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ABSTRACT
To achieve high retrieval accuracy over a large scale image/video
dataset, recent research efforts have demonstrated that employing
extremely high-dimensional descriptors such as the Fisher Vector
(FV) and the Vector of Locally Aggregated Descriptors (VLAD)
can yield good performance. To enable fast search, the FV (or
VLAD) is usually compressed by product quantization (PQ) or
hashing. However, compressing high-dimensional descriptors via
PQ or hashing may become intractable and infeasible due to both
the storage and computation requirements for the linear/nonlinear
projection of PQ or hashing methods. We develop a novel com-
pact aggregated descriptor via dual selection for visual search. We
utilize both sample-specific Gaussian component redundancy and
bit dependency within a binary aggregated descriptor to produce
its compact binary codes. The proposed method can effectively
reduce the codesize of the raw aggregated descriptors, without de-
grading the search accuracy or introducing additional memory foot-
print. We demonstrate the significant advantages of the proposed
binary codes in solving the approximate nearest neighbor (ANN)
visual search problem. Experimental results on extensive datasets
show that our method outperforms the state-of-the-art methods.

Keywords
Aggregated descriptors;Visual search; Dual selection; Compact bi-
nary code

1. INTRODUCTION
With the advent of the era of Big Data, huge body of resources

can be easily found on the multimedia sharing platforms such as
YouTube, Facebook and Flickr. Visual search is attracting con-
siderable attention in the multimedia and computer vision litera-
ture. It refers to the discovery of images contained within a large
dataset that describes the same objects as those depicted by query
terms. There exists a wide variety of emerging applications, e.g.,
searching buildings for location recognition and 3D reconstruction
[13], searching logos for the estimation of brand exposure [22],
and rapidly locating and tracking of criminal suspects from masses
of surveillance videos [15]. The basic idea of visual search is to
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extract visual descriptors from images/videos, then perform de-
scriptor matching between the query and dataset to find relevant
items. Towards an effective and efficient visual search system, the
visual descriptors need to be discriminative and resource-efficient
(e.g., low memory footprint). The discriminability determines the
search accuracy, while the resource involves the scalability of a vi-
sual search system. In this paper, our goal is to design a new com-
pact binary coding method which can achieve satisfactory search
accuracy, search efficiency, and memory cost simultaneously.

More recently, various visual tasks are being performed on the
larger and larger dataset, and visual search is no exception. To
achieve high retrieval accuracy on such datasets, it is necessary to
employ extremely high-dimensional descriptors such as the Fisher
Vector (FV) [21] and the Vector of Locally Aggregated Descriptors
(VLAD) [12]. In retrieval tasks, the FV (or VLAD) is usually com-
pressed to binary aggregated descriptors because the binarized FV
(or VLAD) allows for fast Hamming distance computation as well
as light storage of visual descriptors [20, 2, 19, 16, 30].

Product quantization (PQ) [10, 18, 5, 29, 1, 23] and hashing [15,
6, 7, 17, 27, 26, 24] are popularly used techniques to obtain binary
aggregated descriptors. In PQ and Hashing methods, the linear (or
nonlinear) projection is usually employed to convert high dimen-
sional features (e.g., feature f ∈ RN ) into binary embeddings or
product codes. However, both the space and computational com-
plexity of the projection isO(N2) [14, 6, 27]. For instance, assume
that a 426-dimensional dense trajectory feature is extracted from a
video and then PCA is employed to project it to the dimensionality
213, we will obtain a 54, 528-dimensional FV when the number of
Gaussion components K = 128. In the case of N = 54, 528, pro-
jection matrix alone will take more than 10 GB memory footprint
and projecting one vector would spend 800 ms on a single core.
As the number of Gaussion components K increases, binarizing
high-dimensional descriptors directly using PQ or hashing may be-
come intractable and infeasible due to the computational cost and
memory requirements.

It is thus desirable that a discriminative and compact aggregated
descriptor should be established for visual search over a large scale
dataset when only limited hardware resources are available. To
achieve this goal, we consider the following observations: (1) As
discussed in [21], since each residual vector of the FV (or VLAD) is
aggregated from local features being assigned to the corresponding
Gaussian component, not all the components are of equal impor-
tance to distinguish a sample. (2) Although the redundancy from
the component-level is removed, the bit-wise dependency within
each selected component may be further reduced.

