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ABSTRACT
We apply collaborative recommendation algorithms to pho-
tography in order to produce personalized suggestions for
locations in the geocoordinate space where mobile users can
take photos. We base our work on a collection of 3 million
geotagged, publicly-available Flickr.com digital photos on
which we applied a series of steps: first, unique locations are
identified by discretizing the continuous latitude and lon-
gitude geocoordinates into geographic virtual bins; second,
implicit feedback is calculated in a user×location matrix us-
ing normalized frequency; and third, missing feedback values
are imputed through four different algorithms (one memory-
based and three model-based). Our results show that two of
the model-based algorithms produced the best RMSE and
that the RMSE is sensitive to increasing hash bin size.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; H.2.8 [Database Management]:
Database Applications—Data mining
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geotagging; mobile photography; location recommendation;
recommender system; collaborative filtering

1. INTRODUCTION
Digital photography empowers users, particularly tourists,

to capture visual memories of visited locations and review
them with immediate gratification. Further, mobile photog-
raphy using smartphones with built-in digital cameras is a
fast-growing market segment, with estimates stating that its
sales growth is outpacing even traditional point-and-shoot
cameras [7]. Although having a camera on hand is advan-
tageous, taking interesting photos is not always simple, and
many photographers may find inspiration from recommen-
dations for either nearby or afar locations that are amenable
to taking good photos.
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Recommendations for such locations can come from a va-
riety of sources, such as word-of-mouth from family and
friends, social networks, tourist guidebooks, or simply seeing
a scenic photo in a magazine. With modern digital photog-
raphy, popular locations can be determined by aggregating
photo geotags, i.e. the latitude and longitude geocoordinates
that are embedded into photo metadata such as the EXIF
header of JPEG images. As a result, visualizations such as
heatmaps can illustrate the most popular locations where
photos are taken [13]; invariably, well-known tourist locales
like New York City, New York, will be identified. While
popular locations are a good starting point for taking pho-
tos, not everyone has the same taste; just as a user’s interest
in books and movies may differ substantially from the most
popular selections, so too may a user’s interest in locations
to take photographs.

In our work we thus looked to generate more personal-
ized suggestions for photo-taking locations by applying rec-
ommender system techniques. Such systems are commonly
used by e-commerce sites to predict which products may be
of interest to users, and in particular, systems that employ
collaborative filtering leverage the collective history across
multiple users in order to generate candidate recommenda-
tions [9, 22]. In our context, we apply collaborative filtering
on a collected data set of 3 million geotagged photos that
were taken specifically with smartphones. All these photos
were publicly available from the Flickr.com photo-sharing
website.

Previous researchers have also sought to create geoloca-
tion recommendations using data sources such as raw GPS
traces or “check-ins” from social networks, but all have held
different assumptions, such as inferred user behavior [29,
16], inferred centers of activity [28], or inferred physical ad-
dresses [19]. Further, other efforts using geotagged media
avoid the geocoordinate system by basing the location only
on reverse-geocoded physical point-of-interest (POI) names
and addresses such as those for major landmarks, museums,
hotels, and other named places.

We keep our system in the geocoordinate space for two
reasons. First, for many landmarks, there may be many
different unnamed spots where photos can be taken; for ex-
ample, the Golden Gate Bridge in San Francisco and the
Cloud Gate sculpture in Chicago have been photographed
from many different directions and distances because users
have different tastes for photographing them, such as close
up, overseeing a waterfront, or with an urban skyline in
the background. As such, recommending a coarse-grained
canonicalized POI name, such as “Golden Gate Bridge”, is
not as helpful to a photographer as a finer-grained latitude
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Figure 1: An example user’s photos are plotted in
red, and a recommendation is shown in blue.

and longitude geocoordinate. Second, photos may be taken
at ad hoc locations that are far away from any POI land-
marks, such as on beaches or inside large national parks.
For both of these reasons, our system seeks to identify and
recommend spots in the geocoordinate space as an aid to
photographers.

