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ABSTRACT

In this paper we present a novel network architecture, called
Multi-Scale Cascade Network (MSC-Net), to identify the
most visually conspicuous objects in an image. Our network
consists of several stages (sub-networks) for handling salien-
cy detection across different scales. All these sub-networks
form a cascade structure (in a coarse-to-fine manner) where
the same underlying convolutional feature representations
are fully shared. Compared with existing CNN-based salien-
cy models, the MSC-Net can naturally enable the learning
process in the finer cascade stages to encode more global
contextual information while progressively incorporating the
saliency prior knowledge obtained from coarser stages and
thus lead to better detection accuracy. We also design a novel
refinement module to further filter out errors by consider-
ing the intermediate feedback information. Our MSC-Net
is highly integrated, end-to-end trainable, and very power-
ful. The proposed method achieves state-of-the-art perfor-
mance on five widely-used salient object detection bench-
marks, outperforming existing methods and also maintaining
high efficiency. Code and pre-trained models are available at
https://github.com/lixin666/MSC-NET.
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1 INTRODUCTION

Saliency detection can be mainly classified into three direc-
tions: (i) fixation prediction, (ii) objectness estimation, and
(iii) salient object detection. In this paper, we focus on the
last problem, i.e. identifying the most visually distinctive ob-
ject(s) in a natural scene. Salient object detection has drawn
increasing attention for its wide application in computer vi-
sion and multimedia tasks including object recognition [28],
image summarization [27], visual tracking [2], dense semantic
correspondences [35], image retrieval [0], etc.

In recent years, deep Convolutional Neural Networks (C-
NNs) have played a dominant role in salient object detec-
tion. Compared with traditional methods [17] [37] [34] that
employ low-level handcrafted image features, CNN-based
methods [18] [32] [16] are able to encode high-level semantic
information, thus largely improving the detection accuracy.
However, general Convolutional Neural Networks can only
capture limited local context [10] [38] from an image, but
precise inference of salient object is impossible without much
more global contextual information. Furthermore, the useful
saliency prior knowledge (which can be obtained from previ-
ous stages) is ignored by most existing CNN-based methods.
As a result, they tend to produce blurred saliency maps with-
out fine details, making errors inevitable. To improve the
quality of their results, most existing methods apply fully con-
nected pairwise CRFs [3] as post-processing refinement steps
to enforce spatial consistency [16] [32], or adopt objectness
proposals to preserve boundary information [31]. However,
adding post-processing steps may not only drag down the
efficiency, but also produce only suboptimal results when
handling challenging cases.

This paper is pursuing further improvements on salient
object detection by designing a highly integrated and more
powerful network that can directly produce reliable results
without using DenseCRF or any additional post-processing
refinement steps. The key idea is to consider both multi-scale
contextual information and saliency prior knowledge dur-
ing training and inferring. The multi-scale features contain
useful information including spatial relation and context in-
formation, which can help to overcome ambiguity and avoid
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needing any extra post-processing step (e.g., dense CRFs).

context information loss. Also, saliency prior knowledge can
make it easier to locate the salient region(s) in an image. To
effectively exploit the benefits above, we introduce a novel
Multi-Scale Cascade Network for salient object detection.
This network adopts a cascade structure, where each stage
is designed to perform saliency detection at a specific scale.
To encode useful information, each cascade stage receives
feature information as well as saliency predictions processed
by its preceding stage (coarser stage), and then outputs its
learned features and intermediate result to the next stage
(finer stage). In addition, all stages share the same underly-
ing convolutional representations. Hence, multi-scale features
and intermediate saliency scores can be jointly learned in an
end-to-end network, which also makes our MSC-Net superior
to previous models [31] [39] [30] that need to train multi-
ple networks separately for collecting multi-scale contextual
information.

Our MSC-Net is capable of producing reliable saliency
map for the novel input (see Fig. 1). Without the use of any
extra post-processing refinement methods, we report current-
ly best results on five widely used salient object detection
benchmarks. Moreover, a MSC-Net with the ResNet [7] takes
only 0.26s to perform one image, which is faster than most
existing CNN-based saliency models.

