
Iterative Multi-View Hashing for Cross Media Indexing

Yao Hu∗ Zhongming Jin∗ Hongyi Ren Deng Cai Xiaofei He
State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China

{yaoohu, jinzhongming888, erichongyi, dengcai, xiaofeihe}@gmail.com

ABSTRACT
Cross media retrieval engines have gained massive popularity with
rapid development of the Internet. Users may perform queries in
a corpus consisting of audio, video, and textual information. To
make such systems practically possible for large mount of multi-
media data, two critical issues must be carefully considered: (a)
reduce the storage as much as possible; (b) model the relationship
of the heterogeneous media data. Recently academic community
have proved that encoding the data into compact binary codes can
drastically reduce the storage and computational cost. However, it
is still unclear how to integrate multiple information sources prop-
erly into the binary code encoding scheme.

In this paper, we study the cross media indexing problem by
learning the discriminative hashing functions to map the multi-view
datum into a shared hamming space. Not only meaningful within-
view similarity is required to be preserved, we also incorporate
the between-view correlations into the encoding scheme, where we
map the similar points close together and push apart the dissimi-
lar ones. To this end, we propose a novel hashing algorithm called
Iterative Multi-View Hashing (IMVH) by taking these information
into account simultaneously. To solve this joint optimization prob-
lem efficiently, we further develop an iterative scheme to deal with
it by using a more flexible quantization model. In particular, an op-
timal alignment is learned to maintain the between-view similarity
in the encoding scheme. And the binary codes are obtained by di-
rectly solving a series of binary label assignment problems without
continuous relaxation to avoid the unnecessary quantization loss. In
this way, the proposed algorithm not only greatly improves the re-
trieval accuracy but also performs strong robustness. An extensive
set of experiments clearly demonstrates the superior performance
of the proposed method against the state-of-the-art techniques on
both multimodal and unimodal retrieval tasks.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing
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1. INTRODUCTION
In recent years, with the explosive growth of the available media

data, hashing method has attracted many researchers’ attention due
to its great advantages in reducing both the computational cost and
storage. A lot of hashing algorithms have been proposed for various
applications, such as image and video retrieval [28, 27, 31, 12],
duplicate image detection [3], key point detection [29] and so on.

However, most of the existing hashing methods are mainly de-
signed for single type of data, such as sift or gist feature for image
[13] and Tf-idf feature for text [8]. In these methods, the hashing
functions are designed to learn similarity preserving binary codes
for data representation. However, it is well known that multimedia
data with same semantics can exist in more than one view [21, 5,
19]. For example, we can describe one topic by text document, im-
age or audio. In each view, the corresponding type of feature only
reveals the partial information. The joint consideration of multiple
features in the multi-view space can assist us to better understand
the underlying data distribution. To model the mutual correlation
across different views, traditional cross media retrieval algorithms
firstly project all the original features into a shared semantic corre-
lation space [23, 30] and then perform alignments for pair matching
between views [18]. However, it is still a puzzle how to construct
an effective indexing based on these algorithms.

To build an efficient indexing for cross media retrieval, a se-
ries of multi-view hashing algorithms have been proposed to en-
code the multimodal data sources from different perspectives [24,
33, 15]. Not only the respective information from each individ-
ual view but also the mutual information across different views
are required to be simultaneously preserved for designing discrim-
inative multi-view hashing functions. Specifically, just as pointed
out in [24, 32], we expect to ensure the consistency between the
learned hashing codes and the corresponding hashing functions de-
signed for different information sources, which means that small
variations of the data should not result in prominent difference for
the final binary codes. Furthermore, it is also necessary to push
apart the data points with different concepts, no matter in which
view they are available, to make the encoding scheme more dis-
criminative [22]. Such properties are understood as between-view
similarity and between-view distinctiveness preservation respec-
tively when multi-view data representations are mapped into the
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Figure 1: The illustration of our proposed Iterative Multi-View Hashing (IMVH).

produced common Hamming space. In [33], the authors attempt
to preserve these two types of information simultaneously in the
Euclidean space. However, since the rough incorporation with a
weak representative ability for the between-view correlations, it
does not take full advantage of the mutual information across dif-
ferent views, which leads a limited performance. Therefore, how
to incorporate these two types of information into the multi-view
hashing function learning effectively still remains challenging.

To address this problem, in this paper we propose a novel multi-
view hashing method called Iterative Multi-View Hashing (IMVH)
to preserve the within-view similarity and between-view correla-
tions, including between-view similarity and between-view distinc-
tiveness of the original data distribution, into the Hamming space in
an iterative scheme. An illustration of the whole flowchart is shown
in Figure 1. We begin with learning hashing functions in each view
involving the within-view similarity and between-view distinctive-
ness preservation term, while the between-view similarity is incor-
porated globally during the optimization process. Specifically, in
each iteration, an optimal rotation is learned to align the data points
belonging to the same concept in different views to globally pre-
serve the between-view similarity. Furthermore, inspired by the
recent proposed idea regarding the binary codes as auxiliary vari-
ables for a more flexible model, we update the binary codes by
solving a series of binary label assignment problems to reduce the
unnecessary cost caused by the rough quantization with the sign
function sgn(·). In this way, the obtained multi-view hashing func-
tions can be guaranteed with enough consistency and discrimina-
tive power. Experimental results on several benchmarks confirm
that our proposed IMVH greatly improves accuracy with strong ro-
bustness on cross-modal retrieval tasks and unimodal retrieval tasks
compared with the state-of-the-art multimodal and unimodal hash-
ing approaches respectively.

