, due to the imperfection of AP clustering.



Table 1: Performance (mAP%) of image annotation on
MIR-Flickr and NUS-WIDE. Note that our Auto with
simple linear SVM considerably outperforms the best
published results (43.67% on MIR-Flickr [33] and 27.1%
on NUS-WIDE [11]), which were obtained by compli-
cated features and classification models.

[ Dataset/Method | Classeme | PiCoDes | DeCAF | Auto

MIR-Flickr 15.90 15.98 52.67 61.02
NUS-WIDE 24.09 20.29 27.08 32.71
0.5 0.4
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Figure 8: Performance (mAPQ@K) of image retrieval
over 10% random queries of MIR-Flickr and NUS-WIDE

5.2.2  Evaluations of Modeling

Table 1 and Figure 8 respectively shows the performance
of the four semantic features in two fundamental multimedia
tasks: image annotation and retrieval. In particular, Fig-
ure 10 presents the detailed annotation and retrieval results
over all the concepts. Due to page limit, we here only re-
port the 81 concepts of NUS-WIDE. It is worth noting that
as compared to the three semantic features which require
huge human efforts, e.g., exploiting manually built knowl-
edge base such as ImageNet [8], the proposed feature Auto
was extracted from 1,898 attributes discovered in a fully au-
tomatic way. From the results, we can observe that Auto
considerably outperforms the other three state-of-the-art se-
mantic features. The reasons are two folds. First, our at-
tributes were discovered automatically without the limita-
tions of a pre-defined vocabulary. Hence, the derived feature
Auto has a better representation of image semantics. Sec-
ond, our discovery does not rely on the results of any search
engine, which may only provide duplicate and simple images
with respect to an attribute. In contrast, we directly mine
an arbitrary set of Web images, resulting in attribute models
that retain the intricate visual patterns of the visual world.

Table 2: Averaged cosine similarities between the pre-
dicted attribute names and the ground-truth labels for
images of the combined NUS-WIDE and MIR-Flickr

| Method | Freq | Visual | Freq+Visual |
| Avg. Cos. Similarity | 0.10 | 0.21 | 0.28 |

5.2.3  Evaluations of Naming

Table 2 lists the averaged cosine similarities between the
top 5 predicted attribute names and the ground-truth labels
for images in NUS-WIDE and MIR-Flickr. From the results,
we can see that Freq+Visual improves the naming quality
significantly to 0.28. Note that this value suggests that the
attribute names are generally relevant to the ground-truth
labels. For reference, the cosine similarity between “car”
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Figure 9: Average percentage of “Good”, “Fair”, “Bad”
attribute naming judgement from the 30 regular users
over the discovered 1,898 attributes

and “fourwheeler” is 0.48 and that between “airplane” and
“sky” is 0.23. Interestingly, using solely visualness can obtain
0.21 similarity. This demonstrates that ICMAE can recover
missing texts meaningfully using only visual data. Figure 9
shows the average percentage of “Good”, “Fair” and “Bad”
attribute naming judgement from 30 regular users over the
discovered 1,898 attributes. We can clearly see that the
users are more satisfied with the Freq+Visual naming strat-
egy. The better performance of jointly considering term fre-
quency and visualness is because the visualness of words
obtained by textual reconstruction can effectively eliminate
the irrelevant but highly frequent words in the very noisy
user-provided tag set.

6. CONCLUSIONS

We presented a novel automatic attribute discovery ap-
proach that can automatically identify, model and name at-
tributes from the inexhaustible image and tag pairs on the
Web. We started from scratch without any pre-defined vo-
cabulary or human labelling. Hence, our approach requires
no human efforts. In particular, We proposed a novel deep
architecture, called Independent Component Multimodal Au-
toencoder (ICMAE), to mine useful higher-level representa-
tions, based on which we developed strategies to identify,
model and name attributes. So far, 1,898 attributes have
been discovered from 1.3 million crawled data pairs. Exten-
sive experiments on benchmark datasets have demonstrated
the feasibility and effectiveness of the proposed approach,
which has a great potential in relieving human labor for
learning visual semantics from big Web data. In the near
future, we will launch a live system based on this work. Peer
researchers are welcome to download the attribute models
to facilitate their research.

Although this work is an ambitious attempt to build a
fully machine-built visual knowledge base, it has left the fol-
lowing two open issues not addressed. First, the system is
not a real end-to-end system because we rely on “engineered”
but not pixel- or word-level “raw” features. Second, there is
still a large gap between human and machine attribute nam-
ing qualities (e.g., our result is only 0.28 as compared to
0.50, which is the result we empirically find that human can
achieve), especially the names corresponding to attribute
models of relatively low reliability. One possible solution for
the first issue is to connect CNNs to the inputs of the two
pathways [5]. However, it is still unknown on how to de-
sign a proper learning strategy to synchronize the behavior
of the multimodal heterogeneous network. For the second
issue, it is mainly due to the limitation of multimodal cor-
relation. Therefore, we will investigate more effective corre-
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Figure 10: Detailed performance of annotation (AP) and retrieval (mAP@20) over the 81 concepts of NUS-WIDE

lation strategy such as adding new fine-tune objectives [1]
and deepening the shared hidden layers.
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