
ShareRender: Bypassing GPU Virtualization to Enable
Fine-grained Resource Sharing for Cloud Gaming

Wei Zhang† Xiaofei Liao†¶ Peng Li‡ Hai Jin† Li Lin†
† Service Computing Technology and System Lab, Cluster and Grid Computing Lab

School of Computer Science and Technology, Huazhong University of Science and Technology, China
‡ School of Computer Science and Engineering, The University of Aizu, Japan

alanzw@hust.edu.cn,xfliao@hust.edu.cn,pengli@u-aizu.ac.jp,hjin@hust.edu.cn,llin@hust.edu.cn

ABSTRACT

Cloud gaming is promising to provide high-quality game
services by outsourcing game execution to cloud so that
users can access games via thin clients (e.g., smartphones
or tablets). However, existing cloud gaming systems suffer
from low GPU utilization in the virtualized environment.
Moreover, GPU resources are scheduled in units of virtual
machines (VMs) and this kind of coarse-grained scheduling
at the VM-level fails to fully exploit GPU processing capacity.
In this paper, we present ShareRender, a cloud gaming sys-
tem that offloads graphics workloads within VMs directly to
GPUs, bypassing GPU virtualization. For each game running
in a VM, ShareRender starts a graphics wrapper to intercept
frame rendering requests and assign them to render agents
responsible for frame rendering on GPUs. Thanks to the
flexible workload assignment among multiple render agents,
ShareRender enables fine-grained resource sharing at the
frame-level to significantly improve GPU utilization. Further-
more, we design an online algorithm to determine workload
assignment and migration of render agents, which considers
the tradeoff between minimizing the number of active server
and low agent migration cost. We conduct experiments on
real deployment and trace-driven simulations to evaluate the
performance of ShareRender under different system settings.
The results show that ShareRender outperforms the existing
video-streaming-based cloud gaming system by over 4 times.

KEYWORDS

cloud gaming; GPU; fine-grained; scheduling

1 INTRODUCTION

Modern games usually involve intensive CPU and GPU com-
puting, which cannot be afforded by mobile devices (e.g.,
smartphones and tablets) and even PCs without high-end

¶ Corresponding Author.
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

MM ’17, October 23–27, 2017, Mountain View, CA, USA

© 2017 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-4906-2/17/10. . . $15.00
https://doi.org/10.1145/3123266.3123306

hardware. Cloud becomes a perfect platform for game ser-
vices thanks to its virtually unlimited hardware resources
that can be accessed over the Internet. By outsourcing game
programs to cloud, cloud gaming services render the inter-
active games remotely in the cloud and send the scenes as
video or graphics streams back to the thin clients [8, 24].

Achieving good scalability and maintaining acceptable
game experiences (also called Quality of Experience, QoE)
simultaneously are critical for cloud gaming. Tradition-
ally, cloud game services are deployed in virtual machines
(VMs) [11]. They normally contain three types of computation
intensive operations, including logical computing (generally
on CPU), high definition 3D rendering (generally on GPU),
and video encoding (on CPU or GPU), which affect the QoE
and scalability greatly. Therefore, exploiting GPU parallelism
becomes a key and important challenge for cloud gaming. The
research of GPU virtualization is still ongoing to pursue high
scalability and low cost. On the one hand, hardware-based
virtualization techniques, such as NVIDIA GRID [5], provide
high performance and acceptable scalability for graphics in-
tensive workloads, but are costly for massive deployment. On
the other hand, existing software-based GPU virtualization
techniques [26, 29] can improve the scalability of virtualized
rendering instances via optimizations on memory mapping,
but they lack of abstractions of some important features of
GPU [12, 22, 23] (for example, hardware acceleration for
video encoding). This would cause heavy workloads on CPU,
accordingly low scalability of cloud gaming. The reason is
the coarse-grained resource sharing and scheduling in units
of VMs, which will be shown in following motivation part.

In this paper, we propose ShareRender1, a novel cloud gam-
ing system that fully exploits powerful capability of GPUs,
including the new features of accelerating, with good scala-
bility and low cost. A key concept of ShareRender’s design is
the decoupling of GPU rendering from VMs. That is, GPU
rendering function is extracted from VM, so that it can run
independently on physical machines. In such a way, CPU
and GPU resources can be scheduled individually, instead
of being bundled together in traditional VM-based cloud
gaming systems, to increase resource utilization.

ShareRender facilitates this decoupling with a lightweight
and efficient design. Specifically, for each game instance run-
ning in a virtual machine, ShareRender starts a daemon,
called graphic wrapper, which intercepts frame rendering
requests issued from the game. Meanwhile, several render

1ShareRender, https://github.com/CGCL-codes/ShareRender

Session: Fast Forward 2 MM’17, October 23-27, 2017, Mountain View, CA, USA

324

https://doi.org/10.1145/3123266.3123306

agents are started on different physical machines. They re-
ceive rendering requests from the associated graphic wrapper
and conduct frame rendering. Note that render agents inter-
act directly with GPUs via the graphic driver, eliminating
the involvement of the GPU virtualization.

To guarantee the correctness and efficiency, we further
address the following design challenges in ShareRender. First,
each graphic wrapper encapsulates rendering requests as
graphic tasks and can dispatch them to multiple render
agents. The statuses of render agents should be consistent
with graphic wrapper to ensure correct rendering results. We
design a context synchronization mechanism that synchro-
nizes statuses of render agents such that they can collaborate
on rendering tasks.

Second, to feed geometric data to render agents for frame
rendering, we need to frequently retrieve data from GPUs,
which is a slow process and incurs large overhead. We propose
to create shadow objects in main memory for geometric
objects such as index buffer, vertex buffer, and texture. When
graphic wrappers need to load geometric data, they can
quickly fetch them from main memory, instead of accessing
the slow GPU memory.

Finally, we find that game workloads are dynamic. They
are determined by user operations in games and cannot
be accurately predicted, which is also confirmed by [20].
The dynamic workloads may incur GPU overload. A simple
solution is to create multiple render agents and dynamically
adjust the amount of workloads assigned to them. However,
it is still with limited flexibility and cannot fundamentally
solve the overloading problem. To deal with this challenge, we
design a migration mechanism that can migrate render agents
between different physical machines to increase the flexibility
of resource sharing. We also propose an online algorithm to
decide how to assign graphics tasks among render agents, and
when render agents should be migrated with the consideration
of making a tradeoff between minimizing the number of active
servers and low agent migration overhead. This algorithm has
low computational complexity and can be easily implemented
in practice.

The main contributions are summarized as follows.

∙ We develop a cloud gaming system called ShareRen-
der, based on our previous work [18], with a series of
novel designs, such as context synchronization, shadow
objects, and render agent migration. ShareRender is
able to achieve high efficiency and correctness of frame
rendering in a distributed environment.