For the purpose of explaining our basic idea clearly, in the fol-
lowing we firstly focus on the dual-view case, e.g., image feature
space I and textual feature space T .
Notations: We assume ∗ is a placeholder for space I or T and
denote X∗ ∈ R

D∗×N to be the centralized data matrix whose col-
umn Xi

∗ represents to the i-th sample from either space. D∗ is
the dimension of the corresponding space. We further define K
bits hashing code of sample x as h∗(x) = [h1

∗(x), · · · , hK
∗ (x)] ∈

{1,−1}K and hk
∗(x) = sgn((wk

∗)
Tx). For simplicity, we denote

the projection matrix W∗ = [w1
∗, w

2
∗, . . . , w

K
∗ ] ∈ R

D∗×K and the
binary code matrix B∗ can be computed as B∗ = sgn(XT

∗ W∗) ∈
R

N×K 1. Similarly the vector Bk
∗ represents the k-th column of

B∗ (the k-th bits of all samples). To obtain the semantic informa-
tion, we also assume that each pair (Xi

I ,X
j
T ) has a label sij = 1

if they have the same concept and sij = 0 otherwise. For clear
description, we also assume each pair (Xi

I ,X
i
T ) exists in the same

concept, i.e., sii = 1.

2. BACKGROUND
Most of the previously proposed hashing methods for single-

view data can be decomposed into two steps: (1) Firstly, project
all the original data points into a low dimensional space; (2) obtain
the binary codes by quantizing the new data representations in the
embedding space. In unsupervised case, a series of methods have
been proposed based on the different embedding methods, such as
random projection [7], spectral decomposition [28] and other learn-
ing schemes [25, 14, 20, 11, 10]. Furthermore, when the semantic
information is available, the projection directions are constructed
to make the binary codes fit the supervision as much as possible
[17].

Recently several hashing algorithms for multi-view data have
also been studied. Along the lines of single-view hashing, these
hashing algorithms also can be decomposed into the similar two
steps imposing a couple of constraints. In [9], Canonical Correla-
tion Analysis (CCA) is adopted to extract a common latent space
from two views by solving

min
wI ,wT

wT
IXIX

T
T wT

s.t. wT
∗ X∗X

T
∗ w∗ = 1, ∗ = I or T .

(1)

Similar latent semantic space such as Multimedia Correlation Space
[30], Correlation Semantic Space [23] based on CCA and Paral-
lel Field Embedding Space [18] based on manifold alignment are
also introduced from different perspective. Then a joint model can
be constructed here after all the data in different views are pro-
jected into such intermediate space. An intuitive way to construct
a cross media indexing is to directly quantize the results from these

1The corresponding hash bit can be computed as (1 + h∗(x))/2
simply .
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methods. However, it would leads an unbalance encoding scheme.
Furthermore, such methods only extract partial information of the
correlations and most of the critical information of the data distribu-
tion is ignored, which limits the performance of the learned hashing
functions. On the other hand, Rastegari et al.[24] propose to find
the most discriminative hashing functions by enforcing the maxi-
mum margin constraints and a block coordinate descent based itera-
tive scheme is applied for the optimization. To preserve the with-in
view and between-view similarity, Kumar et al.[15] formulate the
multi-view hashing problem as an extension of traditional spectral
hashing, while Bronstein et al.[2] learn the projection directions
from the perspective of boosting. Except for the similarity preser-
vation, the between-view distinctiveness has also been pointed out
to be critical for the discriminative power of the learned hashing
functions [22]. This insight enables the joint preservation of the
between-view similarity and distinctiveness in [33], where the au-
thors simultaneously consider these two regularization terms in the
optimization procedure. However, this method suffers from the un-
satisfactory performance which may be caused by its improper in-
corporation of between-view correlations.

3. OUR APPROACH
For multi-view hashing problem, the main challenge is how to

incorporate the within-view information and between-view corre-
lations into an unified framework properly. To obtain powerful
discriminative hashing functions, we expect to force the dissimi-
lar pairs to be far away in the produced Hamming space. Mean-
while, the global similarity across all the views should also be
preserved for consistent encoding scheme. In our approach, we
explore to incorporate these different aspects of the original data
distribution in a global framework. For better description, in this
section, we firstly show how to formulate the within-view similar-
ity and between-view correlations. Then an iterative optimization
strategy will be provided for optimization later.

3.1 Within-View Similarity Preservation
Within-view similarity preservation is designed to maintain the

neighborhood relationships among the data points in each individ-
ual view after being mapped into the produced Hamming space.
In traditional single view hashing methods, Spectral Hashing [28]
preserves the within-view similarity by minimizing the weighted
Hamming distance between codewords correlates with the similar-
ity. While for multi-view hashing methods [32], to deal with the
multiple information sources, the similarity quantity for each indi-
vidual view is measured with the same way as in Spectral Hashing.
And the total cost is the summation across all the data modalities.