Recommending such locations for photography poses sev-
eral technical challenges that we addressed through a se-
ries of geospatial data-processing steps. To first identify
unique locations, we used a cartographic hashing function
to discretize the continuous latitude and longitude geoco-
ordinates from our set of 3 million photos into geographic
virtual bins of variable size. Each bin’s hash key then serves
as a columnar identifier within a co-occurrence matrix con-
taining users × locations, where the value of each cell is
a normalized frequency that serves as an implicit feedback
given by the users for the locations. Given this matrix, we
evaluated four algorithms: a memory-based item-item al-
gorithm and three model-based methods (non-negative ma-
trix factorization, probabilistic matrix factorization, and a
low-rank factorization). Our results show that two of the
model-based algorithms produced the best RMSE and that
the RMSE is sensitive to increasing hash bin size.

The rest of this paper is organized in the following manner.
In Section 2 we review related work, and in Section 3 we de-
scribe our design methodology. We discuss our experiments
in Section 4 and conclude in Section 5.

2. RELATED WORK
Recommender systems are often used by online e-commerce

companies to suggest items for their users to purchase [18, 1,
20]. To the best of our knowledge, ours is the first work that
applies recommendation algorithms to suggest real-world lo-
cations in the geocoordinate space where users can take pho-
tos based on collaborative filtering using a corpus of geo-
tagged photos.

In our work we use a sample of publicly-available photos
from Flickr.com, a popular photo-sharing website hosted in
the USA. Other photos-sharing sites include Panoramio.com.
Since these sites provide an API to access their millions of
stored photos and metadata, they are a rich source of user-
generated content that have been used by many data-mining
researchers. Previous work using such data include classify-
ing locations from image content [5], identifying people in
photos to suggest travel [3], suggesting how to compose a
shot [2], and determining the presence of tourists [8].

Prior efforts have also looked at geospatial data to make
tourism recommendations; however, their work differs from
ours in important assumptions. Some efforts used raw user
mobility GPS traces, but since the collected points are dif-
fuse, approaches have been developed to find “stay-points”
[28, 29] to infer where activities (such as shopping or dining)
may have occurred. In our work, we do not need to make
any inferences about the user location because our geotagged
photo data explicitly identifies a geocoordinate. Other re-
searchers use data sets that identify a user’s location but not
the user’s activity or intent, so an inference must be drawn
from external data, such as by performing information ex-
traction from social networks or digital journals [29, 16]. We
again do not need to draw any inferences because the user’s
intent for photography is explicit in our data set.

Finally, previous researchers have used geolocation data
containing POI names or addresses [6, 4, 16, 25] rather than
using latitude and longitude; for example, the physical land-
mark location name of “Golden Gate Bridge” (or its postal
address) is commonly used in lieu of the latitude and longi-
tude geocoordinate pair of 37.813, -122.478. However, our
work remains in the geocoordinate space through the use
of our cartographic hashing scheme because (1) photos of
a given POI may be taken from different locations and (2)
photos may be taken at impromptu locations far away from
named addresses.

3. DESIGN AND IMPLEMENTATION

3.1 User-facing application
The goal of our system is to generate relevant recommen-

dations for geospatial locations (in the form of latitude and
longitude geocoordinates) where a user can go take photos.
Figure 1 shows our application’s user interface displaying a
result based on real user data. Here, a user’s previously-
taken photos along the northern pier of San Francisco, Cal-
ifornia, are plotted as red points. These geocoordinates are
known because the user’s smartphone embedded them into
the photo metadata header, producing a geotag. Our system
then generated a list of recommended photography geoloca-
tions for the user which we then prune to be recommended
spots within some distance d of the user’s current location;
the user can adjust this value, which we set by default to
be 5 miles / 8 km. In this example, one such recommen-
dation is visualized as a blue point, which upon inspection
turns out to be a tourist locale in downtown San Francisco’s
Chinatown district.

We note here several points of our system. First, the rec-
ommendations are always for locations where the user has
never visited. Second, as we discuss later, we identify unique
locations using rectangular bins; while the red points are
precise geocoordinates, the blue point is the centroid of a
recommended rectangular bin. Finally, because our system
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Figure 3: Top-1000 photo locations ordered by number of unique users.

