
Matrix Completion for Cross-view Pairwise Constraint
Propagation

Zheng Yang, Yao Hu, Haifeng Liu
∗

, Huajun Chen, Zhaohui Wu
College of Computer Science, Zhejiang University

Hangzhou, Zhejiang, China
{yzzju,yaoohu,haifengliu,huajunsir,wzh}@zju.edu.cn

ABSTRACT
As pairwise constraints are usually easier to access than label
information, pairwise constraint propagation attracts more
and more attention in semi-supervised learning. Most exist-
ing pairwise constraint propagation methods are based on
canonical graph propagation model, which heavily depends
on the edge weights in the graph and cannot preserve local
and global consistency simultaneously. In order to address
this drawback, we cast cross-view pairwise constraint prop-
agation into a problem of low rank matrix completion and
propose a Matrix Completion method for cross-view Pair-
wise Constraint Propagation(MCPCP). With low rank re-
quirement and graph regularization, our MCPCP can pre-
serve local and global consistency simultaneously. We de-
velop an algorithm based on alternating direction method of
multipliers(ADMM) to solve the optimization problem. Fi-
nally, the effectiveness of MCPCP is demonstrated in cross-
view multimedia retrieval.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms

Keywords
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1. INTRODUCTION
Pairwise constraints, which specify whether two objects

belong to the same class or not, are easier to access than
label information and have been widely used for many ma-
chine learning tasks, like constrained clustering, multimedia
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retrieval[8], semi-supervised classification and so on. Pair-
wise constraint propagation is an effective algorithm to solve
these tasks. It aims to fully utilize the available constraints
through constraint propagation. LGC[10] and GFH[11] are
two canonical label propagation methods, which propagate
labels through a graph. Most pairwise constraint propaga-
tion methods are based on this kind of graph model. Given
a dataset X with n points, the first p of them are labeled
with c labels and the remaining points are unlabeled. LGC
regularization framework has the following form:

min
F

1

2

( n∑
i,j=1

Wij

∥∥∥∥ 1√
Dii

Fi−
1√
Djj

Fj

∥∥∥∥2

+µ
n∑

i=1

∥Fi−Yi∥2
)
,

(1)
where W ∈ Rn×n is a weight matrix of the dataset, D is
a diagonal matrix with Dii =

∑
Wij and µ > 0 is a regu-

larization parameter. F and Y are n× c indicator response
matrices. Y is the initial one with Yij = 1 if xi is labeled
as yi = j and Yij = 0 otherwise. And F is to be learned
which labels each point xi as a label yi = argmax1≤j≤c Fij .
Fi, Fj and Yi are all row vectors which represent the label
assignments.

As we know, the key to the success of semi-supervised
learning is the cluster assumption[11], which indicates nearby
objects are likely to have the same label and objects on the
same structure are likely to have the same label. The first
assumption is local consistency and the second one is global
consistency. The two terms in problem (1) aim at these
assumptions, respectively. However, the second term can-
not preserve global consistency well when the number of
labeled samples is not big enough to reveal global structure.
Hence, the graph becomes more important as both local and
global consistency depend on it. In the past years, many re-
searchers have devoted to constructing better graph[12, 4].
Besides, the second term requires that the final classifying
functions should not change too much from the initial label
assignments. It is reasonable for the labeled samples but
may be ill for unlabeled samples.

In this paper, we focus our attention on cross-view pair-
wise constraint propagation. Different from canonical meth-
ods, we cast it into a matrix completion problem: we use a
relation matrix to represent the pairwise constraint be-
tween objects from different media views. Each entry in
the relation matrix is a real number that represents the
relevance of two corresponding objects. Some of the en-
tries are available in advance. To complete the relation
matrix, we propose a Matrix Complete algorithm for cross-
view Pairwise Constraint Propagation(MCPCP). MCPCP
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Figure 1: Example of relation matrix Y .

requires that the relation matrix should be low rank and
fixes the values at observed entries. It has been proved that
the low-rank representation can capture the global struc-
ture(such as multiple clusters and subspaces)[6]. These two
are fundamental requirements for matrix completion. Be-
sides, MCPCP introduces graph regularization to preserve
local consistency. So our MCPCP can preserve local and
global consistency simultaneously.