Motivated by the recent progress in Supervised Hashing methods
[27, 17], by defining an N -by-N affinity matrix S∗, we expect the
similarity between training data points represented by each bit can
approximate S∗ as much as possible. And the within-view similar-
ity for each individual view can be measured as the summation of
the costs for all the bits. Then the total within-view similarity for
all the views can be preserved by minimizing the following term:

1

2

∑
∗

K∑
k=1

‖Bk
∗(B

k
∗)

T − S∗‖2F = −
∑
∗

Tr(BT
∗ S∗B∗) + const.

Notice that there are many choices for the affinity matrix S∗. In-
tuitively, we adopt the same way as in [27]. We define Sij

∗ = 1
if the pair (Xi

∗,X
j
∗) are denoted as similar, Sij

∗ = −1 if dissimi-
lar and Sij

∗ = 0 if unknown. By minimizing (2), it incurs a heavy
penalty if two similar examples are mapped far away in the Ham-

ming space and then the similarity between different examples can
be preserved in the learned hashing codes.

3.2 Between-View Correlations Preservation
For multi-view hashing problems, only preserving the within-

view similarity in each view is far from enough. It is critical to
incorporate the relationships between different views when learn-
ing the hashing functions. Specifically, it is natural to assume that
the points with the same concept should be binarized consistently
wherever they are available. Therefore, we formulate this between-
view similarity preservation term as

Φ(I, T ) = ‖BI −BT ‖2F .
Meanwhile it is also important to note that the points with differ-

ent concepts should not be mapped closely together, which may se-
riously lower the discriminative power of the learned hashing func-
tion. To meet this requirement, in the following, we propose to
penalize the distinctiveness for data points with different concepts
across all the views.

Following the similar way in [22], we need to severely punish
the dissimilar pairs if they have similar binary codes, i.e., small
hamming distance after encoding, which can be realized by mini-
mizing the between-view distinctiveness term. Taking the distinc-
tiveness term ΩI(I, T ) from I → T as example, it can be defined
as follows:

ΩI(I, T ) =
N∑
i=1

�i, �i =

∑N
j=1(1− sij)τ(dij)∑N

j=1(1− sij)
, (2)

where dij = hamm(hI(X
i
I), hT (Xj

T )) =
1
2

∑K
t=1 |Bit

I −Bjt
T |

and the distinctiveness term ΩT (I, T ) from T → I can also be
defined in a similar way. τ(d) is called the smoothly clipped in-
verted squared deviation (SCISD) function [22], which is defined
as

τ(d) =

⎧⎪⎨
⎪⎩

−d2+ab2

2
if |d| ≤ b,

d2−2ab|d|+a2b2

2(a−1)
if b ≤ |d| ≤ ab,

0 if ab ≤ |d|,
(3)

where a and b are two user-specified parameters.
It is important to note the fact that the between-view distinctive-

ness preservation term Ω∗(I, T ) in (2) is quite different from the
regularization term used in [33], where the distinctiveness is pre-
served for learning the hashing function based on the Euclidean
distance between the projected pairs. While in (2), we utilize Ham-
ming distance instead of the Euclidean distance to precisely mea-
sure the difference of the projected pairs. In this way, we measure
the distinctiveness penalization of Xi

I as the average distinctive-
ness of between all the dissimilar pairs involving Xi

I across all the
views. Therefore, minimizing the regularization term Ω∗(I, T )
can better assist us to find the hash functions which enjoy the large-
margin property.

3.3 The Objective Function
Furthermore, a lot of research works [28, 17] have revealed that

the independence between hash functions assists the balance of the
learned hashing codes in each feature space. Therefore, we also
add a regularization

∑
∗ ‖BT

∗ B∗ − NIK‖2F , where IK ∈ R
K is

an identity matrix. After some simple algebraic operations, it is

easy to observe that
∑

∗ ‖BT
∗ B∗−NIK‖2F =

∑
∗

(
‖BT

∗ B∗‖2F −

2N‖B∗‖2F +N2‖IK‖2F
)
=

∑
∗ ‖BT

∗ B∗‖2F + const. Therefore,

we can minimize
∑

∗ ‖BT
∗ B∗‖2F instead to force the independence

between the learned hashing functions.
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Recall that a discriminative hashing functions should ensure the
dissimilar data across different views are forced to be pushed apart
and similar pairs are binarized consistently. Therefore, the corre-
sponding regularization terms can be incorporated into the objec-
tive function as constraints. Furthermore, to obtain better general-
ization ability, it is also suggested by the recent research advances
[16, 24] to maximize margin between positive and negative samples
for each hashing function. Overall, we can formulate the objective
function of IMVH as

O = Φ(I, T ) +
∑
∗

(
L(B∗, h∗(X∗)) + λ∗‖W∗‖2F

+ α∗Ω∗(I, T )− β∗Tr(B
T
∗ S∗B∗) + γ∗‖BT

∗ B∗‖2F
)
,

(4)

where the loss term L(B∗, h∗(X∗)) can be defined as the summa-
tion of the hinge loss of all the K hash bits as L(B∗, h∗(X∗)) =∑K

k=1 L(Bk
∗, h

k
∗(X∗)) =

∑K
k=1

∑N
i=1 max(0, 1−Bik

∗ hk
∗(X

i
∗)).

And the regularization term ‖W‖2F is proposed to ensure the max-
margin constraint for the learned hyperplanes.