∙ We conduct experiments on real deployment and trace-
driven simulations to evaluate the performance of Shar-
eRender under different system settings. The results
show that ShareRender significantly outperforms exist-
ing cloud gaming systems.

The rest of the paper is organized as follows: Section II
motivates our design by experiments. Section III presents the
system overview. Section IV describes our system design. Sec-
tion V presents evaluation results. Related works is included
in section VI. Section VII concludes this paper.

2 MOTIVATION

To motivate our design, we conduct experiments on a well-
known open-source cloud gaming system, called GamingAny-
Where (GA) [13], deployed in VMWare virtual machines. We
set GA to work in the periodic mode in which it captures
GDI (Graphic Device Interface) window area periodically
and applies H.264 to encode frame data for video streaming.
All experiments are conducted on a server equipped with
Intel i5 3.3GHz CPU and NVIDIA Quadro 2000 GPU.

2.1 Resource Utilization in Cloud Gaming

We consider 4 types of games, as selected by LiveRender [18],
with different GPU/CPU utilizations, including CastleStorm,
ShadowRun, SprillRichi, and Trine. We start several game
instances for each game, each of which runs in a dedicated
virtual machine. We measure both CPU and GPU utilization
that indicates the portion of hardware resources used by the
cloud gaming system. As shown in Fig. 1, CPU utilization
grows to 100% as we increase the number of concurrent
game instances from 1 to 4. In contrast, GPU utilization
reaches the ceiling of 40% when there is one instance of
CastleStorm or two instances of other games. For games
except CastleStorm, only one instance cannot saturate GPU
resources, so the utilization grows when we start two instances.
However, further increasing number of instances decreases
GPU utilization. The main reason is that VMs have unfriendly
support for hardware acceleration, makes GA push heavy
load (frame capturing, format conversion, and video encoding)
on CPU. As a result, CPU resources are quickly exhausted
and become the performance bottleneck. Although there are
unoccupied GPU resources, they cannot be used by games,
leading to low GPU utilization.

We also measure the FPS (frames per second), reflect-
ing QoE. Normally 28 FPS is enough to guarantee smooth
game playing [31]. The total FPS of all concurrent game
instances is illustrated in Fig. 1(b), where the curves of all
games show similar trend with their GPU utilization. How-
ever, the FPS per instance decreases under all games as the
number of concurrent instances grows. In particular, even
though GPU utilization and total FPS increase when two
instances of ShadowRun are started, GA cannot guarantee
smooth game playing because each instance has less than 28
FPS. The reasons may be resource contention among mul-
tiple game instances [31] and large overhead of retrieving
data from GPUs [1] in VM, especially retrieving 2D graphic
data using GDI. The quality of all games becomes worse as
more instances are started. Above experiments demonstrate
that existing cloud gaming system cannot fully exploit GPU
resources in a virtualized environment.

2.2 GPU Workload Dynamics

We run two game instances of Trine in two VMs, respec-
tively, and show the hardware utilization as well as their FPS
during 350 seconds in Fig. 2. In the beginning, both game
instances have smooth playing with above 30 FPS. When
one game instance, whose curve is denoted by “Trine 1” in

Session: Fast Forward 2 MM’17, October 23-27, 2017, Mountain View, CA, USA

325

1 2 3 4
30

40

50

60

70

80

90

100

 CastleStorm

 ShadowRun

 SpriiRichi

 Trine

C
P

U
 U

ti
liz

a
ti
o

n
(%

)

Number of virtual machines
1 2 3 4

10

20

30

40

50

G
P

U
 U

ti
liz

a
ti
o

n
(%

)

Number of virtual machines

 CastleStorm

 ShadowRun

 SpriiRichi

 Trine

(a) Resource usage

1 2 3 4
0

10

20

30

40

50

60

70 CastleStorm

 ShadowRun

 SpriiRichi

 Trine

A
v
e

ra
g

e
 F

P
S

Number of virtual machines
1 2 3 4

0

20

40

60

80

100

 Number of virtual machines

T
o

ta
l
F

P
S

 CastleStorm

 ShadowRun

 SprillRichi

 Trine

(b) FPS

Figure 1: Experiment results of GamingAnyWhere

Fig. 2, enters a new scene after 30 seconds, its GPU resource
demands suddenly increase, leading to severe resource con-
tention that lowers GPU utilization. As a result, FPS of both
game instances drops below 30. Later, “Trine 1” is stable at
about 40 FPS, but “Trine 2” fluctuates due to frequent scene
changes. The dynamic of GPU utilization is consistent with
total FPS of both game instances.

The experimental results in Fig. 2 motivate us to consider
the game workload dynamic in the system design. An intu-
itive method is to migrate VMs to ease hardware resource
contention. However, VM migration is a slow process involv-
ing a large amount of data copy over the network. Therefore,
we need a lightweight workload migration scheme.

50 100 150 200 250 300 350
0
5

10
15
20
25
30
35
40
45
50
55
60 Test 1

F
ra

m
e
 P

e
r

S
e
c
o
n
d
s

3D Application execute time(sec)

 Trine 1

 Trine 2
Test 2 Test 3

0

20

40

60

80

100

 CPU Utilization

 GPU Utilization

 U
ti
liz

a
ti
o
n
(%

)

Figure 2: Overload in video streaming

3 SYSTEM OVERVIEW

ShareRender is a novel cloud gaming system based on video
streaming. It consists of a thin client and three main compo-
nents: graphic wrapper, render agent, and scheduler, which
are integrated into the virtualized environment at the cloud.
As shown in Fig. 3, the thin client at the user side captures
user inputs and sends game requests to cloud. Meanwhile,
it is responsible for game playing after receiving the video
stream from cloud. For each game requested by users, we
start a dedicated VM to run a game instance in the cloud.
Within each VM, a graphic wrapper resides between the
game instance and guest operating system. It intercepts 3D
graphic APIs (e.g., Direct3D and OpenGL) issued by the
game instance and encapsulates them as graphic tasks by
including associated data.

Hardware

(CPU&GPU)

Hypervisor

Guest OS Guest OS

Video Server

App

Graphic Wrapper

App

Agent

OS

Video

Streams

Video

Stream

Traditional Video

Streaming System

Design of ShareRender

Graphic Tasks

Hypervisor

Scheduler

Client

OS

Hardware

(CPU&GPU)

Client

OS

User Inputs User Inputs

Hardware

(CPU&GPU)

Hardware

(CPU&GPU)

Hardware

(CPU&GPU)

Figure 3: System architecture of ShareRender

On each physical machine, we start render agents on the
host operating system, which are responsible for running
graphic tasks on GPUs and encoding result frames into video
streams. We can create multiple render agents for a single
game instance, and they are distributed to different machines.
As a result, a graphics wrapper can send its graphic tasks
to any render agent associated with the same game instance.
Furthermore, render agents can be migrated among different
physical machines. Compared with VM migration, a render
agent can be quickly migrated with low overhead because of
its small size.

