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ABSTRACT

In object recognition and image retrieval, an inverted in-
dexing method is used to solve the approximate nearest
neighbor search problem. In these tasks, inverted index-
ing provides a nonexhaustive solution to large-scale search.
However, a problem of previous inverted indexing methods is
that a large-scale inverted index is required to achieve a high
search recall rate. In this study, we address the problem of
reducing the time required to build an inverted index with-
out degrading the search accuracy and speed. Thus, we pro-
pose a selective k-means tree search method that combines
the power of both hierarchical k-means tree and selective
nonexhaustive search. Experiments based on approximate
nearest neighbor search using a large dataset comprising one
billion SIFT features showed that the hierarchical inverted
file based on the selective k-means tree method could be
built six times faster, while obtaining almost the same re-
call and search speed as the state-of-the-art inverted index-
ing methods.
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1. INTRODUCTION
In most computer vision and image retrieval applications,

approximate nearest neighbor (ANN) search is an important
problem [7]. An inverted file is the most popular data struc-
ture employed during nonexhaustive search to improve the
search speed in large-scale databases. In particular, Jégou
et al. [4] proposed an inverted file with asymmetric distance
computation (IVFADC) index by combining inverted files
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and product quantization. IVFADC outperforms previous
methods [2, 4, 7] during ANN search in terms of the trade-
off between memory usage and accuracy. Recently, Babenko
et al. [1] improved IVFADC by proposing the inverted multi-
index (Multi-D-ADC). Both IVFADC and Multi-D-ADC are
built using clustering processes. IVFADC performs clus-
tering in the search space to create K codewords, whereas
Multi-D-ADC performs clustering in multiple subspaces be-
fore combining multiple independent codewords based on
the Cartesian product to yield Km codewords, where m

is the number of subspaces. Therefore, Multi-D-ADC has
a dense space-partitioning form that accelerates the ANN
search, while still achieving the same recall as IVFADC. The
problem addressed in the present study is how to create a
dense space partitioning for fast search to allow Multi-D-
ADC to perform a large-scale indexing process. In previous
studies [4, 1], the time required to build an inverted file was
shown to be linear up to K.

The main contributions of this study are as follows. (1) To
reduce the time required to build an inverted file, we pro-
pose the selective k-means tree method based on the hier-
archical k-means tree [8]. (2) We obtain an inverted file
structure (SKT-ADC), which combines the strength of the
selective k-means tree and product quantization for use in
ANN search. (3) The selective approach limits the search
to highly likely candidates, thereby accelerating the search
process in the selective k-means tree method.

Our experiments showed that Multi-D-ADC required a
dense space partitioning (codebook size K = 214) to achieve
fast search, whereas SKT-ADC achieved the same recall and
runtime with a 16-times smaller codebook size, i.e., K = 210,
where the inverted file-building process was six times faster
(4 hours compared with 24 hours by Multi-D-ADC using
SIFT1B data on the same machine). Our search method
is fast (2 milliseconds for a single query). It is also sim-
pler compared with the state-of-the-art search methods used
with Multi-D-ADC.

2. PREVIOUS WORK
Inverted indexing: In [4], Jégou et al. proposed IV-

FADC, which comprises two components: (i) a dictionary (Fig-
ure 1) created by k-means [6]; and (ii) a posting lists con-
taining the compressed versions of database vectors. The
database vectors are compressed by product quantization to
facilitate better memory usage. To create a dictionary, k-
means is applied to a learning dataset L, which creates K

clusters in a d-dimensional space Rd withK codewords (clus-
ters’ centroids) c1, c2, . . . , cK . Each vector y in the set of
database of vectors Y is assigned to a cluster with its nearest
codeword in c1, c2, . . . , cK .

Data compression with product quantization: To
avoid accessing the disk to obtain the vector data y, a resid-
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Figure 1: An inverted file with four clusters: k-
means clustering is used to divide the search space
into four parts, where each part represents a clus-
ter (codeword vector c) in the inverted file. The
database vectors y in each cluster are compressed
and stored in the inverted file. Each compressed
version (code r′) is associated with an identifier (id)
to retrieve the original vector data y.