To solve problem (4) efficiently, we propose to solve it by using a
simple iterative scheme. Firstly we can fix WT and BT and solve
the following subproblem in the image feature space:

min
WI ,BI

OI = L(BI , h(XI)) + λI‖WI‖2F +Φ(I, T )

+ αIΩI(I, T )− βITr(B
T
ISIBI) + γI‖BT

IBI‖2F .
(5)

And then we fix WI and BI and minimize the corresponding sub-
problem in the textual feature space:

min
WT ,BT

OT = L(BT , h(XT )) + λT ‖WT ‖2F +Φ(I, T )

+ αT ΩT (I, T )− βT Tr(B
T
T ST BT ) + γT ‖BT

T BT ‖2F .
(6)

By solving the above two subproblems alternatively, we can obtain
the satisfactory hashing functions with outperforming discrimina-
tive power meanwhile preserving relationships between different
views. In spite of the seemingly complex appearance of (5) and
(6), they can be solved by a quite efficient way. In the next section,
we take the subproblem (5) as an example to show the detailed op-
timization procedure. And the subproblem (6) also can be solved
in the same way.

4. OPTIMIZATION METHOD
Note that the between-view correlations preservation terms Φ(I, T )

and ΩI(I, T ) in OI are both non-convex and non-smooth since
their respective special configuration. Therefore, the main chal-
lenge is how to deal with the joint optimization problem in an uni-
fied scheme. Following the similar framework proposed by Lin et
al. [16], we view the binary code matrix BI as an auxiliary variable
for hash function learning and can be deviated from sgn(XT

IWI),
which makes the optimization process more flexible. In this sec-
tion, we propose an iterative scheme to solve the subproblem (5)
efficiently , where an optimal rotation matrix is learned to preserve
the global between-view similarity for a more discriminative pro-
jection matrix WI and then we update BI by solving a series of
binary assignment problems.

4.1 Update WI by Optimal Rotation
After we fix BI ,BT and WT , we firstly update WI by solving

min
WI

L(BI , h(XI)) + λI‖WI‖2F . (7)

In this way, we actually learn K independent binary SVM classi-
fiers, one for each bit. The learned projection matrix WI can force

the the mapped values far away from 0 and then the corresponding
hashing functions have a better generalization ability [20]. How-
ever, the lack of the critical between-view similarity information
makes WI not powerful enough for a consistent encoding scheme.

Motivated by the recent work [9] which proposes to preserve the
global similarity by learning an orthogonal rotation matrix to min-
imize the quantization loss between the hashing codes and orig-
inal datum, we refine the previously obtained projection matrix
WI in a similar way. We expect such rotation can minimize the
distortion between different views as much as possible to glob-
ally preserve the between-view similarity. Therefore, we relax the
between-view similarity preservation term Φ(I, T ) by minimiz-
ing ‖XT

IWI −BT ‖2F . Then an orthogonal rotation matrix RI is
learned for the coarse projected data VI = XT

IWI by minimizing
the following optimization problem:

min
RI

‖VIRI −BT ‖2F

s.t. RT
I RI = IK ,RIRT

I = IK .
(8)

Note that the binary matrix BT in another feature space is fixed
and obtained by the previous iteration. Therefore, minimizing (8)
actually is equivalent to finding a rotation to align the data in the
current feature space with another, which is a classic Orthogonal
Procrustes problem [26]. We firstly compute the SVD of the K×K
matrix BT

T VI and then obtain the optimal solution of (8) as

BT
T VI = UΣV T and RI = V UT . (9)

After learning the optimal rotation matrix, we refine the the projec-
tion matrix as

WI ←−WIRI . (10)

Obviously the problem (8) actually forces the global consistency
between the hash codes of different views. Different from [24]
adopting a similar regularization for initialization and preserving
consistency during learning SVM classifiers, in our approach the
between-view consistency information is considered by learning
the optimal rotation. In this way, the between-view similarity can
be preserved.

4.2 Update BI by Graph Cut
Different from the traditional hashing techniques [28, 24] bina-

rizing the projected data with sign function sgn(·) to obtain BI ,
some researchers propose to update this binary matrix by solving
binary assignment problems indirectly [16] or directly [6], which
reduces the unnecessary loss caused by directly binarization and
greatly improves the performance . In our approach, we also take
the similar way to deal with this binary assignment procedure to
update BI . With the fixed WI , the subproblem (5) degrades to be

min
BI

L(BI , h(XI)) + αIΩI(I, T )− βITr(B
T
ISIBI)

+ γI‖BT
IBI‖2F .

(11)

It is obvious that the objective function in (11) is separable. There-
fore it can be solved by updating each bit while holding all the
others fixed, then cycling through this process. For ease of presen-
tation, we denote z � Bk

I to represent the k-th bit of BI and B̄k
I

as the concatenation of all the other fixed bits {Bk′
I : k′ �= k}.