A scheduler is developed to optimize the workload assign-
ment on GPUs. It periodically collects system information
without interrupting game services, such as loads of graphic
tasks and GPU utilization, and decides where render agents
should be migrated to, and how to assign graphic tasks to
render agents. Our objective is to pack graphic tasks into
minimum number of servers to reduce energy consumption.
Meanwhile, we consider to avoid frequent render agent mi-
gration to lower system overhead.

For clarity, we show the system processing in Fig. 4, which
clearly illustrates the interactions between different compo-
nents of GA and ShareRender. In GA, a client’s input events
are captured and then transmitted to the server after 𝑇𝑁𝐷

(network delay) time. The server also spends 𝑇𝑁𝐷 time to
send video stream back to client. The server spends 𝑇𝑆𝑃

(server processing) to process the input, render the graphics,
and finally generate a video stream. It takes the client 𝑇𝐶𝑃

(client processing) to decode and display the scene on screen.
The total response delay is denoted by 𝑇𝑅𝐷 (response delay).

ShareRender has a more complex process. After receiving
client’s input, the graphic wrapper starts a pipeline to gener-
ate graphic tasks and dispatch them to render agents. The
pipeline start time at graphic wrapper is 𝑇𝑃𝑆 (pipeline start-
ing) and pipeline end time at render agent is 𝑇𝑃𝐸 (pipeline
ending), the transmission of graphic tasks is in parallel with
task generation, for a period of 𝑇𝑃𝑂 (pipeline overlap). The
graphic tasks are transmitted over the data center network
to render agent with a delay of 𝑇𝑁𝐷𝐷 (network delay in dat-
acenter). After that, the render agent processes the graphic
tasks, and sends the video stream directly back to the client.

4 SYSTEM DESIGN

In this section, we present the design details of main compo-
nents including the graphic wrapper, the render agent, the
scheduler, and the client.

Session: Fast Forward 2 MM’17, October 23-27, 2017, Mountain View, CA, USA

326

TND TND

TRD

TCP

TSP

Server

Client

t0 t1 t2

t2t1

t3 t4

(a) GA

TPERender

Agent

Graphic

Wrapper

Client
TND TND

TRD

TPO

TCP

TPS

TSP

t0 t1

t1 t2

t3

t4

t5 t6

t6 t7 t8

TNDD

(b) ShareRender

Figure 4: Response delay of GA and ShareRender

4.1 Graphic Wrapper

An important function of the graphic wrapper is to divide
GPU rendering workloads into graphic tasks in units of frames
for fine-grained scheduling. It is highly related with the GPU
computation model, as shown in Fig. 5(a). Games initialize
the GPU and then enter an infinite loop, in which each it-
eration is in charge of rendering a frame. For each frame’s
rendering, games first call FrameSetup() to setup rendering
pipelines, including lights settings to illuminate objects in
scene, transformation settings for geometry data, etc. Then
the function DrawPrimitives() is invoked to render all geom-
etry objects in the frame. Finally, the function Present() is
invoked to flush all commands to GPU device and output the
results. According to the above discussion, ShareRender is
able to generate basic graphic tasks as illustrated in Fig. 5(b)
(the figure shows the concept: one frame, one graphic task.
In our system, a fixed number of frames are grouped into
one graphic task). When a graphic task is dispatched to a
render agent, the agent needs to: 1) initialize the GPU as the
function Initialization() in Fig. 5(a); 2) prepare the special
settings for each frame rendering as FrameSetup(); 3) locate
and transfer the data for geometry objects needed by the
DrawPrimitives(). A game context is used to describe the
current game status on GPU, which contains the data and
operations for GPU initialization, frame settings for render-
ing pipeline, geometric objects, etc. The game context is very
important to ensure the correctness for basic graphic tasks
to be rendered in different render agents.

There are two challenges based on above analysis. First,
the important context data is stored in graphic wrapper
and may not be transmitted to the render agents when the
wrapper dispatches graphic tasks. Therefore, we study how
to synchronize the context data with high efficiency. An-
other challenge lies in geometric data transmission. Game
instances usually push important geometric data to GPUs.
Since graphic wrappers work at the API level, they are un-
aware of the semantics of these geometric data in games and
how games update them. When graphic wrappers prepare
graphic tasks, they need to frequently retrieve geometric data
from GPU memory to ensure correctness, which incurs large
overhead because reading data from GPU is slow [4].

Initialization();

While(1){

 FrameSetup();

 DrawPrimitives();

 Present();

}

(a) Pseudocode

In
it

ia
li

za
ti

o
n

F
ra

m
e

S
e

tu
p

D
ra

w
P

ri
m

it
iv

e
s

P
re

se
n

t

...

Task 1

...

Task 2

iv
e

s

Frame 1

Frame N

Time

;

(b) Illustration of graphic task

Figure 5: Computing model of games and example
of graphic tasks in ShareRender

Therefore, we design a context synchronization mecha-
nism to guarantee the correctness of rendering, which will
be presented in Section 4.1.1. Moreover, we create shadow
geometric objects in graphic wrapper in the main memory
to eliminate slow data access to GPU memory, which will be
presented in Section 4.1.2. Refer to source codes for other
implementation details.

4.1.1 Context Synchronization. Each render agent main-
tains a game context, which is synchronized with the one in
its graphic wrapper for correct rendering. Note that only the
agent having graphic tasks synchronizes the current game
context, while other agents without tasks do not need context
synchronization. Since the consecutive frames usually show
strong similarity [18], only a small portion of the context
data will be updated and synchronized when new frames
arrive. Here, we design two mechanisms: sequence recorder
and geometry data integrity checking, to guarantee the cor-
rectness and efficiency of context synchronization. They are
elaborated as follows.

Sequence recorder: Sequence recorder records all graphic
operations related to the GPU initialization and each frame’s
special settings as well as their parameters dependency in the
game context. These operations are synchronized to render
agents and are applied in the same sequence to generate
correct settings of rendering pipeline. As GPU initialization
operations have no explicit beginning and ending, we record
them from the beginning of GPU initialization until the first
geometric object is created. For those operations invoked in
FrameSetup(), we record them when they are defined. When
a graphic task is dispatched to a new agent, the graphic wrap-
per first sends the recorded initialization operations to the
selected render agent. For each frame, the graphic wrapper
sends necessary initialization operations for operations in
FrameSetup(), which are not defined in the graphic task.