ual vector r between y and the nearest codeword in c ∈
{c1, c2, . . . , cK} to y is computed and quantized by a prod-

uct quantizer qr(.): r = y− c
qr(.)
−−−→ r′ = qr(r) . A database

vector y is approximated by the sum c+ r′.
Multi-D-ADC: Multi-D-ADC [1] is an improved version

of IVFADC. To build a dictionary, product quantization is
used instead of single k-means clustering [6]. The total train-
ing time required by a product quantizer to build a codebook
ofK2 codewords is almost the same as that needed to build a
codebook of K codewords in IVFADC, i.e., O(MKd), where
M is the size of the learning dataset and d is the dimension-
ality.
Search methods: In both IVFADC and Multi-D-ADC,

the search methods comprise two processes. (i) Dictionary

scanning : a k nearest neighbor search is performed using
the set of codewords to retrieve a list of candidate clusters.
For Multi-D-ADC, a multisequence algorithm [1] was pro-
posed to reduce the scanning time in two parallel sorted
sequences. (ii) Posting lists scanning: the ANN is found by
computing the distances between the query q and the com-
pressed vectors c + r′. In the search method employed for
Multi-D-ADC [1], all of the dot products and norms are pre-
computed to facilitate a faster search process. In this case,
the approximated distance is computed in O(m) time, where
m is the number of divisions during product quantization.

3. SELECTIVE K-MEANS TREE SEARCH
In this section, we introduce our inverted file (SKT-ADC)

based on a two-layer selective k-means tree (Figure 2). A
general version with more than two layers is straightforward.
Building a dictionary: First, a learning dataset L =

{y ∈ R
d} is divided into K clusters with K codewords

c1, c2, . . . , cK , where d is the dimensionality. Then, each
cluster is again divided into K clusters with K codewords
ci1, ci2, . . . , ciK , 1 ≤ i ≤ K. A product quantizer qr(.) is
learned from the residual vectors of y− ci − cij , where y is
a training vector, ci is the nearest codeword of y in the first
layer, and cij is the nearest codeword of y − ci in the sec-
ond layer. Let M be the size of the learning dataset L. The
complexity of k-means [6] is linear with respect to the size of
the training set, dimensionality, and the number of clusters,

...

... ......

Tree root 

First layer

Second layer

(original search space)

Figure 2: Our inverted file, SKT-ADC: the first
layer contains K codewords that correspond to K

subsearch spaces, where each codeword forms a
new subsearch space by residual vector computa-
tion. Each subsearch space is then divided again
into K clusters to form K child nodes for the code-
word in the first layer. K2 codewords are created to
form the second layer. Finally, the database vectors
are compressed by product quantization.

so we need O(MKd) operations to construct the first layer.
Let M1,M2, . . . ,MK be the number of learning vectors in
each of the clusters in the first layer and the sum of all Mis
equals M . Therefore, we need O(

∑K

i=1 MiKd) = O(MKd)
operations to construct the second layer. The time complex-
ity of the dictionary-building process is O (MKd).

Data indexing: After the codewords ci, cij , 1 ≤ i ≤ K,
1 ≤ j ≤ K have been computed, a database vector y is com-
pressed according to the following steps (Figure 2). (i) Step
1: The nearest neighbor ci of y in {ci}

K
i=1 is retrieved and

the residual vector y′ = y−ci is computed. (ii) Step 2: The
nearest neighbor cij of y′ in {cij}

K
j=1 is retrieved and the

residual vector r = y′ − cij is computed. (iii) Step 3: The
residual vector r is compressed into an m-byte code by prod-
uct quantization. The time complexity of the data-indexing
process is O (NKd) for a dataset of N vectors. Note that
the time complexities required to build the dictionary and to
perform data indexing for Multi-D-ADC are also O(MKd)
and O(NKd), respectively.

Search method: We illustrate the search process in
Figure 3. Let q be the query vector. Our search process
comprises the following three steps. (i) Step 1: Compute
all of the distances between q and the codewords in the first
layer to find h nearest neighbor (h-NN) of q in the first layer.
(ii) Step 2: In each cluster ci corresponding to h-NN for q
in the first layer, l-NN for q − ci in the set of codewords
{cij}

K
j=1 are computed. (iii) Step 3: In this step, we retrieve

h× l selected clusters and from all of the candidate vectors
in the h × l clusters after Step 2, a final list of candidates
is obtained. We compute all of the approximated distances
between q and all of the candidate vectors. The R smallest
values and their corresponding identifiers are exported as
the search results. When the length of the candidate list
exceeds a predefined candidate list length T , the process in
Step 2 is terminated. In our experiments, for SIFT1B when
K ≤ 211, the setting values of h = 32 ∼ 128 and l = 8 ∼ 16
yielded an acceptable recall rate.