Then the problem (11) turns into minimizing the following energy
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Algorithm 1 Iterative Multi-View Hashing

Input: X∗ ∈ R
d∗×N , bits number K, maximum iterations tmax,

parameters α∗, β∗ and γ∗.
1: // Initialization by Canonical Correlation Analysis as in (1)
2: WI ,WT ← CCA(XI ,XT ,K)
3: BI ← sgn(XT

I WI), BT ← sgn(XT
T WT )

4: repeat
5: // Stage 1 : Training in the feature space I
6: for t = 1, . . . , tmax do
7: Compute WI by solving K independent SVM classifiers

and learn rotation matrix RI according to (9).
8: WI ← WIRI .
9: Update BI by solving (12) with graph cut method on each

bit.
10: end for
11: // Stage 2 : Training in the feature space T
12: Solve subproblem (6) in an similar way according to step

6-10.
13: until convergence or max iterations reached
Output: BI ← sgn(XT

I WI), BT ← sgn(XT
T WT ).

function

min
z

N∑
i=1

Eu(zi) +
∑
(i,j)

Ep(zi, zj)

s.t. zi = {1,−1}, i = 1, . . . , N,

(12)

where
∑

(i,j) sums all the possible pairs of (i, j) and i �= j. Obvi-
ously the problem (12) is a typical graph cut problem, which aims
to find a cut to minimize the energy of a graph E including the
energy of unary term Eu and the energy of pairwise term Ep.

Specifically, from the objective function (5), it is easy to see
that the unary term Eu involves the loss term L(BI , h(XI)) and
ΦI(I, T ) and can be written as Eu(zi) = max(0, 1−zihk

I(X
i
I))+

αI�i, where �i =
∑N

j=1(1−sij)τ(|zi−B
jk
T |+∑K

t �=k |Bit
I −B

jt
T |)

∑N
j=1(1−sij)

accord-

ing to the definition of ΩI(I, T ) in (2). From OI , we can also see
that the pairwise term Ep only involves the within-view similarity
preservation term and the independence term. Therefore with some
algebraic operations, we can see that

−βITr(B
T
ISIBI) + γI‖BT

IBI‖2F
= zT (2γIB̄

k
I(B̄

k
I)

T − βISI)z+ const (13)

= zTQIz+ const,

where QI = 2γIB̄
k
I(B̄

k
I)

T − βISI . Then pairwise term can be
represented as Ep(zi, zj) = 2Qij

I zizj . To better fit SI with B̄k
I ,

we empirically set γI = 1
2(K−1)

βI to ensure that Qii
I = 0. Based

on the above observations, the traditional graph cut algorithm [1]
can be adopted to solve the problem (12) efficiently.

After we update WI and BI as a solution of (5), we take the
similar way to deal with subproblem (6). By alternately solving
these two subproblems, the global optimization problem (4) con-
verges soon. Overall we summarize the main procedure in Al-
gorithm 1, which is called Iterative Multi-View Hashing (IMVH).
Following the same setting in [24], we also take the K eigenvec-
tors corresponding to the largest eigenvalues by CCA as in (1) to
initialize WI and WT . Meanwhile, we also try random initial-
ization for IMVH. From the comparison, we find that the different
initialization is not sensitive to the final results and only affects the
convergence speed.

Although Algorithm 1 consists of both inner and outer itera-
tions, empirical experimental results show that only 3 inner iter-
ations are enough to solve the subproblem (5) or (6) in each outer
iteration, where only one cycling for the sequential bit update (12)
is enough to get a satisfactory solution. What’s more, usually 3
outer iterations are also sufficient to obtain hashing functions with
satisfactory performance. The detailed results can be found in Fig-
ure 4 (more details will be discussed in the Section 5). Overall,
IMVH successfully utilizes all the useful within-view similarity
and between-view correlations across all the data modalities and
unifies their respective advantages in a global frame work, which
leads a superior performance compared with the existing multi-
modal hashing methods.

5. EXPERIMENTS
In this section, we validate our proposed method IMVH on two

popular publicly available multimodal benchmarks that are fully
paired and labeled including:

• Wiki: It contains 2,866 image-text pairs, which are selected
from the Wikipedia’s featured articles. Each image is rep-
resented by a 128-dim SIFT feature vector. The text article
is represented by the probability distribution over 10 topics ,
which learned by a latent Dirichlet allocation (LDA) model.
Specifically, each pair is labeled with one of 10 semantic
classes. This data set is publicly available 2 and has been
used in [34, 33].

• Flickr: It consists of 186,577 image-tag pairs, which are
generated by choosing 10 largest classes from the NUS data
set 3. Each image is represented by a 500-dimensional bag-
of-words feature vector based on SIFT descriptors, while
each tag is represented by a 1000-dimensional feature vec-
tor. This data set is publicly available and has been used in
[33].

All the data points in the above data sets are centralized in each
view respectively before the subsequent process.

Since IMVH is designed as a binary encoding scheme for multi-
view data, we first evaluate its effectiveness on two Cross Modal
Retrieval Tasks: (1) use an image query in the visual modal to
search the relevant texts from the text database, which can be con-
cluded as Image Query vs. Text Database; (2) use a text query
in the textual modal to search the relevant images from the im-
age database, which can be concluded as Text Query vs. Image
Database. Furthermore, it is also necessary to explore how much
the incorporation of multiple information source can benefit the re-
trieval. Therefore, we also conduct evaluations on two Unimodal
Retrieval Tasks: use a query to search the relevant items in the
same modal, which can be concluded as (1) Image Query vs. Im-
age Database and (2) Text Query vs. Text Database.