In summary, the main contributions of this work are three
folds:

i) We propose a novel MSC-Net for salient object detection.
Thanks to the cascade structure, MSC-Net is highly inte-
grated and end-to-end trainable. More importantly, the
proposed network is naturally capable of capturing and
consolidating multi-scale contextual information and in-
termediate saliency prior knowledge so that it can handle
challenging cases better than existing models.

ii) We fuse both shallow and deep features of the recent-
ly proposed Residual Network (ResNet) in a nonlinear
manner to build a powerful underlying feature map. This
combination enriches the underlying representations with
more information (both low-level and high-level features),
which is helpful for salient object detection.
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iii) We design a refinement module for each cascade stage to
further filter out errors. The module employs a recurrent
architecture to encode intermediate saliency knowledge
for refining the result at each stage. With the intermediate
feedback signal, our network is able to locate salient
regions more accurately.

2 RELATED WORK

Salient object detection is a research area that has greatly
evolved over the past decade. Here we give a brief overview
of recent works. We refer readers to a survey paper [1] for a
comprehensive literature review.

Traditional Methods. Traditional saliency detection meth-
ods mainly depend on handcrafted image features such as
color, intensity, depth, orientation, etc. For example, Cheng
et al. [1] propose to use global color contrast to identity
salient regions, which is based on their observation that hu-
man attention tend to be attracted by certain unique regions.
Yang et al. [34] use image boundary color information to
find the most distinctive regions on the assumption that the
regions along the four boundaries of an image are usually
non-salient. According to the studies of Gestalt Psychology,
Zhang et al. [37] explore the surroundedness cue for salient
object detection through Boolean Maps computed by us-
ing image intensities. Beyond that, the depth maps [25] [5],
shapes [12] [11] and orientation features [13] are also used
for salient object detection. Furthermore, different low-level
features can also be integrated by a feature vector to distin-
guish between salient regions and non-salient regions. Jiang
et al. [10] use a feature vector to learn a saliency detector
from a set of training samples with manual annotations. Li
et al. [17] propose to use the feature vector to build dense
correspondences between salient regions of two different im-
ages so that the groundtruth annotations can be transferred
from existing exemplars to the novel input. In general, by
using different low-level features, traditional methods can
produce accurate saliency maps in many simple cases, but
can hardly handle complex images well due to the lack of
high-level semantic knowledge.
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Figure 2: Overview of the Multi-Scale Cascade Network. Our MSC-Net is built upon a ResNet-based feature
map and has N cascade stages. At each stage, we add several units that are used to refine the intermediate
saliency map. Our MSC-Net enables the later stages (finer stages) to benefit from the contextual information
and intermediate priors of the earlier stages (coarser stages), without suffering from the context information
loss. The output of the last stage is our final saliency map.

CNN-Based Models. Recently, salient object detection
has been made more accurate through the use of Convolu-
tional Neural Networks (CNNs) for learning high-level feature
representations. In [18], a fully convolutional network (FCN)
is trained under a two-stream learning framework to identify
salient objects. After that, Wang et al. [32] propose to detect
saliency using a recurrent FCN, which can encode saliency
prior knowledge and thus produce a better result. Although
these CNN-based methods surpass the best performance of
traditional methods, yet they ignore multi-scale contextual
information, the key to salient object detection. Therefore,
their results in many challenging cases are unreliable. To
solve this problem, many researchers propose to employ sev-
eral independent CNNs to capture multi-level information.
Zhao et al. [39] train two CNNs to extract global and local
context information, respectively. Wang et al. [31] employ
two separate deep CNNs to capture local information and
global contrast. Recently, Tang et al. [30] introduced a multi-
ple CNN framework to extract pixel and region information
of images and combine all information for saliency detection.
However, these models involve a number of different networks
that cannot be optimized jointly. Consequently, they prolong
the training time and produce an only suboptimal solution.

3 METHOD

This section starts with an overview of the proposed model in
Sec. 3.1, followed by a description of how to build a powerful
underlying feature map based on the pre-trained ResNet [7]
in Sec. 3.2. Then, Sec. 3.3 gives a detailed introduction to
the MSC-Net. Finally, in Sec. 3.4, we explain how to fur-
ther improve detection accuracy by using an intermediate

refinement strategy (our refinement module) at each stage.
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3.1 Architecture Overview

The network architecture is inspired by the importance of
capturing multi-scale contextual information and saliency
prior knowledge (that can be produced by a coarser stage).
As can be seen in Fig. 2, our model takes a single RGB image
as input and produces a saliency map of the same size as the
output. The MSC-Net is built upon a shared feature map and
consists of several cascade stages (in a coarse-to-fine manner)
with intermediate supervision. The shared feature map, built
by fusing both shallow and deep features of a pre-trained
ResNet [7] model in a nonlinear manner, is pooled into varied
sizes. In order to form underlying stage-wise feature maps,
the dimension of the pooled features is then reduced by using
one 1 x 1 convolution layer. The feature learning at each
stage (except for the first stage) is based on (i) the stage-wise
feature maps, (ii) the feature information of its preceding
stage, and (iii) the previous intermediate saliency predictions.
In this structure, the last stage encodes all the contextual
information and saliency knowledge of all scales so that it
can produce a very accurate saliency map as the final output.