The main operations in Steps 1 and 2 are distance-computing
operations. In Step 1, the distances between the query and
all K of the codewords in layer 1 are computed in O(Kd)
operations. In Step 2, O(Kd) operations are required for
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(a) Conventional search
method

(b) Our search method with
(h, l) = (4, 1)

Figure 3: Our search method: the gray area is the
search area corresponding to a query, q. (a) Af-
ter assigning the query q to cluster c2, all of the
database vectors in this cluster are listed as can-
didates. The candidates in cluster c3 and c4 are
missed. (b) In SKT-ADC, the tree structure al-
lows the retrieval process to focus only on the nearby
subclusters. The most likely possible candidates are
scanned in all four clusters: c1, c2, c3, c4 (gray area).

each cluster retrieved after Step 1. In Steps 1 and 2, to
improve the recall rate, h-NN (l-NN) are reranked by sort-
ing the top h (l) smallest distances in ascending order. The
number of reranking operations is low when h, l ≪ K × d

and h clusters are retrieved after Step 1; therefore, the total
required for Steps 1 and 2 is O (hKd) operations. In Step 3,
as described in Section 2, with the precomputing processes,
a single approximated distance-computing process requires
O(m) operations; therefore, the distance-computing tasks in
Step 3 require O(mT ) operations in total. In summary, the
search process using our inverted file requires O(hKd+mT )
operations for a single query.

4. EXPERIMENTS

4.1 Experimental setup
We conducted experiments using several publicly available

datasets: SIFT1M [4] (1 million 128-dimensional SIFT fea-
tures + 10000 queries), GIST1M [4] (1 million 960-dimensional
GIST features + 1000 queries), and SIFT1B [5] (1 billion
128-dimensional SIFT features + 10000 queries). The search
quality was measured based on the recall@R measure, i.e.,
the proportion of queries with nearest neighbor ranked in the
first R positions in the final candidate list. We considered
that recall rates where R ≤ 100 were sufficient for a large
scale ANN search [1]. All of the experiments using SIFT1B
are conducted on a computer with 6-core Intel Xeon 3.50
GHz CPUs and 512 GB RAM. The search experiments were
performed in the single-thread mode. All of the algorithms
were implemented in C++ with BLAS instructions. For
clustering tasks, we employed the k-means algorithm in [3].

4.2 Results
In this section, we describe the results obtained using

SIFT1B. The results of the experiments using SIFT1M and
GIST1M are described in the supplementary material.
Inverted file-building time: Table 1 shows the rela-

tionship between time required to build the inverted file and
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Figure 4: Search performance obtained by SKT-
ADC and Multi-D-ADC using SIFT1B (K = 28 ∼
211, T = 100K), and by SKT-ADC with (h, l) =
(32, 16): (a) recall@100; (b) search time.
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(a) h = 27, l = 20 ∼ 27
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(b) l = 24, h = 20 ∼ 27

Figure 5: The recall@100 rate obtained by SKT-
ADC varied with (h, l) using SIFT1B with K =
210: a) h = 27, l = 20 ∼ 27; (b) l = 24, h = 20 ∼ 27.

the search performances of IVFADC, Multi-D-ADC, and
SKT-ADC with different codebook scales K. SKT-ADC
withK = 210 achieved the same recall@100 as Multi-D-ADC
with K = 214. The training times for both SKT-ADC and
Multi-D-ADC were linear with respect to the codebook scale
K, so SKT-ADC could achieve a good recall rate with only
a short training time. In our experiments, to build a code-
book with K = 210 for SKT-ADC using a 6-core computer,
the training process required about 4 hours, whereas build-
ing Multi-D-ADC with K = 214 required about 24 hours
and IVFADC with K = 213 required about 12 hours on the
same computer.

Search performance:With the same candidate list length
T = 100K and codebook scale K = 210, SKT-ADC also
achieved the same recall rate as Multi-D-ADC, but the search
was three times faster. Table 1 shows that SKT-ADC re-
quired 20 GB of memory while searching. These overheads
are required because SKT-ADCmust precompute more norms
and dot products than Multi-D-ADC to perform an efficient
search [1]. In our implementations, the memory overheads
incurred were linear with respect toK for Multi-D-ADC and
with respect to K2 for SKT-ADC (please refer to the sup-
plementary material for mathematical descriptions). Thus,
the storage volume required for these computations was also
larger than that for Multi-D-ADC.