Motivated by these observations, we propose a novel compact
binary coding method for visual search. A sample-specific compo-
nent selection scheme is introduced to remove the redundant Gaus-
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sian components, and a global structure preserving sparse subspace
learning method is presented to suppress the bit-wise dependency
within a selected component. Specifically, given a raw Fisher vec-
tor with K Gaussian components, to fulfill the constraint of com-
pression complexity, we first binarize the FV by a sign function,
leading to a binarized Fisher vector (BFV). Both sample-specific
Gaussian component redundancy and bit dependency within a com-
ponent are then introduced to produce compact binary codes. The
obtained binary codes, as required, are discriminative, and yet com-
pact, capable of efficiently handling the large scale dataset, as vali-
dated in Section 5.

2. BINARY AGGREGATED DESCRIPTOR
In the FV method, a Gaussian Mixture model (GMM) pλ(x) =∑K
i=1 ωipi(x) with K Gaussians is to estimate the distribution of

local features over a training set. We denote the set of Gaussian pa-
rameters as λi = {ωi, µi, σ2

i , i = 1, ...,K}, where ωi, µi and σ2
i

are the weight, mean vector and variance vector of the i-th Gaus-
sian pi, respectively. Let F = {f1, ..., fT } denote a collection of
T SIFT local features extracted from an image. Employing PCA
to project the dimensionality of SIFT or trajectory to dimension D
is beneficial to the overall performance [11, 12]. By concatenating
of the sub-vector g(i) of all the K components, we form the FV
g = [g(1), ...,g(K)] ∈ RKD , where g(i) ∈ RD . Similarly, the
VLAD can be derived from FV by replacing the GMM soft cluster-
ing with k-means clustering [12].

Following the compressed fisher vectors[20], we choose a one-
bit quantizer to binarize the high dimensional g ∈ RKD , such
that superior retrieval performance with nearly zero memory foot-
print can be achieved. We generate binary aggregated descrip-
tors by quantizing each dimension of FV or VLAD into a single
bit 0/1 based on a sign function. Formally speaking, sgn(g) is
used to map each element gj of the descriptor g to 1 if gj > 0,
j = 1, 2, · · · ,KD; otherwise, 0, yielding a Binary Aggregated
Descriptor (BAD) b = {b(1), ...,b(K)} with N = KD bits,
where b(i) ∈ RD .

3. COMPACT BINARY AGGREGATED DE-
SCRIPTOR VIA DUAL SELECTION

In this paper, our goal is to compress aggregated descriptors into
binary codes, without sacrificing considerable loss of search accu-
racy. In addition, the encoding process should satisfy small mem-
ory footprint and low computational complexity. We formulate
the compact binary coding as a resource-constrained (e.g., bit rate,
memory footprints and computational complexity) feature com-
pression problem. Although the BAD method supports ultra-fast
Hamming distance computation (XOR operation and bit count), it
has a fixed codesize and thus cannot meet the given constraints.
Moreover, the coarse binary quantization would probably drop the
search accuracy of uncompressed aggregated descriptors. To ad-
dress these issues, we propose a dual selection model which utilizes
both sample-specific component selection and component-specific
bit selection to explore the informative bits. Since the VLAD is
a simplified non-probabilistic version of FV, in what follows, we
take the FV as an example to elaborate how to obtain the compact
Fisher codes via dual selection.

3.1 Sample-specific Component Selection
We note that FV exhibits the natural 2-D structure due to the

Gaussian component based feature aggregation, as shown in Fig-
ure 1. The aggregated FV is formed by concatenating residual vec-
tors computed for all Gaussian components, while each residual
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Figure 1: Sample-specific component selection. The aggregated
FV is partitioned into disjoint components by Gaussian compo-
nents. We select all the bits of Gaussian components with high
importance and the rest of components are discarded. In this
work, the importance is defined as the sum of posterior prob-
abilities of local features being assigned to the i-th Gaussion
component.

vector is aggregated from local features being assigned to the cor-
responding Gaussian component. In other words, not all Gaussian
components equally contribute to describing a sample. Assume that
the occurrence of a Gaussian component is the number of local
features quantized to that component. The occurrence of different
Gaussian components may vary for each sample. Gaussian com-
ponents with low occurrence are supposed to be less discriminative
for describing the sample. In an extreme case, if none of local fea-
tures is assigned to a Gaussian component i, then all the elements
of the corresponding subvector g(i) are zero. Our method thus
considers the sample-specific component selection within an indi-
vidual sample, which uses local statistics to discard the redundant
Gaussian components.

