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ABSTRACT

Point-of-Interest (POI) recommendation has become an important
means to help people discover interesting places, especially when
users travel out of town. However, extreme sparsity of user-POI
matrix creates a severe challenge. To cope with this challenge,
we propose a unified probabilistic generative model, Topic-Region
Model (TRM), to simultaneously discover the semantic, temporal
and spatial patterns of users’ check-in activities, and to model their
joint effect on users’ decision-making for POIs. We conduct ex-
tensive experiments to evaluate the performance of our TRM on
two real large-scale datasets, and the experimental results clearly
demonstrate that TRM outperforms the state-of-art methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Filtering
Keywords
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erative model; Joint Modeling

1. INTRODUCTION

The rapid development of Web 2.0, location acquisition and wire-
less communication technologies have fostered a number of location-
based social networks (LBSNs), such as Foursquare and Facebook
Places. In these LBSNs, users can post their physical locations or
geo-tagged information in the form of “check-in”, and share their
visiting experiences for points of interest (POI). In LBSN, it is
crucial to utilize user check-in data to make personalized POI rec-
ommendation, which helps users know new POIs and explore new
places and facilitates advertisers to launch mobile advertisements.

One of the most important problems for POI recommendation is
how to deal with a severe challenge stemming from extreme spar-
sity of user-POI interaction matrix. There are millions of POIs in
LBSNs, but a user can only visit a limited number of them. More-
over, the observation of travel locality exacerbates this problem.
The observation of travel locality [5] made on LBSNs shows that
the check-in records generated by users in their non-home cities
only take up 0.47% of the ones generated in their home cities [11].
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This observation aggravates the data sparsity problem with POI rec-
ommendation for out-of-town users [3, 17].

The most popular approach in recommender systems is collabo-
rative filtering [1]. There exists a considerable body of research [5,
13, 6, 3, 4] which deposits people’s check-in history into user-POI
matrix. Based on the matrix, a collaborative filtering-based method
is then employed to infer the user’s preference regarding each un-
visited POI. The core idea of collaborative filtering is that similar
users provide clues for making recommendation. Due to travel lo-
cality, most of these similar users are more likely to live in the
same region with the target user. As a recommendation is made
by considering POIs visited by the similar users, most of the rec-
ommended POIs would be located in the target user’s home town.
So, these CF-based methods cannot be directly applied to the POI
recommendation for out-of-town users [3, 17].

To deal with the issue of data sparsity, especially for the out-of-
town recommendation scenario, we propose a unified probabilistic
generative model, namely Topic-Region Model (TRM), to simul-
taneously discover the semantic, temporal and spatial patterns of
users’ check-in activities, and model their joint effect on users’
check-in behaviors. (1) Semantic Patterns. A recent analysis of
the Whrrl dataset shows that the check-in activities of users exhibit
a strong semantic regularity [12], e.g., the entropy of semantic cate-
gories in individual user’s visited POIs is very small. (2) Temporal
Patterns. As observed in [18, 4], users’ activity contents exhibit
strong temporal cyclic patterns in terms of hour of the day. For ex-
ample, a user is more likely to go to a restaurant rather than a bar
at lunch time. (3) Spatial Patterns. Many recent studies show that
people tend to explore POIs near the ones that they have visited be-
fore [14]. So, POIs visited by users often form spatial clusters [6].

Note that while there are some recent studies [17, 18, 4, 6] that
exploit one of the above patterns to improve POI recommendation,
they lack an integrated analysis of their joint effect to deal with the
issue of data sparsity, especially in the out-of-town scenario.

The remainder of the paper is organized as follows. Section 2
details TRM model. We deploy TRM to POI recommendation in
Section 3. We report the experimental results in Section 4. Section
5 concludes the paper.

2. JOINT MODELING OF USER CHECK-
IN ACTIVITIES

In this section, we first formulate the problem definition, and
then present our proposed TRM.

2.1 Problem Formulation

Definition 1. (POI) A POI is defined as a uniquely identified
specific site. In our model, a POI has three attributes: identifier,



Variable Interpretation
9 the spatial patterns of user u, expressed by
u . R .
a multinomial distribution over a set of regions
0 the interests of user u, expressed by
w a multinomial distribution over a set of topics
a multinomial distribution over words
b= specific to topic z
a multinomial distribution over time slots
¥z specific to topic z
a multinomial distribution over POI IDs
Pz specific to topic-region (z, )
W the mean location of region r
po the location covariance of region
Dirichlet priors to multinomial distributions
v, 0, 8,1, 7 Vo, O, Pz, P and 2 r, respectively

Table 1: Notations of parameters

location and contents. We use v to represent a POI identifier and [,
to denote its corresponding location attribute in terms of longitude
and latitude coordinates. Besides, we use the notation W, to denote
the set of words describing POI v, such as tags and categories.