Figure 2: 194K photos from the San Francisco Bay
Area in California.

uses collaborative filtering, personalized recommendations
cannot be generated until the user has accumulated a suf-
ficient number of his own geotagged photos (where we set
a threshold of at least l = 5 locations, a value that can
be changed). This “cold-start” problem is also shared by e-
commerce systems that use collaborative filtering, and we
follow best practices in this situation by offering generalized
most-popular nearby geolocations (again within a distance
d), where the most popular spots are found by summing
unique users in specific bins.

3.2 Data Set
We produce these recommendations by applying collabo-

rative filtering on a collection of photos across many users.
To that end, we obtained a data set of publicly-available
geotagged photos from the Flickr.com photo-sharing site us-
ing its public RESTful API. We searched for photos taken

between September 1, 2009, and September 1, 2013, that
were specifically taken with smartphones because such pho-
tos would typically have embedded geocoordinates produced
by the smartphone when the photo was taken.

We started the photo search within the USA and found an
initial set of users; we then expanded the search by obtaining
all the photos taken by these users, even if they were taken
in another country. The final set comprised 3,099,752 pho-
tos and 39,034 unique users across North America, Europe,
and Asia. For example, Figure 2 shows the geolocations of
194,000 photos taken in the San Francisco Bay Area. Figure
3 shows the geographic distribution of the top-1000 photo
locations sorted by the number of unique visitors.

For each photo, we collected: photo URL (string); user ID
(string); epoch timestamp (long integer); latitude (float);
and longitude (float). We made no assumption about the
geocoordinates’ accuracy other than that they were pro-
duced by the smartphone geolocation system (e.g. via GPS
or Wi-Fi/cellular radio trilateration) at the time the photos
were taken.

3.3 Geocoordinate Space Discretization
Because our goal is to make geolocation recommendations,

we must represent real-world physical places in our system.
Importantly, we wanted to remain in the geocoordinate space
rather than align the data points to named POI physical
locations such as names for landmarks or other buildings,
where lists of available POIs have typically been assembled
through a process of identifying significant locations within
a city. As mentioned earlier, there are two advantages of
staying in the geocoordinate space. First, because a physi-
cal location can be photographed from different spots, our
system will be able to identify and recommend these spots
around the location rather than be limited to that location’s
canonical address. Second, our system will be able to iden-
tify and recommend locations that are far away from any
known named POI.

We thus need to uniquely identify locations, but the geoco-
ordinate data is expressed as continuous floating-point values
for the latitude and longitude. As a result, we discretized lat-
itude and longitude pairs into virtual rectangular bins that
are formed throughout the coordinate space. Each bin is cre-
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Figure 4: The results of cartographic hashing, where
data points within each differently-colored block cor-
respond to a different virtual bin.

ated through Cartographic Sparse Hashing, our O(1) hash
algorithm that takes (i) latitude and longitude and (ii) a res-
olution r in meters (where in our experiments we varied r
from 100 meters to 2000 meters). The function then hashes
the longitude and latitude into the high and low bits, respec-
tively, of the resulting output 64-bit integer. This key then
represents a virtual bin approximately r meters per side, al-
though the bin will be elongated north-to-south as one gets
further away from the equator due to the Earth’s curvature.

Figure 4 shows this hashing, where we plot many geo-
coordinates in New York City, hash each geocoordinate to
a key using r = 2000m, and then assign a new color for
each key. To aid visualizing distinctions, we outlined two
unique bins in red. The end result of hashing is that any
geocoordinates that fall within the same virtual bin will be
assigned the same key. This key is the location identifier in
the user × location co-occurrence matrix, described in the
next subsection.

Our approach of using hashing has several advantages over
clustering algorithms. We can precisely control the physical
cartesian size of the virtual bin with the CASH algorithm’s
r resolution parameter, which is important for identifying
specific spots for photography. On the other hand, clus-
tering algorithms like k-means, agglomerative clustering, or
DBSCAN cannot be tuned to produce clusters of maximum
cartesian size. Additionally, unlike k-means or k-medoid,
our hashing technique does not need to specify the number
of bins beforehand.