2. CROSS-VIEW PAIRWISE CONSTRAINT
PROPAGATION ALGORITHM

In this section, we define cross-view Pairwise Constraint
Propagation problem and introduce our Matrix Complete
algorithm for cross-view Pairwise Constraint Propagation.
Since cross-view problem can be readily decomposed into a

series of two-view subproblems. For the convenience of inter-
pretation, we just focus on two-view problem in this paper.
Let {X ,Y} be a two-view dataset, where X = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yn}. Pairwise constraints on the two-
view dataset consist of must-link constrain setM = {(xi, yj) :
l(xi) = l(yj)} and cannot-link constrain set C = {(xi, yj) :
l(xi) ̸= l(yj)}. We denote relation matrix F ∈ Rm×n to
represent the real relevance of objects from different views.
Note that, positive fij correspond to a must-link constraint
and negative fij correspond to a cannot-link. The abso-
lute value of fij denotes confidence score. With this defi-
nition, we denote initial(or observed) relation matrix over
the dataset with matrix Y ∈ Rm×n, where Yij = 1 if
(xi, yj) ∈ M, Yij = −1 if (xi, yj) ∈ C, Yij = 0 other-
wise. Initial relation matrix Y is illustrated in Figure 1.
We achieve pairwise constraint propagation by completing
the entries in Y whose values are 0 in the beginning.
Canonical methods achieve this goal by letting every point

iteratively spread its constraint information to its neighbors
until a global stable state is achieved. Actually, initial re-
lation matrix Y can be viewed as an incomplete matrix if
we consider the entries corresponding with M and C as ob-
served entries and the others as unknown entries, respec-
tively. Cross-view Pairwise Constraint Propagation aims to
learn the complete matrix which can reveal all the relations.
Note that, the complete relation matrix F ∗ is a low-rank
matrix. Considering row/column relation vectors as feature

vectors of row/column objects, we know that both row ob-
jects and column objects can be always clustered into some
clusters. It is reasonable to expect that each cluster cor-
responds to a linear intrinsic subspace, which means there
exist a small number of underlying intrinsic relation vectors
in F ∗ such that all the relation vectors are derived from a
linear combination of these intrinsic relation vectors. This is
called low rank assumption. Therefore, Pairwise Constraint
Propagation is a low-rank matrix completion problem.

Now, we consider low-rank Matrix Completion for cross-
view Pairwise Constraint Propagation(MCPCP). Liu et al.[7]
have demonstrated low-rank representation can capture the
global structure(such as multiple clusters and subspaces) of
the whole data. A good semi-supervised algorithm should
preserve global and local consistency simultaneously. To
preserve local consistency, we introduce graph regulariza-
tion. Given graph Gx = (X ,Wx) and Gy = (Y,Wy) con-
structed over the dataset X and Y, we achieve cross-view
Pairwise Constraint Propagation by solving the following
optimization problem:

min
F

L(F )

=rank∥F∥+ βx

m∑
i,j=1

Wxij

∥∥∥∥ 1√
Dxii

Fi: −
1√
Dxjj

Fj:

∥∥∥∥2

+ βy

n∑
i,j=1

Wyij

∥∥∥∥ 1√
Dyii

F:i −
1√
Dyjj

F:j

∥∥∥∥2

s.t. PΩ(F ) = Y

(2)

where

[PΩ(F )]ij =

{
Fij if (i, j) ∈ Ω
0 if (i, j) /∈ Ω

, (3)

Dx and Dy are diagonal matrix with Dxii =
∑

j Wxij and

Dyii =
∑

j Wyij . βx, βy > 0 are trade-off parameters be-
tween local smoothness and low rankness. And Ω represents
the observed(nonzero) entries in Y .

3. OPTIMIZATION
Because of rank minimization term, solving problem (2) is

NP-hard. Fortunately, it has been proved that minimization
of the rank function can be achieved using the minimizer
obtained with the Nuclear Norm under broad conditions[3].
So we relax problem (2) by solving the following function:

min
F

L(F ) =∥F∥∗ + βxTr(F
TLxF ) + βyTr(FLyF

T )

s.t. PΩ(F ) = Y
(4)

where Lx = I−Sx and Ly = I−Sy with Sx = D
−1/2
x WxD

−1/2
x

and Sy = D
−1/2
y WyD

−1/2
y . ∥F∥∗ =

∑min(m,n)
i=1 σi(F ) is the

Nuclear Norm and σi(F ) is the ith largest singular value of
F .

