
Linear Distance Preserving Pseudo-Supervised and
Unsupervised Hashing

Min Wang†, Wengang Zhou†, Qi Tian‡, Zhengjun Zha†, Houqiang Li†
† CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System,

University of Science and Technology of China
‡ Computer Science Department, University of Texas at San Antonio

wm123@mail.ustc.edu.cn, {zhwg, zhazj, lihq}@ustc.edu.cn, qitian@cs.utsa.edu

ABSTRACT
With the advantage in compact representation and efficient
comparison, binary hashing has been extensively investi-
gated for approximate nearest neighbor search. In this pa-
per, we propose a novel and general hashing framework,
which simultaneously considers a new linear pair-wise dis-
tance preserving objective and point-wise constraint. The
direct distance preserving objective aims to keep the lin-
ear relationships between the Euclidean distance and the
Hamming distance of data points. Based on different point-
wise constraints, we propose two methods to instantiate this
framework. The first one is a pseudo-supervised hashing
method, which uses existing unsupervised hashing meth-
ods to generate binary codes as pseudo-supervised informa-
tion. The second one is an unsupervised hashing method,
in which quantization loss is considered. We validate our
framework on two large-scale datasets. The experiments
demonstrate that our pseudo-supervised method achieves
consistent improvement for the state-of-the-art unsupervised
hashing methods, while our unsupervised method outper-
forms the state-of-the-art methods.

Keywords
Distance preserving hashing; approximate nearest neighbor
search; learning to hash

1. INTRODUCTION
Approximate nearest neighbors (ANN) search is a funda-

mental research problem in computer vision and multimedia
fields. Given a query sample, ANN search aims to identify
those nearest data points with high probability from a large
corpus with a sub-linear, or even constant time complexity.
To solve this problem efficiently, lots of methods have been
proposed, such as tree-based approaches [1] and hashing al-
gorithms [31, 2, 30, 17, 32, 29, 33, 22]. With the advantage
in compact representation and efficient comparison, binary
hashing techniques have become more and more popular.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15-19, 2016, Amsterdam, Netherlands
c© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2964334

Existing binary hashing methods can be classified into two
categories: data-independent and data-dependent methods
according to whether the training data is involved. As the
representative data-independent methods, Locality Sensitive
Hashing (LSH) [4] and its variants [12, 10] have been widely
explored. On the other hand, lots of research efforts are
devoted to data-dependent methods to learn more compact
hash codes with the training dataset. The data-dependent
methods can be divided into three categories according to
whether they use labels or class information: unsupervised
methods [5, 23, 7, 18, 6, 9, 34], semi-supervised methods
[20], and supervised methods [11, 14, 16, 26]. Although in
most literature, supervised and semi-supervised methods are
demonstrated with much better performance than unsuper-
vised ones, it is a non-trivial issue to assume the availability
of labels or class information for training data in many sce-
narios. In this paper, we only focus on unsupervised binary
hashing.

The fundamental of unsupervised hashing is to achieve
distance preservation across the original data space and Ham-
ming space, which intuitively results in a pair-wise con-
straint. Some hashing methods implicitly achieve distance
preserving with point-wise constraints, which explore the in-
trinsic properties of expected binary codes (such as balance
and independence) or the data distribution information. For
instance, Iterative Quantization (ITQ) [5] learns an orthog-
onal rotation matrix by minimizing the quantization loss
while mapping the data generated by PCA projections to
binary codes. It realizes the independence properties of bi-
nary codes by the orthogonal basis vectors of PCA. Spher-
ical Hashing (SpH) [7] exploits hypersphere-based hashing
function maps spatially coherent data points to similar bi-
nary codes. SpH aims to preserve the balance and indepen-
dence properties of binary code. Although these unsuper-
vised methods achieve promising performance, improvement
can be expected by further imposing the additional explicit
distance-preserving constraint.

On the other hand, deep-learning based hashing methods
become more and more popular. Many supervised hashing
methods [13, 24, 28, 27] adopt the deep neural networks or
deep convolutional neural networks to generate hash code,
which fully explore the pair-wise or triplet-wise constraints
denoted by the class labels. But for unsupervised hashing,
the methods based on deep neural networks [19, 15, 3] only
involve the point-wise constraints, due to the lack of labels or
class information. For instance, in [15], a novel neural net-
work is developed to seek multiple hierarchical non-linear
transformations to learn binary codes to preserve the non-

1257

Neural Networks
𝐖

Neural Networks
𝐖

Weight Sharing
Input
 𝐱𝑖, 𝐱𝑗

𝒙𝑖

𝐱𝑗

Fidelity
Preserving

Fidelity
Preserving

Linear

Distance
Preserving

Referred Unsupervised Hashing Method Pseudo-Supervised
Information

𝐜𝑖

𝐜𝑗

𝐛𝑖

𝒃𝑗

Referred Unsupervised Hashing Method
Pseudo-Supervised

Information
𝒙𝑖

𝐱𝑗

Figure 1: The basic idea of our pseudo-supervised
hashing method. The input of the dual neural net-
works is a pair of data points, xi and xj. ci and cj are
the binary codes generated by the referred unsuper-
vised hashing method, which are used as the pseudo-
supervised information for training the dual neural
networks in the Fidelity Preserving term. The bi-
narized outputs of the dual neural networks are bi

and bj. We use the Hamming distance hi,j between
bi and bj in the Linear Distance Preserving term to
train our dual neural networks.

linear relationship of samples. The model in [15] is learnt by
minimizing the quantization loss between the original real-
valued feature descriptor and the learnt binary code, which
is typically a point-wise constraint. Since the point-wise con-
straint is not essential to ensure the distance-preserving fun-
damental of unsupervised hashing, the unsupervised meth-
ods based on neural networks [19, 15, 3] usually do not
achieve much better performance than the classical meth-
ods.