Geometry data integrity checking: Graphic wrapper
needs to send graphic operations as well as their parameters to
render agents during DrawPrimitives(). Since the parameters
usually contains only references to geometry objects, it is
necessary to check data integrity for geometry objects in
the render agent’s game context. Geometry data integrity
checking decides which geometric objects should be sent to
guarantee geometry objects’ integrity and to avoid redundant
data transmission. If an object already exists in the game
context of a render agent, it is unnecessary to send it again.
As an example shown in Fig. 6, the graphic wrapper will
not send the geometric object obj1 because it already exists

Session: Fast Forward 2 MM’17, October 23-27, 2017, Mountain View, CA, USA

327

...
...

Present

func1

func2

funcM

Valid in agent

invalid in agent

agent status

obj 1

obj 2 obj 3

obj 4 obj 5

Create obj 2

Create obj 5

Create obj 4

Time

{
func1(obj1);
func2(obj2);

…
funcM(obj4);
…
Present();
...

}

(a) Pseudocod

...
...

Present

func1

func2

funcM

Valid in agent

invalid in agent

agent status

obj 1

obj 2 obj 3

obj 4 obj 5

Create obj 2

Create obj 5

Create obj 4

Time

{
func1(obj 1);
func2(obj 2);

funcM(obj 4);

Present();
...

}

(b) Geometry data integrity checking

Figure 6: Context synchronization example. func1
has a parameter refer to obj1, func2 has a parame-
ter refer to obj2. If obj2 is invalid in render agent,
graphic wrapper creates obj2 before sending func2
to render agent. If both obj4 and obj5 in funcM are
invalid in render agent, they are created recursively.

in the render agent. A more complicated case is that some
geometric objects form a dependency chain. For example,
a surface is always created from a texture, and the texture
depends on a correct render pipeline status. Geometry data
integrity checking recursively checks the objects along the
chain and sends the missing ones to render agents. In Fig. 6,
obj2 and obj3 are in the same dependency chain. If obj2 is
missing, graphic wrapper sends it to the render agent.

4.1.2 Shadow Objects. We create a shadow object in main
memory for each geometric object such as index buffer, vertex
buffer, or texture, so that when graphic wrappers need to
load geometric data, they can quickly obtain them in main
memory, instead of accessing the slow GPU memory. The
graphic wrapper monitors a pair of operations: Lock and
Unlock, on geometric data. The geometric data access starts
with Lock and finishes with Unlock. As shown in Fig. 7, after
the Lock operation being issued by the game application,
we redirect all geometric data access from games to shadow
objects in main memory. When the game conducts Unlock
operation, we write the updates of shadow objects back to
their counterparts in GPU memory using a similar pair of
Lock and Unlock operations. Meanwhile, these updates are
synchronized to the active render agent.

Additionally, the challenge in designing shadow object lies
in satisfying various demands by different types of geometric
objects. For example, shadow objects of textures require to
handle mipmaps [7] and the relationship between textures
and their mipmaps, while shadow objects of vertices require
to minimize the size of updated data. For texture, we create
shadow objects for all mipmaps inside a texture and add the
textures to their mipmaps’ dependency list. For vertices, we
cache the shadow objects recently updated and update only
the different data compared to the cached one. According to
our experimental results, shadow objects can accelerate data
access by 10x with limited additional memory occupation.

4.2 Render Agent

Each render agent contains a graphic replayer and a video
module. The graphic replayer extracts rendering commands
and parameters, and renders game scenes based on local

retLock Unlock retWW R

Geometry

obj

S-Obj

App

Geometry

obj

S-Obj

App

Geometry

obj

S-Obj

App

Step 1: Lock Step 2: Read & Write Step 3: Unlock

...

Lo
ck

re
t

W

U
n

lo
ck

re
t

AgentSync

Application

Graphic

Wrapper

GPU

Time

Figure 7: Illustration of shadow object access

context. When graphic replayer flushes graphic calls, usually
by invoking Present(), video module encodes rendered frame
data into video streams. Either CPU encoder or GPU encoder
can be used by the video module.

In ShareRender, migration of a render agent involves ter-
minating the current render agent and creating a new one at
another physical server designated by the scheduler. After a
render agent is created, it synchronizes game context with
its graphic wrapper. ShareRender implements a pre-copy-like
live migration mechanism but without down time, and the
duration is much smaller compared to the duration of VM live
migration. Multiple render agents share hardware resources
according to the strategy given by graphic driver, while the
workloads assigned to each render agent is determined by
graphic wrapper.

4.3 Scheduler

The scheduler is responsible for optimizing the assignment
of graphic tasks on GPU. We propose an online heuristic
algorithm to make decisions without the knowledge of future
workloads. Specifically, we run the scheduler periodically
and each game instances has at most 𝐾 render agents. At
the beginning of each period, we estimate the graphic task
workloads in terms of occupied GPU resources in the current
period. To reduce the number of active physical machines
running graphic tasks, we follow a similar principle with
classical bin packing algorithm, which always selects the
most suitable server that can accommodate the graphic task.
However, the most suitable server may have no render agent
for this task, leading to agent migration. To control the agent
migration overhead, we prefer to assign a graphic task to the
server containing a render agent. If these candidate servers
with render agents have insufficient resources to accommodate
this task, we migrate the agent to another server with enough
resources and dispatch the graphic task to it.

4.4 Client

The client of ShareRender is designed for computers and
devices with limited hardware resources, such as smartphones,
tablets. We use portable libraries to implement client to
provide strong adaptability. It has two main functions: input
handling and game video replay. The user input events are
captured via SDL [3] and sent to graphic wrapper in the
cloud. We implement a RTSP [6] client via live555 [2] library
to deal with video and audio streaming. The RTSP client
responses to multiple video streams and manages the switch
of frame data source.

Session: Fast Forward 2 MM’17, October 23-27, 2017, Mountain View, CA, USA

328

5 EVALUATION

We build a virtualized environment based on VMWare Work-
station 12.0 installed on a server equipped with an Intel i5
3.3GHZ processor, 16GB DDR3 memory, a NVIDIA Quadro
2000 GPU with 1GB GDDR5 dedicated memory. We con-
duct experiments to compare ShareRender with another
video-streaming-based cloud gaming system: GamingAny-
Where (GA), by running four popular games: SprillRichi,
CastleStorm, Trine, and ShadowRun. We also collect traces
generated by experiments, and use them to conduct large-
scale simulations to evaluate the performance of ShareRender
under different system settings.

5.1 Video Performance and Video Quality

S
R

(G
P

U
)

S
R

(C
P

U
)

S
R

(G
P

U
)

S
R

(C
P

U
)

S
R

(G
P

U
)

S
R

(C
P

U
)

S
R

(G
P

U
)

GAGAGA

 Encode Convert Capture

GA

S
R

(C
P

U
)

CastleStorm ShadowRun SprillRichi Trine
0

8

16

24

32

40

P
ro

c
e

s
s
in

g
 D

e
la

y
(m

s
)

(a) Performance comparison

 GA

CastleStorm ShadowRun SprillRichi Trine
0.0

0.2

0.4

0.6

0.8

1.0
 SR(CPU)

S
S

IM

 SR(GPU)

(b) Video quality

Figure 8: Performance comparison and video qual-
ity of games when using CPU encoding and GPU
encoding, SR represents ShareRender.