Figure 4 shows the performance measures for SKT-ADC
and Multi-D-ADC when scanning 100 K candidate vectors.
Figure 4(a) shows that with the sameK, SKT-ADC achieved
a better recall than Multi-D-ADC, and Figure 4(b) shows
that with the same codebook scale K, SKT-ADC performed
a faster search than Multi-D-ADC. Our experiments showed
that SKT-ADC was two times faster than Multi-D-ADC.
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Table 1: Performance of the proposed method for SIFT1B (recall for top 1–100 + time in milliseconds). A
vector was compressed to an 8-byte code. The search times are shown per query. For SKT-ADC, we set
the codebook scale parameter K = 210 and (h, l) = (32, 16) for SKT-ADC, K = 210, 214 for Multi-D-ADC, and
K = 213 for IVFADC. The candidate list length T ranged from 10 K to 1 M. The inverted files were built
using a 6-core computer.

Method K T R@1 R@10 R@100 Time [ms] Memory [GB] IVF building time [h]

IVFADC 213 1M 0.095 0.338 0.652 20.0 12 12

Multi-D-ADC 214 10K 0.136 0.419 0.631 2.3 12 24

Multi-D-ADC 210 100K 0.104 0.317 0.606 6.5 12 2

SKT-ADC 210 100K 0.099 0.315 0.632 2.2 20 4

Table 2: Number of nonempty clusters with each
method using SIFT1B.

K IVFADC Multi-D-ADC SKT-ADC

28 28 65,386 65,535

29 29 257,248 261,991

210 210 975,912 1,044,686

211 211 3,406,222 4,141,985

How dense is SKT-ADC? With the same codebook
scale parameter K, IVFADC [4, 5] could create K clusters,
whereas Multi-D-ADC [1] and SKT-ADC each created K2

clusters. Table 2 shows the number of nonempty clusters,
which varied with the codebook scale parameter K. SKT-
ADC created more nonempty clusters than IVFADC and
Multi-D-ADC in almost the same time O(MKd), where
M is the size of the learning dataset and d is the dimen-
sionality. Multi-D-ADC creates the codewords based on the
Cartesian product between two independent spaces, whereas
SKT-ADC creates the codewords by performing k-means
clustering recursively in the same space.
Selecting the parameters (h, l). Figure 5 shows the

recall rates with different values for h, l. Figure 5(a) shows
that when h = 27, the recall rate reached its maximal value
at l = 24. Single k-means was performed to construct K

codewords in the first layer of SKT-ADC. When K was
small, k-means yielded an ANN search result with many
noisy vectors. In our search method, the parameter l was set
to filter these noisy vectors. To scan the candidate clusters
in the first layer, SKT-ADC only searched the candidates
in l nearest clusters. The distance between a query and a
cluster was treated as the distance between the query and
the codeword (the centroid of the cluster). In our exper-
iments, SKT-ADC with l = 24 obtained the best filtering
results with the highest recall. The candidate list length
T was limited, so more noisy vectors were scanned and the
recall was degraded when l > 24. In addition, as shown in
Figure 5(b), SKT-ADC with h ≥ 23 resulted in a high recall
search. After increasing h while l = 24 remained fixed, the
candidate list was unchanged after retrieving all T candi-
dates; therefore, the recall rate was stable when h ≥ 23.

5. CONCLUSION
In this study, we proposed a selective k-means tree search

method, which is based on the hierarchical k-means tree [8]
with a selective search approach. Our proposed inverted in-
dex SKT-ADC obtained almost the same recall and search

speed, and the inverted file was built six times faster com-
pared with the best conventional inverted index, i.e., Multi-
D-ADC. With the same candidate list length T and code-
book scale K, our method also achieved better recall rates
than Multi-D-ADC. We also performed our experimental
validations using small and large datasets. Our implemen-
tation is publicly available1.

In our future research, we will investigate the fol-
lowing. (1) We will try to reduce the memory overheads in-
curred by SKT-ADC. The number of codewords in the selec-
tive k-means tree is linear with respect to K2, so the storage
required for precomputing is also linear with respect to K2,
thereby incurring large memory overheads. (2) Both Multi-
D-ADC [1] and SKT-ADC produce good candidate lists,
thereby facilitating high recall search, so combining these
data structures will be an objective in our future works.
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