Next, we use ADMM method[1] to solve problem (4). In
order to make the objective function separable, we first in-
troduce two auxiliary variables H and Q:

min
F

L(F ) =∥F∥∗ + βxTr(H
TLxH) + βyTr(QLyQ

T )

s.t. H = F, PΩ(H) = Y

Q = F, PΩ(Q) = Y

(5)
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The augmented lagrange function of (5) is

L(F,H,Q,Z1, Z2, µ)

=∥F∥∗ + βxTr(H
TLxH) + βyTr(QLyQ

T )

+ Tr(Z1T (H − F )) + Tr(Z2T (Q− F ))

+
µ

2
[∥H − F∥2 + ∥Q− F∥2]

(6)

where µ > 0 is the penalty parameter. Given the initial
setting F1 = Y , H1 = Y , Q1 = Y , Z11 = Y and Z21 = Y ,
the optimization problem (5) can be solved via the following
subproblems:
Subproblem F:

Fk+1 =argmin
F

L(F,Hk, Qk, Z1k, Z2k, µ)

= argmin
F

∥F∥∗ + Tr(Z1Tk (Hk − F ))

+ Tr(Z2Tk (Qk − F )) +
µ

2
[∥Hk − F∥2 + ∥Qk − F∥2]

(7)

Ignoring constant terms and with some algebra, this can
be rewritten as

Fk+1 = argmin
F

∥F∥∗ + µ∥F − 1

2
(Hk +Qk +

Z1k + Z2k
µ

)∥2

(8)
So the closed form solution of problem (7) is

Fk+1 = D 1
2µ

(1
2
(Hk +Qk +

1

µ
(Z1k + Z2k)

)
(9)

where D is singular value thresholding operator[3].
Subproblem H:

Hk+1 =argmin
H

βxTr(H
TLxH) + Tr(Z1Tk (H − Fk+1))

+
µ

2
∥H − Fk+1∥2.

s.t. PΩ(H) = Y

(10)

Let the partial derivatives with respect to H vanish. With
some algebra, we can get the following equation:

(2βxLx + µI)H = µFk+1 − Z1k. (11)

Since 2βxLx + µI is positive definite, we have:

Hk+1 = (2βxLx + µI)−1(µFk+1 − Z1k). (12)

Actually, the matrix inverse (2βxLx+µI)−1 can be calculate
in advance and only need to be calculated once. Then, we
fix the observed values and obtain

Hk+1 = Y + PΩc(Hk+1). (13)

Algorithm 1: MCPCP
Input: Y, Wx, Wy, βx, βy, ϵ and µ
Initialize: F1 = Y , H1 = Y , Q1 = Y , Z11 = Y and
Z21 = Y
Output: F.

1) Calculate Lx by Lx = I − Sx, where Sx =

D−1/2WxD
−1/2 and D is a diagonal matrix with its

Dii =
∑

j Wxij .

2) Calculate Ly by Ly = I − Sy, where Sy =

D−1/2WyD
−1/2 and D is a diagonal matrix with its

Dii =
∑

j Wyij .

3) A = (2βxLx + µI)−1.

4) B = (2βyLy + µI)−1.

5) repeat:

6) Update Fk+1 by Eq. (9).

7) Update Hk+1 by Hk+1 = A(µFk+1−Z1k). Fix values
at observed entries Hk+1 = PΩ(Y ) + PΩc(Hk+1).

8) Update Qk+1 by Qk+1 = (µFk+1−Z2k)B. Fix values
at observed entries Qk+1 = PΩ(Y ) + PΩc(Qk+1).

9) Z1k+1 = Z1k + µ(Hk+1 − Fk+1).

10) Z2k+1 = Z2k + µ(Qk+1 −Hk+1).

11) until ∥Fk+1 − Fk∥2 ≤ ϵ.