Generating video streams is compute-intensive task and
the implementation of video module can directly affect system
performance of video streaming based cloud gaming systems.
Both GA and ShareRender generate video streams with three
phrases: capturing, format conversion, and encoding. GA can
only use CPU encoding without hardware support, while
ShareRender has flexibility in adopting either CPU or GPU
encoding because of the benefits of render agents. We insert
the code to measure the processing delay in each phase and
setup both GA and ShareRender on physical machine. As
shown in Fig. 8(a), ShareRender can significantly reduce the
time on capturing, especially in GPU encoding mode, leading
to less video generation time compared to GA.

We measure the video quality at clients. We use the X264
codec for video streaming as GA does, and also adopt CUDA
to acceleration the encoding processing. We set the frame
rate of 30 FPS with an upper limit for the bitrate. For each
game instance, we select 40 frames of typical game scenes at
server side and capture the decoded frames of the same scenes
at client. We evaluate their structural similarity (SSIM) and
use the average value as the final results of video quality. As
shown in Fig. 8(b), ShareRender achieves high SSIM close
to GA. Their performance gap is less than 6.39% for CPU
encoding and 3.21% for GPU encoding, respectively, but both
achieve high quality standard. ShareRender achieves good
balance in performance and high quality.

5.2 Response Delay

Response delay (RD) is critical for gaming experience. As
described in Section 3, response delay is defined as the interval
between the time when an input event is triggered in client
and the time when the resulting game scene can be seen. The

Unlimited 9.8Mbps 5Mbps
0

50

100

150

200

250

300

350

400

D
e
la

y
(m

s
)

 T
CP

(Client Processing) T
SP

(Server Processing)

 T
PS

(Pipeline Starting) T
PE

(Pipeline Ending)

 T
PO

(Pipeline Overlap)

S
h
a
re

R
e
n
d
e
r

S
h
a
re

R
e
n
d
e
r GA

GA

GA

S
h
a
re

R
e
n
d
e
r

(a) CastleStorm
Unlimited 9.8Mbps 5Mbps

0

50

100

150

200

250

300

350

D
e
la

y
(m

s
)

 T
CP

(Client Processing) T
SP

(Server Processing)

 T
PS

(Pipeline Starting) T
PE

(Pipeline Ending)

 T
PO

(Pipeline Overlap)

S
h
a
re

R
e
n
d
e
r

S
h
a
re

R
e
n
d
e
r

GA

GA

GA

S
h
a
re

R
e
n
d
e
r

(b) ShadowRun

Unlimited 9.8Mbps 5Mbps
0

50

100

150

200

250

300

350

400

S
h
a
re

R
e
n
d
e
r

S
h
a
re

R
e
n
d
e
rGA

GA

D
e
la

y
(m

s
)

GA

S
h
a
re

R
e
n
d
e
r

 T
CP

(Client Processing) T
SP

(Server Processing)

 T
PS

(Pipeline Starting) T
PE

(Pipeline Ending)

 T
PO

(Pipeline Overlap)

(c) SprillRichi
Unlimited 9.8Mbps 5Mbps

0

50

100

150

200

250

300

350

400

D
e
la

y
(m

s
)

 T
CP

(Client Processing) T
SP

(Server Processing)

 T
PS

(Pipeline Starting) T
PE

(Pipeline Ending)

 T
PO

(Pipeline Overlap)

S
h
a
re

R
e
n
d
e
r

S
h
a
re

R
e
n
d
e
r

GA
GA

GA

S
h
a
re

R
e
n
d
e
r

(d) Trine

Figure 9: Response delay for each application

response delay for both GA and ShareRender are made up
by multiple complex process. The response delay for GA and
ShareRender can be calculated by is 𝑇𝐺𝐴

𝑅𝐷 = 𝑇𝑆𝑃 + 𝑇𝐶𝑃 and
𝑇𝑆ℎ𝑎𝑟𝑒𝑅𝑒𝑛𝑑𝑒𝑟
𝑅𝐷 = 𝑇𝑃𝑆 + 𝑇𝑃𝑂 + 𝑇𝑃𝐸 + 𝑇𝐶𝑃 , respectively.
We limit the network bandwidth between server and client

to simulate real-world network connection. We consider three
possible levels of outbound bandwidth: unlimited (100Mbps),
9.8Mbps, and 5Mbps as LiveRender [18] suggests. We also
insert testing codes into GA and ShareRender to obtain
the delay of different sub-processes. We manually trigger at
least 100 user inputs for each game and measure the average
response delay. The experiments are conducted under local
area network and the physical network delay is negligible, so
as to the network delay inside date center.

Fig. 9 shows the response delay of different games under
three bandwidth conditions. We use default encoding pa-
rameters given by GA. ShareRender outperforms GA in all
cases. For example, as shown in Fig. 9(d) with unlimited
bandwidth, response delay of GA is 241.2ms, while it is 202.8
ms in ShareRender, with 18.93% improvements. The main
contributor is faster frame capturing in ShareRender.

5.3 Concurrency

An important metric of cloud gaming systems is the number
of concurrent game instances in one physical machine. We
run different number of game instances under ShareRender
and GA, respectively, and measure their FPS, CPU/GPU
utilization. As shown in Fig. 10, FPS drops sharply under GA
but remains steadily under ShareRender as the number of
concurrent game instances increases. GA can support smooth
playing of one or two game instances on the server, while
ShareRender is able to run more. Moreover, the resource
utilization of ShareRender is also improved. ShareRender is
integrated with two kinds of video encoding hence it can
take use of free computing resources in video encoding. Note
that, the GPU utilization decreases for CastleStorm and
SprillRichi in Fig. 10(b), the reason is that, after running 5
instances, ShareRender uses CPU to encode videos for new
instances, which results in the longer waiting time for GPU
and the decrease of GPU utilization. It is also can be seen
that the FPS drops fast when both resource are exhausted

Session: Fast Forward 2 MM’17, October 23-27, 2017, Mountain View, CA, USA

329

0 1 2 3 4 5 6 7 8 9

20

40

60

80

100

 GA ShareRender

 CastleStorm

C
P

U
 U

ti
liz

a
ti
o
n
(%

)

0 1 2 3 4 5 6 7 8 9

20

40

60

80

100

 GA ShareRender

 ShadowRun

C
P

U
 U

ti
liz

a
ti
o
n
(%

)

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

 GA ShareRender

 SprillRichi

C
P

U
 U

ti
liz

a
ti
o
n
(%

)

0 1 2 3 4 5 6 7 8 9

20

40

60

80

100

 Trine

C
P

U
 U

ti
liz

a
ti
o
n
(%

)