This architecture has several advantages. Firstly, multi-
scale contextual information can be reasonably consolidated
by one single network, which favors more accurate prediction.
Secondly, the intermediate supervision produces a series of
saliency priors, making it easier to train a deep model and
better distinguish salient objects from non-salient regions.
Thirdly, the powerful underlying feature map combines both
shallow and deep CNN features of a pre-trained ResNet so
that it can provide rich spatial information for subsequent
feature learning. Finally, because of its powerful cascade ar-
chitecture, our MSC-Net can produce reliable results without
doing any post-processing refinement, which guarantees the
overall efficiency.
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3.2 ResNet-Based Feature Map

Almost all existing salient object detection models are based
on VGG network [29], but researchers have found that using
a very deep Residual Net (ResNet) can achieve even bet-
ter accuracy for many dense prediction tasks [20] [38] [3].
Hence, we adopt a pre-trained ResNet-101 with the dilated
network technique [36] to build the underlying feature map.
To avoid detailed information loss, the input image is scaled
to 480 x 480 for feature learning, and the dilated network
technique [36] [3] is adopted to keep last three groups of
ResNet have the same resolution (i.e., 60 x 60). It is observed
that shallow and deep features of a very deep network are
usually complementary to each other: shallower features are
better at capturing rich spatial information while deeper
features are more capable of encoding high-level semantic
knowledge [3]. Therefore, we fuse multi-level features in a
nonlinear manner to improve detection performance. More
specifically, since the last three groups have the same reso-
lution, we directly integrate shallower features from Res3_4
and Res/_-23 layers and deep features from the last feature
layer of ResNet into a high-dimension aggregated feature
map by using a concatenation layer. After that, we use one
1 x 1 convolution layer after the concatenation layer to reduce
the dimension and produce the final underlying feature map
f. Note that the combination is jointly learnable, and trained
with our MSC-Net.

3.3 Multi-Scale Cascade Network

The MSC-Net takes a ResNet-based feature map f of input
image x, and produces a full-resolution saliency map S(f; ©),
where © represents the model parameter of MSC-Net. As
can be seen in Fig. 3, it consists of N cascade stages from
coarse to fine, each of which handles a specific scale s; €
{s1, s2, ...sn } with intermediate supervision. To extract multi-
scale features, the input feature map f is pooled into N
features with different bin sizes (e.g., 10 x 10, 15 x 15 ...
60 x 60), and the dimension of the pooled features is then
reduced by using one 1 X 1 convolution layer (from 2048 to
512). We denote these resulting 512-dimensional features as
fsi € {fs1s [sas--fsn}- The feature learning for the i, stage
encodes the reduced feature map at its own scale s;, as well
as the learned convolutional features and the intermediate
saliency prediction of its previous stage s;—1. Therefore, the
underlying feature map Fi, for the iy, stage is formally
written as:

where FS/I and M; denote the learned feature and the inter-
mediate saliency prediction of the i), stage, respectively. a
and § are the combination weights for the previous learned
features and saliency prediction. Ry, (.) is a function that
resizes the feature map and saliency prediction into the same
size as scale s; via bilinear interpolation.

fsl —|-04le ( Si_ 1)+ﬂle (
fsi,l— 1

i—1),1 > 2

(1)
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Figure 3: Illustration of the sub-network cascade be-
tween two adjacent stages. The red dashed line de-
notes an up-sampling operation.

We formulate the salient object detection task as per-
pixel regression to groundtruth annotations. Based on their
underlying feature maps F, all stages (sub-networks) jointly
learn the intermediate saliency maps at their own scales. The
objective of stage s; (it sub-network) is to minimize pixel-
wise discrepancy between the groundtruth map and estimated
intermediate saliency map S, (Fs,;6s,), and is given below:

— mi Joqi (.