Subproblem Q:

Qk+1 =argmin
Q

βyTr(QLyQ
T ) + Tr(Z2Tk (Q− Fk+1))

+
µ

2
∥Q− Fk+1∥2

s.t. PΩ(Q) = Y

(14)

Similar with Subproblem H, we have

Qk+1 = (µFk+1 − Z2k)(2βyLy + µI)−1 (15)

and

Qk+1 = Y + PΩc(Qk+1). (16)

Subproblem Z1 and Z2:
Z1 and Z2 can be calculated as follows:

Z1k+1 = Z1k + µ(Hk+1 − Fk+1); (17)

Z2k+1 = Z2k + µ(Qk+1 −Hk+1). (18)

We summarize the whole procedure of our solution for
problem (5), which is called MCPCP, in Algorithm 1. It is
apparent that the main computational cost in each iteration
is the computation of SVD in singular value thresholding
operator. However, computing the full SVD for MCPCP
is unnecessary. So PROPACK[5] can be used to acceler-
ate the computation and make our algorithm more efficient
for large-size problems. What is more, we use k-NN graph,
which means Lx and Ly are sparse matrixes and the inver-
sion calculation can be solved very efficiently as Cai .et al did
in GNMF[2]. The convergence of Algorithm 1 is guaranteed
by the ADMM[1].
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Table 1: The retrieval results on Wiki data set by
the MAP scores. The bold numbers are the best
results.

Algorithm Image Query Text Query Average
CM 0.2706 0.2294 0.250

Inter-CP 0.552 0.546 0.549
MCPCP 0.576 0.556 0.566

4. EXPERIMENTAL RESULTS
In this section, we evaluate our MCPCP on real world

application. As the obtained relation matrix F ∗ represents
the relevance between objects from different views. Natu-
rally, our MCPCP can be used in cross-view retrieval by
sorting the relevant relation vectors. The most straightfor-
ward way for cross-view retrieval is similarity comparison.
We compare our method with two representative methods,
Correlation matching(CM) and Inter-CP[8]. The first is a
similarity comparison method and the second is a pairwise
constraint propagation method.
Dataset: We use Wiki text-image dataset[9] in our exper-

iment. The Wiki dataset consists of 2866 text-image pairs
from 10 different classes. Among them, texts are represented
by 10 dimensional latent Dirichlet allocation model and each
image has a 128 dimensional SIFT histogram feature.
Settings: Different from [8] which divided the data points

into training and testing part and obtained all the pair-
wise constraints of training data from the label informa-
tion, we adopted another way. We do not divide the data
and use less pairwise constraints. The initial pairwise con-
straints contain must-link constraints obtained from paired
points(text-image) and the same number of cannot-link con-
straints. That is to say, we use 5732 pairwise constraints in
our experiment and only half of them should be given man-
ually. These cannot-link constraints are chosen randomly.
For graph regularization, we use the normalized correlation
as the similarity measure and construct two k-NN graphs
on image and text sets, respectively. In our algorithm,
there are four parameters. We set k = 40 for Inter-CP
and our MCPCP, experimentally. All the other parameters
are obtained by cross-validation. Specifically, we set βx = 1,
βy = 1, µ = 100 and k = 40 for MCPCP. For Inter-CP and
our MCPCP, we achieve retrieval by sorting the relevant
learned relation vector.
Results: Two tasks of cross-view retrieval are considered:

text retrieval using an Image Query and image retrieval us-
ing a Text Query. The retrieval results are measured with
mean average precision(MAP), a widely used method in the
retrieval literature. The results are listed in Table 1. From
the results, we can find the performance of MCPCP and
Inter-CP is better than that of CM. This is because these
two methods not only utilize pairwise constraints but lo-
cal structure of each view. Considering global and local
structure, our MCPCP achieves the best result which has
1.7% improvement in MAP averagely compared with that
of Inter-CP.

5. CONCLUSION
In this paper, we proposed a novel method for pairwise

constraint propagation by casting it into a problem of low-
rank matrix completion. We analyzed this method and

pointed out this model can capture global structure of the
whole data. In order to preserve local consistency at the
same time, we introduced graph regularization. The ex-
perimental results in cross-view retrieval demonstrated the
effectiveness of our pairwise constraint propagation method.
This method can be used in tag-completion, multi-label learn-
ing and other semi-supervised learning problems.
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