 GA ShareRender

(a) CPU usage under different games

0 1 2 3 4 5 6 7 8 9

20

40

60

80
 GA ShareRender

 CastleStorm

G
P

U
 U

ti
liz

a
ti
o
n
(%

)

0 1 2 3 4 5 6 7 8 9

20

40

60

80

100
 GA ShareRender

 ShadowRun

G
P

U
 U

ti
liz

a
ti
o
n
(%

)

0 1 2 3 4 5 6 7 8 9

10

20

30

40

 GA ShareRender

 SprillRichi

G
P

U
 U

ti
liz

a
ti
o
n
(%

)

0 1 2 3 4 5 6 7 8 9

20

30

40

50

60

70

80

90

100

 Trine

G
P

U
 U

ti
liz

a
ti
o
n
(%

)

 GA ShareRender

(b) GPU usage under different games

0 1 2 3 4 5 6 7 8 9
0

10

20

30

 GA ShareRender

 CastleStorm

F
ra

m
e
s
 P

e
r

S
e
c
o
n
d

0 1 2 3 4 5 6 7 8 9

0

10

20

30

40
 GA ShareRender

 ShadowRun

F
ra

m
e
s
 P

e
r

S
e
c
o
n
d

0 1 2 3 4 5 6 7 8 9

0

10

20

30

40

50
 GA ShareRender

 SprillRichi

F
ra

m
e
s
 P

e
r

S
e
c
o
n
d

0 1 2 3 4 5 6 7 8 9

0

10

20

30

 Trine

F
ra

m
e
s
 P

e
r

S
e
c
o
n
d

 GA ShareRender

(c) FPS of different games

Figure 10: Concurrency for each application

for ShareRender while the FPS for GA drops earlier than
ShareRender when CPU is exhausted.

5.4 System Overhead

We first study the overhead of memory occupation by Shar-
eRender. We list the number of tracked objects and associated
memory size under different games in Table 1. The number
of shadow objects varies from hundreds to thousands, but
their total size is less than 220MB under all games, which
is only 14.3% of memory occupied by VMs. We notice that
texture data consumes most of the memory and the texture
data is static once it is loaded, hence most of the overhead in

Table 1: Traced objects and memory consumed by
three types of geometry objects

Game Total
Vertex
buffer

Index
buffer

Texture

CastleStorm
#17129/

219.45 MB

#6172/

97.15 MB

#5174/

11.03 MB

#522/

110.99 MB

ShadowRun
#1239/

141.17 MB

#329/

3.65 MB

#328/

0.733

#302/

136.69 MB

SprillRichi
#445/

155.85 MB

#10/

10.22 MB
#0/0 MB

#411/

145.63 MB

Trine
#4300/

197.50 MB
#1607/
85.57 MB

#1667/
6.24 MB

#715/
105.40 MB

agent migration lies in initializing the texture data in context.
It is one of reason for designing multiple render agents and
assigning graphic tasks to existing agents.

5.4.1 Render Agent Migration . We measure the migration
delay as the time between issuing migration commands and
obtaining the first frame after migration. We compare the
agent migration and VM migration under different games,
and show the results in Table 2. The agent migration in
ShareRender can be done in less than 3 seconds, almost 15x
faster than VM migration. That is because VM migration
needs to copy the whole VM memory to the destination, but
render agent migration involves only context synchronization
with less data transmission. We also show the number of
recreated and updated objects and its portion during agent
migration in the fourth column of Table 2. We observe that
at most 13.03% of the geometric objects are transmitted to
the new agent during agent migration.

Table 2: Migration delay of two schemes

Game
Agent

Migration

VM

Migration

#Created &

Updated

CastleStorm 1.46 s 43.77 s 821 / 4.79%

ShadowRun 2.74 s 41.82 s 118 / 9.53%

SprillRichi 2.06 s 30.85 s 58 / 13.03%

Trine 1.77 s 53.54 s 402 / 9.35%

5.4.2 Impact of Shadow Object. We then study the perfor-
mance improvement of shadow object in ShareRender. We
measure the frame processing delay of different games by
enabling and disabling shadow objects, respectively. We nor-
malize the results to the frame processing delay of disabling
shadow objects. As shown in Fig. 11, enabling shadow object
in ShareRender significantly reduces the frame processing
time by 37.99% in average. Shadow objects are especially
effective in games that update many vertices and create
new textures in frames. SprillRichi is one of such games and
shadow objects can reduce its frame processing delay by 80%.

5.5 Large-scale Simulation
 Disable ShadowObject

CastleStorm ShadowRun SprillRichi Trine
0.0

0.2

0.4

0.6

0.8

1.0

 Enable ShadowObject

 N
o
rm

a
liz

e
d
 F

ra
m

e
 P

ro
ce

ss
in

g
 D

e
la

y

Figure 11: Normalized frame time

Session: Fast Forward 2 MM’17, October 23-27, 2017, Mountain View, CA, USA

330

BinPacking ShareRender PeakPacking
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 Schemes

A
v
e

ra
g

e
 M

ig
ra

ti
o

n
s

 Average Migrations

180

240

300

360

 Used Physical Servers

 U
s
e

d
 P

h
y
s
ic

a
l
S

e
rv

e
rs

(a) In different schemes

1 2 3 4 5 6

0.4

0.6

0.8

1.0

1.2

1.4

A
v
e

ra
g

e
 M

ig
ra

tt
io

n
s

K

 Average Migrations

0

40

80

120

160

 Used Physical Server

 U
s
e

d
 P

h
y
s
ic

a
l
S

e
rv

e
rs

(b) Under different 𝐾

Figure 12: Used physical servers and average agent
migrations under different 𝐾

We conduct large-scale simulations using real game traces
to evaluate the proposed scheduling algorithm. The traces are
generated when multiple players play the games. We consider
two baselines. One is typical bin packing algorithm that min-
imizes the number of active servers without considering mi-
gration cost. The other one is called peak packing, which uses
peak resource demands for each game instance. Hence, it re-
quires the most physical servers but without agent migration.
As shown in Fig. 12(a), traditional bin packing requires the
least physical servers, while peak packing requires the most.
Our algorithm achieves a good tradeoff between requirement
of physical servers and agent migration overhead. Specifically,
our algorithm requires only 1.006x physical servers compared
to traditional bin packing, but it reduces 67.3% of the agent
migrations. Peak packing uses 0.00971 agent migrations on
average but requires 2.29x physical server compared to ours.

We also study the influence of number of render agents
(denoted by 𝐾) and show the results in Fig. 12(b). The
number of required servers slightly changes as 𝐾 grows, while
the number of agent migrations reduces greatly. The reason
lies in that, with larger 𝐾, more candidate render agents
are available for graphic tasks, leading to smaller probability
of agent migration. However, when 𝐾 > 3, the decrease of
agent migration is too small. Note that, more render agents
consume more additional memory and CPU/GPU resources,
hence we select 𝐾 = 3 in ShareRender.