5.1 Experimental Setting
Following the similar setting in [33], we randomly select 20%

and 1% data points as queries in Wiki and Flickr data sets respec-
tively. The remaining is used to form the database. The retrieved
points with the same semantic concept of the query are regarded
as true neighbors. For the faster training procedure, we randomly
select 2000 data pairs (image vs. text) in each database to construct
the training set.

It is a great surprise to find that our method IMVH is not sensitive
to the parameters. Therefore we unify the parameters for different

2http://www.svcl.ucsd.edu/projects/crossmodal/
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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tasks in the different data sets. We simply set the parameters α∗ =
1, β∗ = 2 and γ∗ = 1

2(K−1)
β∗ in the objection function (4). The

user-specified parameters a and b in SCISD function (3) are set to
be a = 2 and b = 0.2K. Furthermore, we use the widely used
LIBLINEAR package [4] to learn the SVM classifiers in the step 7
in the Algorithm 1. We adopt the GCO package 4 as the graph cut
solver to solve the problem (12). For simplicity, we just run 3 outer
iterations in Algorithm 1. In each outer iteration, we also only use
3 inner iterations to solve the subproblem (5) or (6). Experimental
results show that the above setting works very well.

During all the evaluations, we measure the performance by using
Recall curve, Precision-Recall curve (PR curve) and mean Average
Precision (mAP) together. Recall curve reflects the effectiveness
versus time cost, while Precision-Recall curve is a overall measure
considering both precision and recall. mAP score is the average
precision at the ranks where recall changes. In our experiments,
each point in recall curve or precision-recall curve corresponds to a
hamming radius ranging from 0 to K. All of these three evaluation
metrics are widely used in the image retrieval literature [28, 9].

5.2 Comparison methods
For cross-modal retrieval tasks, we evaluate and compare the fol-

lowing five multimodal algorithms:

• IMVH algorithm, which is proposed in this paper.

• CRH algorithm [33], which considers the joint preservation
of between-view correlations based on a co-regularized boost-
ing framework.

• CVH algorithm [15], which extends traditional spectral hash-
ing in single view to the multi-view case, aiming at preserv-
ing the between-view similarity.

• CMSSH algorithm [2], which learns linear hash functions
based on eigendecomposition and boosting.

• PDH algorithm [24], which aims to find the most discrimi-
native hashing functions by enforcing the maximum margin
constraints with a block coordinate descent iterative scheme.

For unimodal retrieval tasks, we also compare IMVH with four
state-of-the-art hashing methods for single-view data including

• LSH: Locality Sensitive Hashing [7], which generates the
projection directions fundamentally based on the random pro-
jection.

• SH: Spectral Hashing [28], which learns the hashing func-
tions based on spectral graph partitioning.

• ITQ: Iterative quantization [9], which tries to learn an op-
timal orthogonal rotation to minimize the quantization error
of mapping this data to the vertices of binary hypercube after
the PCA projection.

• ITQ+CCA: A variation of ITQ, which incorporates the multi-
view information by using Canonical Correlation Analysis
(CCA) to produce the projection matrix instead of PCA.

The implementation of all the algorithms except CVH are gen-
erously provided by the authors, where CRH is implemented using
C++ and CMSSH, PDH and IMVH are implemented using MAT-
LAB. Since the code of CVH is not publicly available, we imple-
ment CVH using MATLAB by ourselves. All the experiments are
conducted on a workstation with Intel Xeon(R) E7450 CPU and
256GB memory.

4http://vision.csd.uwo.ca/code/

Table 1: mAP comparison results on Wiki for cross-modal re-
trieval tasks.

Task Method
Code Length

K=24 K=48 K=64

CRH 0.2020 0.2076 0.1858
Image Query CVH 0.1753 0.1515 0.1512

vs. CMSSH 0.1371 0.1655 0.1637
Text Database PDH 0.1838 0.1581 0.1581

IMVH 0.2504 0.2715 0.2719
CRH 0.1161 0.1261 0.1195

Text Query CVH 0.1310 0.1222 0.1215
vs. CMSSH 0.1177 0.1195 0.1156

Image Database PDH 0.1370 0.1287 0.1287
IMVH 0.1948 0.2084 0.2168

5.3 Experimental Results on Wiki
Figure 2 shows the comparison results of the cross modal re-

trieval tasks on the Wiki data set with different bits, which includes
the recall curves and precision-recall curves for all the algorithms.
The first and second columns show the performance of all the meth-
ods on recall curves for cross modal retrieval tasks Image Query
vs. Text Database and Text Query vs. Image Database respectively.
Given a fixed recall, the smaller of the number of the retrieved sam-
ples, the better of the algorithm, which means that the algorithm can
obtain higher speed than others for the same recall. Therefore, from
Figure 2, we can see that IMVH has the highest recall among all the
compared methods. The third and forth columns display the com-
parison results on precision recall curves of all the method. Obvi-
ously, IMVH achieves significant advantage on the precision. From
the above comparison results, we can see that IMVH greatly out-
performs the state-of-the-art multimodal hashing methods on both
cross-modal retrieval tasks. Meanwhile, we find that PDH has a
second-best performance over CRH, CVH and CMSSH. However,
it is important to note that the starting point of PDH’s recall curve
is far from zero. This is because PDH suffers from the unbalance
encoding in the Wiki data set, i.e., most of the retrieved points fall
into only a few hashing buckets. IMVH successfully avoids this
situation by incorporating the between-view distinctiveness infor-
mation, which makes a more balanced encoding scheme.