Definition 2. (User Home Location) We define a user’s home
location as the place where she lives, denoted as [/,,. For a user
whose home location is not explicitly given, we adopt the method
developed by [11] which discretizes the world into 25 by 25km
cells and defines the home location as the average position of check-
ins in the cell with most of his/her check-ins.

Definition 3. (Check-in Activity) A check-in activity is repre-
sented by a five tuple (u, v, l,, Wy, t) that means user u visits
POI v at time ¢.

Definition 4. (User Profile) For each user u, we create a user
profile D,,, which is a set of check-in activities associated with
user u. The dataset D used in our model consists of user profiles,
ie., D ={D, :u € U} where U is the set of users.

Definition 5. (Topic) Given a collection of words W, a topic z
is defined as a multinomial distribution over W, i.e., ¢p. = {¢ w :
w € W} where each component ¢. ., denotes the probability of
topic z generating word w.

PROBLEM 1. (POI Recommendation) Given a target user u
with her current location | and time t (that is, the query is ¢ =
(u, t, 1)), our goal is to recommend a list of POIs that u would be
interested in. Given a distance threshold d, the problem becomes an
out-of-town recommendation if the distance between her current
location and her home location (that is, |l — l|) is greater than d.
Otherwise, the problem is a home-town recommendation.

Following related studies [3, 10], we set d = 100km.

2.2 Model Description

For ease of presentation, we first list the notations used in TRM
in Table 1. Figure 1 shows the graphical representation of TR-
M where users’ check-in records are modeled as observed random
variables. As a POI has both semantic and geographical attributes,
we introduce two latent random variables, topic z and region r,
which are responsible for generating them, respectively. Based on
the two latent factors, TRM aims to model users’ interests and spa-
tial patterns as well as their joint effect on users’ visiting behaviors.

User Interest Modeling. Inspired by the early work about user
interest modeling [9, 17], TRM adopts latent topics to characterize
users’ interests to overcome the data sparsity. Specifically, we infer
individual user’s interest distribution over a set of topics accord-
ing to the contents (e.g., tags and categories) of his/her checked-in
POIs, denoted as 0,,. Thus, a user is associated with a topic distri-
bution, from which topics of check-in activities are sampled.
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Figure 1: The Graphical Representation of TRM

Unfortunately, based on recent analysis of LBSNs data [12], about
30% of all POIs lack any meaningful content information. To ad-
dress this problem, we exploit the association between the contents
of checked-in POIs and the check-in time through latent topic z, s-
ince the check-in time provides important clues about the semantic
content of POIs. Technically, each topic z in our TRM is not only
associated with a word distribution ¢, but also with a distribution
over time %),. Thus, the introduction of check-in time is helpful to
infer the topics of POIs whose contents are not available. To inte-
grate the check-in time information to the topic discovery process,
we employ the widely adopted discretization method in [4, 18] to
split a day into hourly-based slots.

User Spatial Pattern Modeling. The spatial clustering phe-
nomenon indicates that users are most likely to visit a number of
POIs and these POIs are usually limited to some geographical re-
gions [14]. In this component, the geographical space is divided
into R regions. We apply a multinomial distribution ., over re-
gions to model u’s spatial patterns. Following the literatures [8, 7],
we assume a Gaussian distribution for each region 7, and the loca-
tion for POI v is characterized by I, ~ N (pr, Xr), as follows:

1 _(lv - IJ/'r)TEv_'l(lv - .U/'r)
P(ly, ,2p) = ex
(lo|pr, ) 27/ [5n p( B

) (D

where g and 3,. denote the mean vector and covariance matrix.

Modeling The Joint Effect. As a POI has both semantic and
geographical attributes, the propensity of a user u for a POI v is
determined by the joint effect of w’s personal interests and spatial
mobility patterns. To model this joint effect, we introduce a joint
latent factor topic-region which is responsible for generating the
IDs of visited POIs, i.e., a topic-region (z,r) is associated with a
distribution over POI IDs (that is ¢~ ,»). As a matter of fact, a topic-
region represents a geographical area in which POIs have same or
similar semantics (e.g., categories or functions).