6 RELATED WORKS

The state-of-art cloud gaming systems mainly focus on sys-
tem performance optimization. GamingAnyWhere (GA) [13]
is the first open-source cloud gaming system based on video
streaming, which provides mature design in frame data cap-
turing, video encoding, and input handling. However, GA
lacks consideration of the concurrency and scheduling in cloud.
Game@Large [14, 15] project is the first research project that
majors in graphic streaming which provides the early concept
of graphic streaming and 3D interception. The main limi-
tation is high bandwidth consumption. LiveRender [18] has
been proposed to reduce bandwidth consumption by applying
a set of compression techniques. However, the requirement
for clients limits its portability. However, it illustrated the
design and implementation of graphics workloads offloading.
Rhizome [22] focuses on deploying cloud gaming on latest
hardware environment and illustrates the utilization of hard-
ware in cloud gaming. [25, 30] introduce a real-time video
encoding method with 3D image warping assistance. Cloud-
Fog [19] uses supernodes for game rendering and streaming
to users nearby, as a result, CloudFog reduces the traffic,
latency as well as bandwidth consumption.

There are works re-thinking the architectures of game
engine in cloud gaming, such as [20]. Developers will be more
free in designing a cloud gaming based application, but this
approach sacrifices some generality compared to existing
cloud gaming architectures, which are transparent to game
engines and developers, such as [13, 18] and ShareRender.

Some works in cloud gaming focus on scheduling algorihms
to optimize service cost. [9] considers multiplayer cloud gam-
ing and formulates an server allocation problem to minimize
the total required servers and bandwidth cost. [17] focuses
on how to dispatch the play request to cloud servers in cloud
gaming systems for efficient virtual machine usage. There
are some other works focus on improving service quality in
mobile cloud gaming, such as [16, 27].

Resource scheduling in cloud attracts many research atten-
tions. VGRIS [31]/vGASA [32] is a resource isolation system
for cloud gaming. It schedules the render pipeline on hy-
pervisor to isolate GPU use of multiple virtual machines.
GCloud [34] uses user level virtualization technique to sched-
ule cloud gaming problems and abstracts the scheduling as
bin-packing, however the idea remains scheduling the whole
task and lacks strategy of solving overload. [10] maximizes
gamers’ experience by optimally adapting cloud gaming ses-
sions in dynamic environments. The successor work [11] of
GA studies the placement of VMs to optimize cloud gam-
ing experience, which is still a coarse-grained scheduling far
from optimal. [28] adopts dynamic resource allocation using
virtualization technology. However their strategies are more
suitable for latency insensitive tasks. [33] presents the fine-
grained scheduling concept in cloud datacenters. They exploit
the division between short and long jobs and use a constraint
programming solution to schedule long jobs while uses simple
heuristics to schedule short jobs. Tetris [21] is a multi-resource
scheduler that adapts heuristics for the multidimensional bin
packing problem. Both of [33] and [21] consider the job du-
ration in their scheduling, but ShareRender explores more
fine-grained scheduling.

7 CONCLUSION

In this paper, we present the ShareRender, a cloud gaming sys-
tem bypasses GPU virtualization and enables fine-grained re-
source sharing in cloud gaming. ShareRender offloads graphic
workloads within VMs to GPUs with the novel design of
graphic wrappers and render agents. Moreover, we propose
an online algorithm to determine the workloads assignment
and render agent migration, which considers the tradeoff be-
tween minimizing the number of active servers and low agent
migration cost. Finally, both experiments and simulations are
conducted to show ShareRender outperform existing cloud
gaming systems based on video streaming.

8 ACKNOWLEDGMENTS

This research is supported by National 863 Hi-Tech Research
and Development Program (No.2015AA01A203), the Inter-
national Science and Technology Cooperation Program of
China (No. 2015DFE12860).

Session: Fast Forward 2 MM’17, October 23-27, 2017, Mountain View, CA, USA

331

REFERENCES
[1] 2016. IDirect3DDevice9::GetFrontBufferData method. https:

//msdn.microsoft.com/en-us/library/bb174388(v=vs.85).aspx.
(2016).

[2] 2016. Live555. http://www.live555.com/. (2016).
[3] 2016. SDL (Simple DirectMedia Layer). http://www.libsdl.org/.

(2016).
[4] 2016. Why is GPU-CPU transfer slow? https:

//www.opengl.org/discussion boards/showthread.php/
168710-Why-is-GPU-CPU-transfer-slow. (2016).

[5] 2017. Accelerate Virtual Desktops in Data Center — NVIDIA
GRID — NVIDA. http://www.nvidia.com/object/nvidia-grid.
html. (2017).

[6] 2017. RFC 2326 - Real Time Streaming Protocol (RTSP). (2017).
[7] 2017. Texture Filtering with Mipmaps (Direct3D 9).

https://msdn.microsoft.com/en-us/library/windows/desktop/
bb206251(v=vs.85).aspx/. (2017).

[8] W. Cai, R. Shea, C. Y. Huang, K. T. Chen, J. Liu, V. C. M.
Leung, and C. H. Hsu. 2016. The Future of Cloud Gaming [Point
of View]. Proc. IEEE 104, 4 (2016), 687–691.

[9] Y. Deng, Y. Li, X. Tang, and W. Cai. 2016. Server Allocation
for Multiplayer Cloud Gaming. In Proceedings of the ACM on
Multimedia Conference (MM’16). 918–927.

[10] H. Hong, C. Hsu, T. Tsai, C. Huang, K. Chen, and C. Hsu. 2015.
Enabling adaptive cloud gaming in an open-source cloud gaming
platform. IEEE Transactions on Circuits and Systems for Video
Technology 25, 12 (2015), 2078–2091.

[11] H. J. Hong, D. Y. Chen, C. Y. Huang, K. T. Chen, and C. H.
Hsu. 2015. Placing Virtual Machines to Optimize Cloud Gaming
Experience. IEEE Transactions on Cloud Computing 3, 1 (2015),
42–53.

[12] H. Hsu and C. Lee. 2016. G-KVM: A Full GPU Virtualization
on KVM. In Proceedings of IEEE International Conference on
Computer and Information Technology (CIT’16). 545–552.

[13] C. Huang, C. Hsu, Y. Chang, and K. Chen. 2013. GamingAny-
where: an open cloud gaming system. In Proceedings of the ACM
multimedia systems conference (MMSys’13). ACM, 36–47.

[14] A Jurgelionis, F Bellotti, AD Gloria, P Eisert, JP Laulajainen,
and A Shani. 2009. Distributed video game streaming system for
pervasive gaming. STreaming Day 9 (2009), 1–6.