Lsz(esz) - I?inglsz(G.sNSsl(Fsl’eSz)% (2)

where 65, denotes the model parameter of the i, stage,

and Gf;i denotes pixel-wise manual annotations of the j;p

training image with scale of s;. The scaled groundtruth G,

is generated through the bilinear interpolation operation

for down-sampling. [, is the salient object detection loss of

S7.(Fs,;0s,) with respect to G7,. More specifically, we adopt

a cross-entropy loss in Eq. 2, which is typically used in salient
object task. Our loss function is defined as follows:

[1s; |
Z G,
=+ (1 - Gsi (p)) IOg PI"(Ss,i (p) = 0|I~9i; 091)

We compute the loss function over all pixels in a training
image I at the i, stage. Gs,;(p) and S, (p) represent the
groundtruth label and estimated intermediate saliency score
at pixel p, respectively.

Our model is a highly-integrated network, where all sub-
networks (stages) are integrated in a single-step framework.
Let 6 = (6s,,0s,...0s 5 ) represent the model parameters of all
stages. The loss function of the whole MSC-Net is given as:

Z'}%s

where ~; is the balance Welght of the i;,-stage loss.

Our model successively integrates the learned features and
intermediate saliency prediction from earlier stages. Although
each stage produces its own saliency map under the inter-
mediate supervision, we only use the saliency map produced

p) log Pr(Ss, (p) = 1|1s,3 6s,)

®3)

Lau (0, 9 (4)
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Figure 4: Illustration of the refinement module. The
refinement module is a recurrent network that feed-
s the intermediate predictions and learned features
back to the first convolution layer of each stage by re-
current connections. “F” denotes the underlying fea-
ture map; “L” means the learned features; “CE” de-
notes cross-entropy loss that measures the distance
from the groundtruth “G” to intermediate predic-
tion “P”.

by the last stage as our final result (see Fig. 2), at which all
contextual information and intermediate results have been
encoded. From the standpoint of architecture and function,
our model can be also considered as a novel coarse-to-fine
detection approach: the coarser stages (earlier stages) roughly
locate the regions likely to contain salient object(s); the finer
stages (later stages) progressively update the results of their
pervious stage to generate a more accurate saliency map.

3.4 Refinement Module

To make our model more robust, we consider the impact of
feedback signal in deep CNN network. The key idea is to build
a recurrent architecture at each stage to feed the intermediate
result and learned features back to the first convolutional
layer of this stage. In practice, we adopt several units under
supervision, and input the intermediate predictions of one
unit together with the underlying feature map and learned
features into the next (see Fig. 4). To this end, we modify
the first convolution layer of i;, stage as:

f(Fsz) = WFsi Fsi + WLSi Lsi + WPs,; Ps,i + b7 (5)

where L and P are the learned feature and intermediate
saliency map, respectively. Wg, , Wi, and Wp, denote
corresponding convolution kernels; b is the bias parameter.
In the first time-step, the sub-network at i, stage takes
the underlying feature map F, as input and produces the
intermediate saliency map PJ, = S, (F,;0s,). In the fol-
lowing each time-step, the learned features ngl and the
intermediate saliency map Pstfl are fed back to the input.
The sub-network then takes the underlying feature map Fy,,
the learned features L’;;l and intermediate saliency map
Pstfl to update the intermediate result:

Psti =5, (Fsri

LGN PEY0,). (6)
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In each unit, the network has a 3 x 3 convolutional layer
with one padding, BN, ReLU, and one 1x1 convolutional layer
with zero padding, BN, ReLU, followed by a concatenation
layer. The intermediate output for ¢, unit at i, stage is
a saliency map Psti with scale s;. The result and learned
features of each unit are sent to a concatenation layer, whose
goal is to encode this feedback information for the next unit.
The output of the final unit at the i, stage is considered
as the saliency prior for the next stage (the (i + 1),, stage),
which is then scaled to the resolution with scale s;41.

Different from [32] that applies a recurrent strategy for
the entire network, we apply the recurrent architecture to
each cascade stage. On one hand, compared with [32], it
can largely reduce computational complexity and memory
cost, because this structure involves fewer parameters. On
the other hand, our refinement module enables the MSC-Net
to enforce more intermediate supervision, and therefore the
performance of the entire network can be further improved.