Specifically, we can partition the FV into disjoint components by
Gaussian components and select all the bits of those with high im-
portance. Here, the importance means that which Gaussian compo-
nents are activated and how large the amplitudes of their responses
are. In particular, we adopt the soft assignment γ(ft, i) of local
features as the importance of Gaussian i to adaptively select part of
discriminative components for each sample. The importance, i.e.,
I(λi), is defined as the sum of posterior probabilities of local fea-
tures {f1, ..., fT } being assigned to the i-th Gaussian component,
given by

I(λi) =

T∑
t=1

γ(ft, i). (1)

Sample-specific component selection can be implemented ef-
ficiently by applying a sorting algorithm to the set {I(λi), i =
1, 2, · · · ,K}, i.e., the subvector of the binary Fisher vector (BFV)
b(i) with the largest I(λi) is first selected to generate Fisher codes,
followed by the b(j) with the second largest one. In this way, we
can compute the importance of components for each sample using
Eq. (1) and select a subset of components with high importance.
The rest of components are discarded, as shown in Figure 1. The
number of the selected components will be discussed in Section ??.
Since noisy components are removed from the original aggregated
FV, the required number of shortlisted candidates can be largely
reduced. Meanwhile, it is not necessary to maintain a Gaussian
selection mask for all samples. Accordingly, the sample-specific
component selection is memory free, and the computational cost of
Gaussian selection is O(N).
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Figure 2: Componet-specific bit selection. The bits that carry
as much information as possible are selected by the global
structure preserving sparse subspace learning. For each sam-
ple, the bits in black bounding boxes are the final compact
Fisher codes. L denotes the number of training samples.

3.2 Component-specific Bit Selection
After sample-specific component selection, although the redun-

dancy from a component-level is removed, there probably exists
bit-level redundancy within each selected component. Therefore,
we need to further reduce the dimensionality of each component,
while maintaining search performance. Inspired by [25], in this
paper, we introduce a component-specific bit selection scheme by
global structure preserving sparse subspace learning to select bits
that carry as much information as possible.

Without loss of generality, let B ∈ {0, 1}Θ×D denote a subset of
the BAD from the i-th Gaussian component corresponding to the
whole dataset. Here Θ represents how many samples treating the
i-th component as an important one, as shown in Figure 2. Θ ≤
L, where L is the number of training samples. The goal of bits
selection is to find a small set of bits that can capture most useful
information of B. One natural way is to measure how close the
original data samples are to the learned subspace spanned by the
selected bits. Mathematically, the component-specific bit selection
is formulated as

min
W,H

||B − BWH||2F .

s.t.W ∈ {0, 1}D×D
′

W>1D×1 = 1D′×1

||W1D′×1||0 = D′

(2)

Here, W is a selection matrix with entries of 0 or 1. W>1D×1 =
1D′×1 enforces that each column of W has only one 1, i.e., at most
theD′ bits are selected for each Gaussian component. ||W1D′×1||0 =
D′ guarantees that W has the D′ nonzero rows, and thus exact D′

bits will be selected. H is the optimal subspace. Hence, Eq.(2)
denotes the distance of B to the learned subspace H.

A major difficulty of solving Eq. (2) lies in handling the discrete
constraints imposed on W, which typically makes bits selection
problem very challenging. In this work, we relax the 0-1 con-
straint of W to nonnegativity constraint and the hard constraints
both W>1D×1 = 1D′×1 and ||W1D′×1||0 = D′ to a L2,1 norm
constraint. Therefore, optimizing Eq. (2) is equivalent to solving

min
W,H

||B − BWH||2F + β||W||2,1,

s.t.W ∈ RD×D
′

+

(3)

where RD×D
′

+ denotes a set of D × D′ nonnegative matrices and

β is a parameter. After obtaining a solution W, we choose the bits
corresponding to the D′ rows of W that have the largest norms.