Table 1 shows the mean Average Precision (mAP) results on the
Wiki data set using 24, 48, 64 bits. Obviously, the proposed method
IMVH achieves higher mAP than other algorithms across all the
cases. Specifically, IMVH outperforms other methods by 4.8%-
8.6% in different bits for the task Image Query vs. Text Database
and 5.7%-8.8% for the task Text Query vs. Image Database.

5.4 Experimental Results on Flickr
Similar to the results on the Wiki data set, IMVH also has the

best performance on the Flickr data set. The recall curves and
precision-recall curves are shown in the Figure 3, where IMVH still
always outperforms the other multimodal methods on recall curves
with a smaller gap. Similarly, IMVH consistently has the best per-
formance of all the cases. In Table 2, we show the mAP comparison
results on the Flickr where IMVH outperforms the other methods
in different bits for both tasks.

To verify the claim that the incorporation of multiple informa-
tion source can assist IMVH to obtain an encoding scheme with
better discriminative power. We conduct a group of comparison
between our method IMVH, PDH with some traditional hashing
methods such as LSH, SH, ITQ and ITQ+CCA on the two uni-
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(d) PR Curve @ 24 bits
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(e) Recall Curve @ 48 bits
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(f) Recall Curve @ 48 bits
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(g) PR Curve @ 48 bits
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(h) PR Curve @ 48 bits
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(i) Recall Curve @ 64 bits
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(j) Recall Curve @ 64 bits
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(k) PR Curve @ 64 bits
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Figure 2: Cross modal retrieval results on Wiki using different bits. The first and second columns show the recall curves of all the
algorithms on two cross modal retrieval tasks respectively, while the third and fourth columns show the precision-recall curves of
all the algorithms on these tasks. From above results, it is obvious to see that IMVH has the best performance compared with the
state-of-the-art multimodal hashing methods.

modal retrieval tasks. Note the fact that the textual feature space
in Wiki data set has only 10 dimension, which is not proper for
the comparison of hashing methods with more than 10 bits. There-
fore we only conduct the evaluation on the Flickr data set. Among
these six methods, IMVH, PDH and ITQ+CCA are trained in the
multi-modal data space, while LSH, SH and ITQ are trained in the
each data modal. We compare the mAP results of all the six meth-
ods in each data modality. From Figure 5, we can see that multi-
modal methods IMVH and PDH significantly outperform the uni-
modal hashing methods in both data modalities, which implies that
the proper incorporation of multiple information sources would be
much helpful to learn a better hashing encoding scheme. Further-
more, we can also see that IMVH always obtains a much higher
mAP score than PDH with different hashing bits for the unimodal
retrieval tasks in the corresponding feature spaces. Overall, from
the above results, we demonstrate the effectiveness of IMVH on
both unimodal and cross-modal retrieval tasks.

5.5 Convergence Rate
In this subsection, we test the convergence rate of our proposed

IMVH. We conduct a series of evaluations to test the convergence
rate of IMVH for both cross modal retrieval tasks on Wiki and

Flickr data sets. The detailed results are shown in Figure 4. Al-
though IMVH has both outer and inner iterations (see details in Al-
gorithm 1), empirical experimental results show that our proposed
IMVH is quite efficient. In Figure 4 (a) (b) (e) (f), we firstly fix
the number of outer iterations to be 3 and evaluate the mAP score
versus the number of inner iterations. We can see that only 3 inner
iterations are needed to get a good enough result in a outer itera-
tion. While in (c) (d) (g) (h), we fix the number of outer iterations
to be 3 and evaluate the IMVH’s performance versus the number of
outer iterations, where show usually 3 outer iterations are sufficient
for IMVH to obtain a satisfactory performance.

From Figure 2 and Figure 3, we can see that IMVH and PDH
have the best performance during all the tasks. To be fair, we test
the training time of CVH, CMSSH, PDH and IMVH since they
are implemented using MATLAB while CRH is implemented us-
ing C++. From Table 3 we can see that the training time of IMVH
and PDH are also far more than others. This phenomenon can be
seen as as a trade off between accuracy and efficiency. For IMVH,
most of the computation consumption is on solving graph cut prob-
lems (12). However, we also find that only a small training data
set can guarantee the superior performance for IMVH, which can
greatly reduce the computation cost caused by solving graph cut
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(d) PR Curve @ 24 bits
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(e) Recall Curve @ 48 bits
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(f) Recall Curve @ 48 bits
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(g) PR Curve @ 48 bits
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(h) PR Curve @ 48 bits
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(i) Recall Curve @ 64 bits
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(j) Recall Curve @ 64 bits
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Figure 3: Cross modal retrieval results on Flickr using different bits. The first and second columns show the recall curves of all the
algorithms on two cross modal retrieval tasks respectively, while the third and fourth columns show the precision-recall curves of all
the algorithms on these tasks. From above results, we can see that IMVH consistently outperforms all the compared methods.

Table 2: mAP comparison results on Flickr for cross modal
retrieval tasks.