4 EXPERIMENTS

4.1 Implementation Details

Our network is based on the public platform Caffe [9]. As
described above, we use ResNet-101 [7] with the dilated
network strategy [36] as the pre-trained model. We use five
cascade stages for handling multiple scales (i.e., 10 x 10,
15 x 15, 20 x 20, 30 x 30 and 60 x 60) in our MSC-Net, and
each stage contains two refinement units for both training
and inferring.

Training. For each training image, we first resize it to 480 x
480 pixels. We define v; = 1 in Eq. 4, and utilize the “poly”
learning rate policy [23], where the learning rate is scaled by
1- #@:T)pow”. We set the initial learning rate to 10™°
and the iiz)wer to 0.9. The maximum number of iterations
is set to 30000. The Stochastic Gradient Descent (SGD) is
employed for optimization. The groundtruth is scaled to five
different sizes to supervise the learning of each stage-wise
saliency prediction. All stages are jointly trained in a single-
step framework. The training takes about 56 hours on a
NVIDIA GTX Titan X GPU with 12G memory.

We use the training set provided by [10], which includes
2,500 images selected from MSRA-B dataset [22]. Our MSC-
Net has millions of parameters when only 2,500 training
images are available. To reduce overfitting, the training data
is augmented by flipping all the training images horizontally,
following [8] [16]. We notice that many existing approaches
build a stronger training set than ours, which includes much
more training samples selected from different datasets. Indeed,
a larger training set may lead to better performance because
the model can benefit from richer information. However, we
want to focus on the performance of our model itself, and
thus we do not build a large training set or conduct any
post-processing as they do.

Inferring. During test time, the input image is simply for-
warded through the MSC-Net to generate a full-resolution
saliency map. We directly take the output of the last stage
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Figure 5: From top to bottom, Precision-recall (PR) curves and weighted F-measure (Fj’) of various ap-
proaches on five popular benchmark datasets. Our approach consistently achieves the best performance in all

these metrics.

as the final result of our model and do not use any post-
processing procedures.

4.2 Datasets and Evaluation Metrics

4.2.1 Datasets. We evaluate our method on five widely-
used benchmark datasets: MSRA-B [22], ECSSD [33], PASCAL-
S [19], DUT-OMRON [34] and HKU-IS [15]. All of them
contain annotations and are available online.

MSRA-B is one of the most widely used dataset, which
includes 5,000 images containing various objects. Most of the
images have a single salient object. Since 2,500 images are
randomly sampled from MSRA-B to train our model, the
remaining images are used as the test dataset for all methods.
ECSSD is a publicly available salient object detection dataset.
It includes 1,000 structurally complex images and is more
challenging than MSRA-B.

PASCAL-S contains 850 very challenging images, all of
which are chosen from the validation set of the PASCAL
VOC 2010 segmentation challenge. PASCAL-S is less biased
than most of the other saliency datasets.

DUT-OMRON is a large dataset that contains 5,168 chal-
lenging images with high background clutter and one or more
salient objects. It is a particularly challenging dataset. So far,
none of the existing methods has achieved very high accuracy
on this dataset.

HKU-IS contains 4,447 images with low contrast and less
bias. Images mostly have multiple salient objects with low
color contrast, which makes it very challenging.

4.2.2 Evaluation Metrics. Four commonly-used metrics are
used to evaluate the performance of our model, including
Precision-Recall (PR) curves, F-measure(F3), weighted F*-
measure(Fg’) and Mean Absolute Error (MAE). First, we
can convert each saliency map S to a binary mask B using a
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Table 1: Analysis of the MSC-Net. Our results are
obtained on ECSSD dataset. “SDC” denotes the
nonlinear combination of both shallow and deep fea-
tures used in this paper; “MSC” refers to the multi-
scale cascade architecture we designed; “RM” means
that refinement module is used at each stage. “ * ”
denotes the method used in this paper. Fj3’: the high-
er the better; MAE: the lower the better.

Method Fg MAE
ResNet101(Baseline) 0.808  0.066
ResNet1014-SDC 0.821  0.063
ResNet101+SDC+MSC2 0.854  0.055
ResNet101+SDC+MSC5 0.868  0.051
*ResNet101+SDC+MSC5+RM | 0.886 0.045

threshold and compare the resulting binary mask against the
groundtruth G. Therefore, its precision P and recall R can
be computed by P = |B‘Q|G| and R = ‘Blglc‘, respectively.
The PR curve is obtained by averaging the precision and
recall values over all saliency maps of a given dataset. Then,

following [16], the F-measure metric is defined as:

PxR

Fg = (1+52)m (7)

where 32 is set to 0.3 to stress the importance of the precision
value, as suggested by [10] [3].