3.4 Recommendation Model
Recommender algorithms usually fall into one of two cat-

egories [15]: content-based and collaborative filtering. The
former leverages product attributes, such as a movie’s ac-
tors, to match against the same attributes for which a user
has shown an interest. The latter generates recommenda-
tions using data from other users, where the recommenda-

tion stems from similarity among the users or the items. Our
work uses collaborative filtering.

This approach’s principal data structure is a co-occurrence
matrix of user × item, where an entry in the matrix at po-
sition i, j is the rating given by user i for item j. On some
e-commerce sites like Netflix, users can explicitly rate an
item on a scale of 1 to 5 stars. Note that since a single user
is likely to evaluate only a small subset of available inventory,
the overall matrix will tend to be extremely sparse.

For our data set, we likewise used a co-occurrence ma-
trix, but here representing user × location, where a column
location is a hashed virtual bin key. Sparsity is also a prob-
lem for our system: because users typically only visit a small
subset of the possible locations, any given row will have only
a few non-empty entries.

The ratings placed into the user× location matrix should
represent the user’s interest for a location, but unfortunately,
in our data set users do not provide an explicit rating for the
locations where they took their photos. We thus derived an
implicit feedback [21] value normalized over [0.0, 1.0] as the
fraction of photos taken by a user at a location over the total
count of photos taken by that user. More specifically, let Cij

be the count of photos taken by user i at location j, and let
L be the set of all locations. The implicit feedback of user i
for location j is then

feedbackij =
Cij∑

k∈L Cik

We applied basic data filtering to reduce noise. We kept
only locations that have feedback from at least u users (in
our experiments we set u = 5), and we kept users that have
feedback for at least l locations (in our experiments we set
l = 5). In the future we will explore other settings.

3.5 Recommendation Algorithms
Given the user × location co-occurrence matrix param-

eterized with spatial bin sizes from the previous section,
we looked to run our recommendation algorithms. For a
given user, his row in the co-occurrence matrix is sparse
with many missing rating values; the goal of the recommen-
dation algorithm is then to impute the missing values based
on observed values in the matrix [15, 20]. Once the matrix
has been completed, a user can be given a recommendation
list of previously-unvisited locations ordered by descending
predicted ratings. In our work we applied two sets of algo-
rithms, memory-based and model-based, both of which we
implemented in Python.

For the memory-based approach [24], we impute the co-
occurrence matrix using similarity between the locations.
(Note that since we substitute location for item, this algo-
rithm is considered location-location similarity rather than
item-item as is traditionally found in the literature [18]).
Specifically, we first construct a similarity matrix consist-
ing of all pairwise cosine similarity between the locations.
For each user, we then impute all location ratings that we
have not observed using the information from a neighbor-
hood given by this similarity matrix. For each blank loca-
tion, we find the top N similar locations where this user took
photos before. The missing value is then estimated by the
weighted average of these values.

We also applied three model-based methods: non-negative
matrix factorization (NMF) [14, 27], probabilistic matrix
factorization (PMF) [23], and a low- rank factorization model
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for matrix completion (LMaFit) [26]. In all these approaches,
we learn two factors U ∈ Rn×k and V ∈ Rm×k from the par-
tially observed co-occurrence matrix, where n is the number
of users, m is the number of locations, and k is the num-
ber of latent factors. The multiplication of these two ma-
trices gives a dense approximation to the full matrix; i.e.
we compute the multiplication uiv

T
j in order to obtain the

prediction X̂ij . The three algorithms differ from each other
in how these factors are obtained. The NMF obtains two
non-negative factors by solving the following optimization
objective:

min
U,V
‖X − UV T ‖2F , s.t.: U ≥ 0, V ≥ 0

We use the efficient projected gradient [17] to solve this ob-
jective. PMF is motivated by introducing Gaussian priors
on U and V and solves the following objective:

min
U,V

∑
ij

‖Xij − UT
i Vj‖2F + λU‖U‖2F + λV ‖V ‖2F

where λU and λV are regularization parameters which corre-
spond to the variance of the Gaussian distribution. We use
stochastic gradient descent to solve the objective. Finally,
LMaFit solves a formulation that is similar to PMF:

min
U,V

∑
ij

‖Xij − UT
i Vj‖2F + λ(‖U‖2F + ‖V ‖2F )

where λ is the regularization parameter that controls overfit-
ting. The difference between LMaFit and PMF is mainly al-
gorithmic, where in LMaFit we iteratively solve least squares
problems [26], which is very efficient.