In this work, we employ the accelerated block coordinate update
(ABCU) method [28] to alternatingly update W and H with{

f(W,H) = ||B − BWH||2F
g(W) = β||W||2,1.

(4)

Due to the space limit, interested readers refer to [28] for details.
Normalizing each column of W, we sort ||Wi,·||2, i = 1, 2, · · · , D

and select bits corresponding to the D′ largest ones . Since the
Gaussian components are independent of each other, the component-
specific bit selection can be implemented in a parallel fashion. In
addition, the number of selected bits D′ is fixed and applied to all
samples, so both the memory footprint the computational cost of
bits selection are O(N).

4. HAMMING DISTANCE MATCHING
In online search, we apply the dual selection scheme to query

samples as well and perform search using the selected bits. As
the selected components may vary in different samples, we have
to address a challenging issue of matching descriptor across differ-
ent Gaussian components. That is, given a query xq and a dataset
sample xr , if the selected Gaussian components are different, the
similarity cannot be compared directly using standard Hamming
distance. We adopt a normalized cosine similarity score Sc to cal-
culate the distance matching, given by

Sc =

∑K
i=1 s

q
i s
r
i

(
D′ − 2 ∗ h

(
sgn(g

xq

i ), sgn(gxr
i )
))

D′
√
||sq||0||sr||0

, (5)

where sqi and sri denote whether the i-th Gaussian component is
chosen for xq and xr , respectively, and h(·, ·) is the Hamming dis-
tance between binarized Fisher subvectors. In practice, Sc is com-
puted based on the overlapping Gaussians sq

⋂
sr between xq and

xr .

5. EXPERIMENTS
In this section, extensive experiments are conducted to evaluate

the proposed method in both computational efficiency and search
performance. Our approach is implemented in C++. The experi-
ments are performed on an Dell Precision workstation 7400-E5440
with 2.83GHz Intel XEON processor and 32GB RAM in a mode of
single core and single thread.

5.1 Comparison with the state-of-the-art
We carry out retrieval experiments on MPEG-7 CDVS datasets

and the publicly available INRIA Holidays dataset [9]. The MPEG-
7 CDVS benchmark data set consists of 5 classes: graphics, paint-
ings, video frames, landmarks, and common objects [4].

To fairly evaluate the performance over a large-scale dataset, we
use FLICKR1M [8] as the distractor dataset, containing 1 million
distractor images collected from Flickr. In the training phase, the
codebook of GMM and component-specific bit selection matrix W
are typically learned on the FLICKR1M. The retrieval performance
is measured by mean Average Precision (mAP). We evaluate the
proposed method against LSH [3], BPBC [6], PQ [10], RR+PQ [5,
18], ITQ [7] and BFV 1. The SIFT from each image is extracted
and then the dimensionality of SIFT is reduced to 64 by PCA. We
employ FV encoding to aggregate the dim-reduced SIFT features
1In the BFV method, the raw FV is directly sign binarized to pro-
duce binary codes whose dimensionality is the same as the original
FV, as described in Section 2.
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Figure 3: Retrieval performance in terms of mAP vs. descriptor codesize over various benchmark datasets. Note that we evaluate
the uncompressed FV on the INRIA Holidays dataset. For MPEG CDVS datasets, we perform large scale retrieval by combining
them with the 1 million FLICKR distractor dataset. In the BFV method, the raw FV is directly binarized by a sign function and thus
the length of BFV is only 8192 (best viewed on high-resolution display).

Table 1: Comparison of descriptor compression ratio, additional compression time and memory footprint for FV compression be-
tween the proposed method and the baseline schemes, with comparable retrieval mAP, e.g., about 51% on the INRIA Holidays
dataset. Note that N , P , Q denote the dimensionality of FV, the target codesize and the size of vector quantization codebooks for the
PQ method, respectively.