2.3 Model Inference

Exact inference for TRM model is difficult due to the intractable
normalizing constant of the posterior distribution, we therefore ex-
ploit collapsed Gibbs sampling for approximate inference, follow-
ing the studies [17, 16, 15]. As for the hyperparameters «, f3, -,
n and 7, for simplicity, we take fixed values, i.e., « = 50/K,
v =50/Rand f = n =7 = 0.01. At each iteration of our Gibbs
sampler, for each user check-in record, we sample both the corre-
sponding topic indicator z and the region indicator r. Below, we
present the sampling formulas.

Sample topic indicator z according to:

—u,v
nu,z’ +a

— o X
Zz’ (nui’,v + Oé)

—u,v +8
I1

Nz ,w
we Wy

P(z|z-u,v, 70,1y, Wy, t,u, )
2

—u,v

z,t + n
Zt’ (n;;:;v

—u,v
Nz,rv + 7

) Xy )

Z,7,v

n

S (0,57 4 B)



where z-, , represents topic assignments for all check-in records
except the current one, 1, is the number of times that latent topic
z has been sampled from the interest distribution of user u, 1. .,
is the number of times that word w is generated from topic z, and
N2, is the number of times that time slot ¢ is generated from topic
Z; Nz, 18 the number of times that POI v is generated by topic-
region (z,r); the number n*" with superscript —u, v denotes a
quantity excluding the current instance.
Sample region indicator r according to:

P( |7'ﬁu vy 2,0, Ly, Wy, t, u, )
nuy’ 5
Z (n;?’v +7) Zv’(

where n,,, is the number of times that region 7 has been sampled
from the spatial distribution of user w.

After each iteration, we employ the method of moments to up-
date the Gaussian distribution parameters (i.e., p and 33):

I

zZ,T,v

—u,v + )P(lv‘/“l”"vz'f’)
z,rv!

3

.= Ly )
g = =
1
Sr=D(r)=——— > (lo— pr)(lo — pr) " )
IST' -1 vES,

where S, denotes the set of POIs associated with latent region 7.

3. POI RECOMMENDATION USING TRM

Once we have learnt the model parameter set ¥ = {é, 1§, q.’;, @,
1&, [, f]}, given a target user v with the current time ¢ and location
l,ie., g = (u,t,1), we compute a probability of user u checking-in
each unvisited POI v as in Equation 6, and then select top-k POIs
with highest probabilities for the target user.

Plofust 1, 8) = PO E ) p, g, 8) o)
S P tu, l, )
where P(v, t|u, 1, ¥) is calculated as follows:
P(v,t\u,l,‘i’) :ZP(Tllv‘i’)P(v)tluv T, ‘i’) (7

where P(r|l, ¥) denotes the probability of user u choosing region
r given his current location [, and it is computed as in Equation 8
according to Bayes rule, in which the prior probability of latent
region r can be estimated using Equation 9.

. P(r)P(l|r, ¥) R
P(r|l,¥) = = P(r)P(l|r, ¥ 8
o ®) = = gy < POPUR ) ®
P(r)= ZP rlu)P(u Z s ]\([}LV—’— ’:_ D Au/yT )

where N, denotes the number of check-ms generated by user u. In
order to avoid overfitting, we introduce the Dirichlet prior param-
eter ~ to play the role of pseudocount. The second part of Equa-
tion 7, P(v, t|u, r, ¥), is computed as follows.

P(v, tlu,r, ¥) =

S P, #) Ptz #)Polz,r ®) (g0,

Based on Equations (7-10), the original Equation 6 can be refor-
mulated as follows.

P(U|u7 t? l7 ‘i’)

ocz[ r)P(l|r, )ZP(z|u,\il)P(t|z,\il)P(U|z,r,\il)}

—Z[
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4. EXPERIMENTS

In this section, we first describe the settings of experiments and
then demonstrate the experimental results.

4.1 Experimental Settings
4.1.1 Datasets

Foursquare. This dataset contains the check-in history of 4,163
users who live in the California, USA. For each user, it contains
her social networks, check-in POI IDs, location of each check-in
POI in terms of latitude and longitude, check-in time and the con-
tents of each check-in POI. The total number of check-in records is
483,813, and the total number of social relationship is 32,512.

Twitter. This dataset is based on the publicly available twitter
dataset [2]. But the original dataset does not contain the category
and tag information about each POIL. So, we crawled the content
information associated with each POI from Foursquare with the
help of its publicly available API !. The enhanced dataset contains
114,058 users and 1434,668 check-ins.

4.1.2 Comparative Approaches

TACF. TACF is the state-of-the-art time-aware POI recommen-
dation method [18], which is a collaborative filtering model con-
sidering temporal effect.