4. EXPERIMENTS AND RESULTS
We conducted a series of experiments on our collected data

set of 3 million geotagged photos, where we evaluated the im-
puted user feedback for locations produced by the four rec-
ommendation algorithms that we described earlier (location-
location, NMF, PMF, and LMaFit). We ran all experiments
on a 64-bit CentOS Linux server with 64 GB of RAM. Each
trial completed within a few hours, and in the future we will
parallelize our algorithms to run on a compute cluster.

First, we looked to determine the number of unique dis-
cretized geographic bins that were generated from our hash-
ing function. An input to this function is a value r in meters
that specifies the approximate length of one side of the bin.
Intuitively, a smaller value of r will increase the number of
identified unique locations and reduce the number of geoco-
ordinates that hash to the same bin. Figure 5 shows how
many locations are found at varying hashing resolutions,
where the highest count occurs at the smallest resolution
of 100m, matching our understanding.

We then evaluated our algorithms using root-mean-squared-
error (RMSE), a standard metric for recommender systems
[10, 12, 11]. Recall that the goal of a recommendation al-
gorithm is to predict missing rating values from observed
values in the matrix. We conducted our evaluation on a test
set by computing RMSE between the predicted values and
the observed ones. More formally, we define S to be the
set of all user × location co-occurrence pairs, rij to be the
ground-truth feedback given by user i for location j (follow-
ing our implicit feedback assumption previously mentioned),
and r̂ij to be the estimate for this feedback provided by the
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Figure 5: The number of unique locations at varying
hash resolutions.
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Figure 6: RMSE results for all algorithms.

algorithms. RMSE is then

RMSE =

√
1

|S|
∑
i,j∈S

(r̂ij − rij)2

We tuned our algorithms beforehand using RMSE in order
to get the best results. The parameters that produced the
best average performance on hold-out validation data are
used to build a model from training data, and the model is
evaluated on test data. For example, for LMaFit, we tuned
λ by parameter-sweeping experiments with a bin hashing
resolution 500m, resulting in the best RMSE at λ = 1000.

Figure 6 shows the final RMSE results for all algorithms at
a hashing resolution of 500m. NMF and LMaFit produced
the lowest RMSE values, while PMF produced the highest
values.

We further note the overall trend across all algorithms
where larger values for the hash resolution produce higher
RMSE. We continue to investigate this phenomenon, but
we conjecture that RMSE increases because a larger bin
captures more geocoordinates, which in turn increases the
likelihood that user-location combinations will share similar
feedback (i.e. fraction of photos taken at a location as de-
fined in Section 3.4) when in reality their similarity is low.
A smaller bin, on the other hand, is finer-grained, so similar
user-location combinations are less likely to be spurious.
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5. CONCLUSION
We explored the viability of generating recommendations

for photo-taking locations in the geocoordinate space using
a data set of 3 million geotagged photos from the Flickr.com
website. We produced these recommendations by first dis-
cretizing the continuous latitude and longitude geocoordi-
nates into geographic virtual bins to serve as unique location
identifiers; this step allows us to remain in the geocoordinate
space rather than align our data points to a POI landmarks,
a choice which is more helpful for taking photos. We then
used four collaborative filtering algorithms (one memory-
based and three model-based) and evaluated the approaches
using RMSE. Our early results show that RMSE is sensitive
to increasing hash bin size. In the future we will evaluate
the system qualitatively with a user study, more completely
determine the algorithms’ impact on RMSE, and implement
an end-to-end mobile application.
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