Compression Memory Cost Compression Time
Method Ratio Theoretical Practice (MB) Theoretical Practice (ms)

LSH 93.6 O(NP ) 91.8 O(NP ) 151

BPBC 154.2 O(
√
N
√
P ) 0.031 O(N

√
P + P

√
N) 17

PQ 65.5 O(NQ) 8.4 O(NQ) 25
RR+PQ 65.5 O(NQ+N2) 277 O(NQ+N2) 278

ITQ 256 O(N2) 254 O(N2) 257
Ours 374.5 O(N) 0.015 O(N) < 1

with 128 Gaussian components. Therefore, the total dimensionality
of FV is 128 × 64 = 8192. Note that for compared methods, we
apply power law (α = 0.5) followed by L2 normalization to the
raw FV feature.

Figure. 3 presents an extensive comparison between the pro-
posed method and both the product quantization approaches and
hashing algorithms, in terms of mAP vs. different codesize over
different datasets. As it is computational expensive for L2 distance
between uncompressed FV, we only present the retrieval accuracy
of uncompressed FV on the INRIA Holidays dataset. We can see
that RR+PQ obtains better mAP than PQ, but both of them per-
form significantly worse than the hashing algorithms (e.g., LSH,
ITQ and BPBC). The proposed method achieves superior accuracy
than the other schemes, especially for small codesizes. Compared
with the BFV, the codesize of our method can save about 3 times,
while obtaining better retrieval performance. It should be empha-
sized that ITQ obtain best mAP for all datasets with large codesize
such as 4096 bits. This is reasonable since ITQ is fine tuned for
learning a projection to minimize the mean square error. However,
ITQ suffers from the huge memory and computational footprints
because of the projection matrix computation explained in Section
1.

5.2 Effectiveness of Dual Selection
In this section, we analyze two aspects of our method that are

important for good retrieval results, i.e., sample-specific compo-
nent selection and component-specific bit selection. Note that the
proposed method can be degraded to two simple models: Ours_S
denotes an algorithm in which only the sample-specific component
selection scheme is employed described in Section 3.1. Ours_C
only uses the component-specific bit selection presented in Sec-
tion 3.2.

From Figure 3, we observe that the Ours_S performs consis-
tently better than Ours_C at the same codesize over all datasets
(except the Landmarks at small codesize). In contrast, the proposed

method significantly outperforms both Ours_S and Ours_C. For ex-
ample, At codesize of 1920 bits, Ours_S and Ours_C yield mAP
79.2% and 75.6% on Graphics dataset, while our method achieves
83.2%. This gain may be attributed to the fact that the dual se-
lection scheme is complementary to each other, which can select
more informative bits. With more bits, Ours_S, Ours_C and the
proposed schemes progressively improve the retrieval accuracy. In
particular, Ours_S and our methods approach to the retrieval mAP
of uncompressed FV at large codesize. They obtain mAP 62.1% at
codesize of 3840 bits on the Holidays dataset, which is comparable
with the mAP 66% of uncompressed FV.

5.3 Computational Complexity
We evaluate the compression complexity on the “Holidays +

1M Flickr" dataset [9]. Table 1 compares the compression ratio,
memory and time complexities of the proposed method and other
baselines, with comparable retrieval accuracy. With comparable re-
trieval mAP, we observe that the compression ratio of the proposed
method is 2 to 6 times larger than the baseline schemes, resulting
in much smaller compact codes. The memory footprint introduced
by the our method is extremely low, i.e., 0.015 MB (16 KB) for
the globally bit selection mask. By contrast, RR+PQ and LSH cost
over hundreds of megabytes to store the projection matrix. In ad-
dition, compression time of the proposed method is ultra fast, as
there are only binarization and selection operations, while hashing
methods and PQ involve a large amount of floating point multipli-
cations.

6. CONCLUSION
In this paper, we have proposed an efficient and effective solu-

tion for learning compact binary codes to address the ANN prob-
lem with the long binary aggregated descriptor. We utilize both the
sample-specific Gaussian component selection and the component-
specific bit selection to produce a compact binary code. The pro-
posed method exhibits extremely low compression memory and
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time complexity, and supports fast Hamming distance matching.
Extensive experimental results demonstrate that our method has su-
perior retrieval accuracy against the state-of-the-art methods such
as hashing and PQ algorithms, while with fewer bits.
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