Additionally, we adopt the recently proposed weighted
F*-measure [24] for a more balanced comparison, which is
defined as:

P¥ x RY

Fﬁ:(1+52)m (8)
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Table 2: Quantitative comparisons with 11 leading methods on five widely-used benchmarks, including four

top-ranked traditional methods and seven CNN-based models. The top three results are shown in Red,

9

and Blue, respectively. Fj3: the higher the better; MAE: the lower the better.

Methods MSRA-B ECSSD PASCAL-S DUT HKU-IS
Fs |MAE | Fs; |MAE| F; |MAE| Fs; | MAE| Fs; | MAE
DRFI [10] | 0.851 | 0.120 | 0.786 | 0.164 | 0.684 | 0.226 | 0.665 | 0.155 | 0.781 | 0.143
MB+ [37] | 0.826 | 0.110 | 0.739 | 0.171 | 0.679 | 0.196 | 0.624 | 0.168 | 0.733 | 0.149
GBMR [31] | 0.825 | 0.125 | 0.738 | 0.187 | 0.648 | 0.233 | 0.610 | 0.189 | 0.715 | 0.172
wCtr [41] | 0.819 | 0.109 | 0.716 | 0.171 | 0.657 | 0.120 | 0.630 | 0.144 | 0.726 | 0.141
MC [39] 0.872 | 0.062 | 0.822 | 0.107 | 0.721 | 0.147 | 0.703 | 0.088 | 0.781 | 0.098
MDF [15] | 0.885 | 0.104 | 0.832 | 0.105 | 0.764 | 0.142 | 0.694 | 0.092 | 0.860 | 0.129
DS [15] 0.898 | 0.068 | 0.882 | 0.122 | 0.761 | 0.175 | 0.745 | 0.120 | 0.866 | 0.079
ELD [11] | 0.914 | 0.042 | 0.869 | 0.098 | 0.777 | 0.121 | 0.720 | 0.091 | 0.767 | 0.071
DHS [21] - - 0.826 - -
RFCN [32] | 0.922 0.893 | 0.074 0.097 | 0.741 0.889 | 0.055
DCL [16] 0.054 | 0.901 | 0.075 | 0.822 | 0.107 0.086 0.055
Ours 0.934 | 0.034 | 0.937 | 0.045 | 0.864 | 0.082 | 0.801 | 0.056 | 0.923 | 0.037

where P* and R" are weighted precision and weighted recall,
respectively. This evaluation metric overcomes three flawed
assumptions of previous measures, including interpolation,
dependency and equal-importance. Therefore, it can better
evaluate the performance of all methods.

Finally, the most widely-used MAE score [26] is also adopt-
ed to evaluate our model. It computes the average absolute
pixel-wise difference between saliency map S and groundtruth

G:

W H
MAE:ﬁ;;\S(Ly)—G(Ly)L 9)

where W and H are the width and the height of the saliency
map, respectively.

4.3 Ablation Study

We explore three aspects of our design: the effect of combining
both shallow and deep features of ResNet, the effectiveness of
multi-scale cascade architecture, and the necessity of refine-
ment module. The ResNet101-based FCN [3] is used as the
baseline of our method to show the importance of our design.
The overall result on ECSSD dataset is shown in Tab. 1.
Based on the baseline, we analyze the proposed compo-
nents, i.e., the ResNet-Based feature map (which integrates
both shallow and deep features), Multi-Scale Cascade (M-
SC) architecture (with two and five stages) and Refinement
Module (RM) by comparing the weighted F*-measure and
MAE. Firstly, we evaluate the effect of feature combina-
tion. By combining both shallow and deep features with a
nonlinear manner, our method achieves 1.6% improvements
according to Fg’, and lowers the MAE score 4.5% over the
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baseline. Secondly, to verify the effect of the multi-scale cas-
cade architecture, we build two architectures based on the
ResNet-Based feature map: one containing two cascade stages
(30x 30 and 60 60) and the other one containing five cascade
stages (10 x 10, 15 x 15, 20 x 20, 30 x 30 and 60 x 60). The
experiments show that the network with multi-scale cascade
architecture can largely improve the accuracy of salient ob-
ject detection. Specifically, the MSC-Net with two cascade
stages improves the F§’ by more than 4.0% and lowers the
MAE by 12.7%; the MSC-Net with five cascade stages results
in a further 1.6% improvement of F§’ and lowers the MAE
by 7.3%. Finally, by adding the refinement module, we get
the highest Fg’ 0.886 and the lowest MAE score 0.045. We
find that the improvements should be mostly attributed to
the multi-scale cascade architecture and refinement module,
which is also the novel design of this work.