[15] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P.
Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä,
A. De Gloria, and C. Bouras. 2009. Platform for Distributed 3D
Gaming. Int. J. Comput. Games Technol. 2009, Article 1 (2009),
15 pages.

[16] K. Lee, D. Chu, C. Eduardo, K. Johannes, D. Yury, Sergey G., W.
Alec, and F. Jason. 2015. Outatime: Using speculation to enable
low-latency continuous interaction for mobile cloud gaming. In
Proceedings of the Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys’15). ACM, 151–
165.

[17] Y. Li, X. Tang, and W. Cai. 2015. Play Request Dispatching
for Efficient Virtual Machine Usage in Cloud Gaming. IEEE
Transactions on Circuits and Systems for Video Technology 25,
12 (2015), 2052–2063.

[18] L. Lin, X. Liao, G. Tan, H. Jin, X. Yang, W. Zhang, and B. Li.
2014. LiveRender: A Cloud Gaming System Based on Compressed
Graphics Streaming. In Proceedings of ACM International Con-
ference on Multimedia (MM’14). 347–356.

[19] Y. Lin and H. Shen. 2017. CloudFog: Leveraging Fog to Extend
Cloud Gaming for Thin-Client MMOG with High Quality of
Service. IEEE Transactions on Parallel and Distributed Systems
28, 2 (2017), 431–445.

[20] F. Messaoudi, G. Simon, and A. Ksentini. 2015. Dissecting games
engines: The case of Unity3D. In Proceedings of Annual Workshop
on Network and Systems Support for Games (NetGames’15).
1–6.

[21] G. Robert, A. Ganesh, K. Srikanth, R. Sriram, and A. Aditya. 2014.
Multi-resource Packing for Cluster Schedulers. In Proceedings of
ACM International Conference on SIGCOMM (SIGCOMM’14).
455–466.

[22] S. Ryan, D. Fu, and J. Liu. 2015. Rhizome: Utilizing the Public
Cloud to Provide 3D Gaming Infrastructure. In Proceedings of
ACM Multimedia Systems Conference (MMSys’15). 97–100.

[23] S. Ryan and J. Liu. 2013. On GPU Pass-Through Performance
for Cloud Gaming: Experiments and Analysis. In Proceedings of
Annual Workshop on Network and Systems Support for Games

(NetGames’13). 6:1–6:6.
[24] R. Shea, J. Liu, E. C. H. Ngai, and Y. Cui. 2013. Cloud gaming:

architecture and performance. IEEE Network 27, 4 (2013), 16–21.
[25] S. Shu, N. Klara, and C. Roy. 2012. A Real-time Remote Rendering

System for Interactive Mobile Graphics. ACM Trans. Multimedia
Comput. Commun. Appl. 8, 3s, Article 46 (Oct. 2012), 20 pages.

[26] K. Tian, Y. Dong, and D. Cowperthwaite. 2014. A Full GPU Vir-
tualization Solution with Mediated Pass-Through. In Proceedings
of USENIX Annual Technical Conference (USENIX ATC’14).
121–132.

[27] J. Wu, C. Yuen, N. Cheung, J. Chen, and C. Chen. 2015. Enabling
adaptive high-frame-rate video streaming in mobile cloud gaming
applications. IEEE Transactions on Circuits and Systems for
Video Technology 25, 12 (2015), 1988–2001.

[28] Z. Xiao, W. Song, and Q. Chen. 2013. Dynamic Resource Alloca-
tion Using Virtual Machines for Cloud Computing Environment.
IEEE Transactions on Parallel and Distributed Systems 24, 6
(2013), 1107–1117.

[29] M. Xue, K. Tian, Y. Dong, J. Ma, J. Wang, Z. Qi, B. He, and H.
Guan. 2016. gScale: scaling up GPU virtualization with dynamic
sharing of graphics memory space. In Proceedings of USENIX
Annual Technical Conference (USENIX ATC’16). 579–590.

[30] W. Yoo, S. Shi, W. J. Jeon, K. Nahrstedt, and R. H. Campbell.
2010. Real-time parallel remote rendering for mobile devices using
graphics processing units. In Proceedings of IEEE International
Conference on Multimedia and Expo (ICME’10). 902–907.

[31] M. Yu, C. Zhang, Z. Qi, J. Yao, Y. Wang, and H. Guan.
2013. VGRIS: Virtualized GPU Resource Isolation and Schedul-
ing in Cloud Gaming. In Proceedings of International Sympo-
sium on High-performance Parallel and Distributed Computing
(HPDC’13). 203–214.

[32] C. Zhang, J. Yao, Z. Qi, M. Yu, and H. Guan. 2014. vGASA:
Adaptive Scheduling Algorithm of Virtualized GPU Resource in
Cloud Gaming. IEEE Transactions on Parallel and Distributed
Systems 25, 11 (2014), 3036–3045.

[33] Y. Zhang, X. Fu, and K. K. Ramakrishnan. 2014. Fine-grained
multi-resource scheduling in cloud datacenters. In Proceedings of
International Workshop on Local Metropolitan Area Networks
(LANMAN’14). 1–6.

[34] Y. Zhang, P. Qu, J. Cihang, and W. Zheng. 2016. A Cloud Gam-
ing System Based on User-level Virtualization and Its Resource
Scheduling. IEEE Transactions on Parallel and Distributed
Systems 27, 5 (2016), 1239–1252.

Session: Fast Forward 2 MM’17, October 23-27, 2017, Mountain View, CA, USA

332

https://msdn.microsoft.com/en-us/library/bb174388(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb174388(v=vs.85).aspx
http://www.live555.com/
http://www.libsdl.org/
https://www.opengl.org/discussion_boards/showthread.php/168710-Why-is-GPU-CPU-transfer-slow
https://www.opengl.org/discussion_boards/showthread.php/168710-Why-is-GPU-CPU-transfer-slow
https://www.opengl.org/discussion_boards/showthread.php/168710-Why-is-GPU-CPU-transfer-slow
http://www.nvidia.com/object/nvidia-grid.html
http://www.nvidia.com/object/nvidia-grid.html
https://msdn.microsoft.com/en-us/library/windows/desktop/bb206251(v=vs.85).aspx/
https://msdn.microsoft.com/en-us/library/windows/desktop/bb206251(v=vs.85).aspx/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Resource Utilization in Cloud Gaming
	2.2 GPU Workload Dynamics

	3 System Overview
	4 System Design
	4.1 Graphic Wrapper
	4.2 Render Agent
	4.3 Scheduler
	4.4 Client

	5 Evaluation
	5.1 Video Performance and Video Quality
	5.2 Response Delay
	5.3 Concurrency
	5.4 System Overhead
	5.5 Large-scale Simulation

	6 Related Works
	7 Conclusion
	8 ACKNOWLEDGMENTS
	References