GeoMF. GeoMF is a weighted matrix factorization model that
exploits the spatial patterns of users’ check-in activities [6].

LCA-LDA. LCA-LDA is a location-content-aware recommender
model which is developed to support POI recommendation for user-
s traveling in new cities [17].

UPS-CF. UPS-CF, proposed in [3], is a collaborative recommen-
dation framework which incorporates social influence to support
out-of-town recommendation.

4.1.3 Evaluation methods

For each user, we divide the user’s activity records into a training
set and a test set. For the scenario of home-town recommendation,
we randomly select 30% of the activity records occurring at the us-
er’s home town as test set, and use the remaining activity records as
the training set. Similarly, for the scenario of out-of-town recom-
mendation, we randomly select 30% of the activity records gener-
ated by the user when he/she travels out of town as the test set.

To evaluate the recommendation methods, we adopt the evalua-
tion methodology and measurement Accuracy @k proposed in [17,
16]. Specifically, for each activity record (u, v, l,, Wi, t) in the
test set, we define hit@£k as either the value 1, if the ground truth
POI v appears in the top-k results, or the value 0, if otherwise. The
overall Accuracy @k is defined by averaging over all test cases:

#hitQk

Accuracy@Qk = THlests

where #hit@QFk denotes the number of hits in the test set, and #tests
is the number of all test cases.

4.2 Experimental Results

Figure 2(a) presents the recommendation accuracy in the scenari-
o of out-of-town recommendation where the accuracy of TRM is
about 0.122 when £ = 10, and 0.151 when £ = 20 (i.e., the mod-
el has a probability of 12.2% of placing an appealing POI in the
top-10 and 15.1% of placing it in the top-20). Clearly, TRM out-
performs other competitor models significantly, and the advantages
of TRM are very obvious in this scenario. Several observations are

"https://developer.foursquare.com/
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Figure 2: Top-k Performance on Foursquare Dataset

made from the results: 1) TACF, UPS-CF and GeoMF drop behind
TRM and LCA-LDA, showing the advantages of exploiting the se-
mantic patterns of users’ check-in activities. This is because users
have very few check-in activity records in out-of-town regions, and
these CF-based or matrix factorization-based methods suffer from
the severe data sparsity, while the contents of user activities can
serve as the medium to transfer users’ interests inferred at home
town to out-of-town regions. 2) TRM achieves much higher rec-
ommendation accuracy than LCA-LDA, showing the benefits of
considering both temporal and geographical patterns.

In Figure 2(b), we report the performance of all recommendation
models for the home-town scenario. From the figure, we can see
that the recommendation accuracies of all methods are higher in
Figure 2(b) than that in Figure 2(a). Besides, both LCA-LDA and
GeoMF outperform TACF in Figure 2(a) while TACF slightly ex-
ceeds both of them in Figure 2(b) due to its incorporation of tempo-
ral patterns, showing that time-aware collaborative filtering method
better suits the setting where the user-POI matrix is not sparse, and
the model-based methods, especially the ones which integrate se-
mantic patterns of users’ activities are more capable of overcom-
ing the difficulty of data sparsity in the out-of-town scenario. By
the comparison between LCA-LDA and GeoMF in Figure 2(a) and
2(b), we observe that exploiting semantic patterns is more bene-
ficial in out-town recommendation scenario while exploiting spa-
tial patterns is more important in the home-town recommendation.
Another observation is that the performance gap between our TR-
M and other competitor methods is not as big as in Figure 2(a),
showing that the performance difference among recommendation
methods become less obvious when the issue of data sparsity is not
serious. The comparisons between Figure 2(a) and 2(b) also re-
veal that the two scenarios are intrinsically different, and should be
separately evaluated.

Figure 3 reports the performance of the recommendation models
on the Twitter dataset. We do not compare our model with UPS-CF
since this dataset does not contain user social network information.
From the figure, we can see that the trend of comparison result is
similar to that presented in Figure 2, and the main difference is that
all recommendation methods achieve lower accuracy. This may
be because each user in the Foursquare dataset has more check-in
records on average than users in the Twitter dataset.

S. CONCLUSION AND FUTURE WORK

In this paper, we proposed a unified probabilistic generative mod-
el TRM to model users’ check-in activities in LBSNs, which simul-
taneously exploits the semantic, temporal and geographical pattern-
s and also models their joint effect on users’ visiting behaviors. We
conducted extensive experiments to evaluate the performance of
TRM on two real datasets, and the results showed TRM effectively
overcomes the data sparsity and significantly improves recommen-
dation accuracy, especially when users travel out of town.
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