Task Method
Code Length

K=24 K=48 K=64

CRH 0.3934 0.4016 0.4015
Image Query CVH 0.3505 0.3508 0.3510

vs. CMSSH 0.3838 0.3546 0.3700
Text Database PDH 0.4250 0.4289 0.4300

IMVH 0.4416 0.4633 0.4658
CRH 0.3846 0.3854 0.3859

Text Query CVH 0.3500 0.3504 0.3506
vs. CMSSH 0.3432 0.3624 0.3289

Image Database PDH 0.4063 0.4107 0.4118
IMVH 0.4297 0.4430 0.4444

problem. Therefore, we can learn the discriminative hashing func-
tion by IMVH with acceptable training time even on a large data
set.

5.6 Parameters’ Sensitivity
Note that solving subproblem (5) or (6) involves essential pa-

rameters α∗ and β∗, where α∗ is used to penalize the dissimilar

Table 3: Training time @ 24 bits on Flickr for cross modal re-
trieval tasks.

Method CVH CMSSH PDH IMVH
Training time 2.5s 6.3s 297s 1917s

pairs with similar binary codes and β∗ is used to control the inde-
pendence of the learned hashing functions. In the previous exper-
iments, we simply set α∗ = 1 and β∗ = 2. In this subsection we
conduct a series of evaluations to examine how the performance of
IMVH varies with α∗ and β∗ separately for both cross modal re-
trieval tasks. The detailed results are displayed in Figure 6, where
the first and second row show the respective mAP score @ 64 bits
of all the algorithms on Wiki and Flickr data sets. When β∗ is fixed
to be 2, the impact of α∗ for the final mAP score is shown in Figure
6 (a) (b) (e) (f), where we can see that IMVH can obtain consistent
good performance with α∗ varying from 0.2 to 20. And Figure 6 (c)
(d) (g) (h) show the experimental results with different β∗ when α∗
is fixed to be 1, where IMVH also always has a satisfactory perfor-
mance with β∗ varying from 0.1 to 10. Overall, from these results it
is obvious to see that our proposed IMVH is robust enough against
the parameters selection.
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Figure 4: Iterations needed for IMVH to obtain a satisfactory performance for cross modal retrieval tasks. The first and second rows
show the respective performance of IMVH on Wiki and Flickr data sets. In (a) (b) (e) (f), we fix the number of outer iterations to be
3 with varying inner iterations and in (c) (d) (g) (h) we fix the number of inner iterations to be 3 with varying outer iterations.

0.2 1 5 10 20

0.16

0.18

0.2

0.22

0.24

0.26

0.28

α∗

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

Image Query vs. Text Database

 

 

CRH
CVH
CMSSH
PDH
IMVH

(a)

0.2 1 5 10 20
0.1

0.12

0.14

0.16

0.18

0.2

0.22

α∗

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

Text Query vs. Image Database

 

 

CRH
CVH
CMSSH
PDH
IMVH

(b)

0.1 0.2 0.4 2 10

0.16

0.18

0.2

0.22

0.24

0.26

0.28

β∗

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

Image Query vs. Text Database

 

 

CRH
CVH
CMSSH
PDH
IMVH

(c)

0.1 0.2 0.4 2 10
0.1

0.12

0.14

0.16

0.18

0.2

0.22

β∗

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

Text Query vs. Image Database

 

 

CRH
CVH
CMSSH
PDH
IMVH

(d)

0.2 1 5 10 20
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

α∗

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

Image Query vs. Text Database

 

 

CRH
CVH
CMSSH
PDH
IMVH

(e)

0.2 1 5 10 20
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

α∗

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

Text Query vs. Image Database

 

 

CRH
CVH
CMSSH
PDH
IMVH

(f)

0.1 0.2 0.4 2 10
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

β∗

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

Image Query vs. Text Database

 

 

CRH
CVH
CMSSH
PDH
IMVH

(g)

0.1 0.2 0.4 2 10
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

β∗

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

Text Query vs. Image Database

 

 

CRH
CVH
CMSSH
PDH
IMVH

(h)

Figure 6: mAP score @ 64 bits versus the parameters β∗ and α∗ for both cross modal retrieval tasks. The first and second rows show
the mAP score of all the algorithms on Wiki and Flickr data sets respectively. In (a) (b) (e) (f), we fix β∗ to be 2 and vary α∗ from 0.2
to 20. And in (c) (d) (g) (h), we fix α∗ to be 1 and vary β∗ from 0.1 to 10.

6. CONCLUSIONS
In this paper, we present a novel hashing algorithm for multi-

view data called Iterative Multi-View Hashing (IMVH) for cross-
modal retrieval. By incorporating the critical between-view corre-
lations such as similarity and distinctiveness across all the views
in an iterative scheme, the learned hash functions by IMVH have

a greater consistent and discriminative power. To further improve
the accuracy, we view the hash function learning and code genera-
tion processes separately, where the latter can be done by solving
a series of binary assignment problems instead of the crucial quan-
tization by sgn(·). Experimental results on two benchmarks have
validated this approach, and show that this new approach outper-
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Figure 5: mAP results on Flickr for unimodal retrieval task.

forms the state-of-the-art multimodal hashing methods. In our fu-
ture work, we will consider how to further improve the scalability
of IMVH by exploring more efficient algorithm to solve the binary
assignment problem.
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