4.4 Comparison to Other Methods

We compare the proposed method with four top-ranked tra-
ditional methods and seven recent CNN-Based models. The

11 leading methods are DRFI [10], MB+ [37], GBMR [34],
wCtr [11], MC [30], MDF [15], DS [1%], ELD [14], DHS [21],
RFCN [32] and DCL [16]. In all cases, we use the code or the

saliency maps provided by the authors.

Quantitative Comparison. We compare the performance
of our model, MSC-Net, to the other state-of-the-art methods
on five commonly used datasets. Firstly, we compare results
of all methods in terms of the F-measure and MAE scores.
As can be seen in Tab. 2, our MSC-Net achieves the best per-
formance in the two metrics above. Specifically, on MSRA-B,
ECSSD, PASCAL-S, DUT-OMRON and HKU-IS, our MSC-
Net improves the current best F-measure by 0.5%, 3.3%, 3.8%,
5.8% and 1.8% respectively, and lowers the MAE by 17.1%,
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Figure 6: Qualitative comparisons of our MSC-Net and the state-of-the-art methods on some challenging

scenes. The failed cases are shown in the last line.

Table 3: Comparison of running times. Mean run-times were measured on 400 x 300 pixel images.

Method DRFI MB+4+ GBMR wCtr

MC MDF

DS ELD DHS RFCN DCL Ouwurs

Times(s) | 6.34  0.03 0.87  0.52

2.38

8.04

0.73 059 0.04 129 1.17 0.26

26.2%, 10.9%, 25.3% and 30.2% respectively. Furthermore,
we compare our approach with the existing methods in terms
of PR curve. As can be seen in Fig. 5¢op), our model consis-
tently outperforms all the state-of-the-art methods. Finally,
we evaluate all methods in terms of the weighted F-measure.
As shown in Fig. 5mottom), our method still achieves the best
performance. To be more specific, it improve the best existing
weighted F-measure by 1.7%, 4.6%, 2.3%, 8.4% and 2.5% re-
spectively on MSRA-B, ECSSD, PASCAL-S, DUT-OMRON
and HKU-IS. Note that we omit the results of DHS [21] on
DUT-OMRON and HKU-IS to avoid overrating its perfor-
mance on these datasets, because its training samples are
mainly selected from these test datasets. Also, it is worth
mentioning that our model is trained on a relatively small-
er and simpler training set and directly generates the final
saliency map without using any post-processing steps, which
indicates that our MSC-Net is not suffering much from the
dataset bias and boundary information loss problem.

Qualitative Comparison. A qualitative comparison is shown
in Fig. 6. As can be seen, our method is able to generate very
reliable and accurate results even in many challenging images
with strong background clutters. Compared to the saliency
maps produced by existing methods, our saliency maps fo-
cus more on saliency regions, and the object boundaries are
also better preserved. When handling complex images where
other methods fail, our method can achieve very accurate
detection.
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Speed Performance. At last, we show the speed perfor-
mance of the compared methods in Tab. 3. The evaluation of
the traditional methods is conducted on a PC with an i7 2.50
GHz CPU and 8 GB RAM, while the CNN-based methods
are accelerated by a NVIDIA GTX Titan X GPU with 12G
memory. Since our method needs no post-processing proce-
dures, it takes only about 0.26 seconds to generate a saliency
map for a 400 x 300 input image.

5 CONCLUSIONS

In this paper, we have proposed MSC-Net, a novel CNN-based
model for salient object detection. The proposed network
employs a multi-scale cascade structure that can better consol-
idate contextual information and intermediate saliency priors.
We also introduce a refinement module to further filter out er-
rors. Our MSC-Net can generate a very reliable saliency map
for an input image without needing any post-processing steps.
Extensive experiments on five commonly-used benchmark
datasets show that our MSC-Net can surpass the currently
best performance. We believe that our approach will facil-
itate the development of many other computer vision and
multimedia tasks.
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