In this paper, we propose a novel and general framework
which involves a new pair-wise linear distance preserving ob-
jective and point-wise constraint. In this framework, our dis-
tance preserving objective aims to preserve the linear trans-
formation between the Euclidean distance and the Hamming
distance for pairs of data. Based on different point-wise con-
straints, we propose two methods to instantiate the frame-
work. The first one is a pseudo-supervised hashing method,
in which we generate the pseudo-supervised information by
an existing unsupervised hashing method. The motivation
of this method is to apply pair-wise distance preserving
objective based on neural networks to improve the perfor-
mances of the referred unsupervised hashing methods. We
preserve the new distance preserving objective, and simulta-
neously keep the fidelity of the selected unsupervised hash-
ing method in this method. This method is solved by dual
neural networks. The basic idea of this method is shown in
Fig. 1. Note that the pseudo-supervised method is a general
boosting method, which can be applied to existing unsuper-
vised hashing methods. The second one is an unsupervised
hashing method, in which we minimize the quantization loss
between the projected data and the binarized data. By fully
exploring pair-wise and point-wise constraints at the same
time, our unsupervised hashing method demonstrates excel-
lent performance.
There are three main contributions in this paper:

• A novel and general linear distance preserving hashing
framework is proposed, in which a new pair-wise linear
distance preserving objective and point-wise constraint
are considered simultaneously.

• The framework is instantiated by a pseudo-supervised
hashing method, which provides a general paradigm to
boost existing unsupervised hashing methods. The ex-
periments on two large-scale datasets validate that our
pseudo-supervised method improves the performances
of existing state-of-the-art methods largely.

• A new unsupervised hashing method is developed to
instantiate the framework, which simultaneously pre-
serve the pairwise distance-preserving objective and
the point-wise constraint. The experiments prove that
our unsupervised method outperforms the state-of-the-
art unsupervised hashing methods.

The rest of this paper is organized as follow. We first re-
view the related work with our approach in Section 2. Then
in Section 3, we present the proposed hashing framework,
and its two instantiations, i.e., pseudo-supervised method
and unsupervised hashing method. After that, the experi-
ments are shown in Section 4. Finally we make a conclusion
in Section 5.

2. RELATED WORK
In this section, we review the related work from two as-

pects: unsupervised binary hashing methods, and the use of
deep learning techniques in hashing.

Unsupervised hashing methods learn hash functions with
training data points without any label or class information.
The fundamental of unsupervised hashing methods is dis-
tance preservation across the original space and the Ham-
ming space. K-means Hashing (KMH) [6] simultaneously
performs k-means clustering and learns the binary indices
of the quantized cells. The Euclidean distance between data
points is implicitly approximated by the Hamming distance
between the binary indices of the corresponding cells. Spec-
tral Hashing (SH) [23] formulates the hash function learn-
ing problem as a particular form of graph partition to seek
a binary code with balanced and uncorrelated bits. Mini-
mal Loss Hashing (MLH) [18] adopts a pairwise hinge-like
loss function and minimizes its upper bound to learn bi-
nary codes. Order Preserving Hashing (OPH) [21] learns
hash functions by maximizing the alignment between the
similarity orders computed from the original space and the
ones in the Hamming space. Topology Preserving Hashing
(TPH) [25] aims at preserving the neighbor rankings of data
points in Hamming space. Binary Reconstructive Embed-
ding (BRE) [11] utilizes pairwise relations between samples
and minimizes the squared error between the original nor-
malized Euclidean distance and the normalized Hamming
distance. In our approach, we generalize the distance pre-
serving constraint with a linear transformation and optimize
it in a different way.

Nowadays, deep learning becomes more and more popu-
lar. Many supervised hashing methods are involved with
deep learning techniques. [24] proposes a supervised hash-
ing method based on convolutional neural networks, which
automatically learns a good image representation tailored to
hashing as well as a set of hash functions. [13] proposes a
deep architecture for supervised hashing, in which images

1258

are mapped into binary codes via carefully designed deep
neural networks. The model in [13] considers a triplet rank-
ing loss denoted by the image labels. [28] proposes a deep
semantic ranking based method for hashing function learn-
ing to handle multi-level semantic similarity between multi-
label images. [27] proposes a supervised learning framework
to generate compact and bit-scalable hashing code directly
from raw images. The model in [27] maximizes the margin
between the matched pairs and the mismatched pairs in the
Hamming space.

On the other hand, most existing unsupervised hashing
methods based on deep learning techniques learn to gener-
ate binary codes by exploring the data distribution or the
intrinsic properties of expected binary codes. To our best
knowledge, there is no work explicitly exploring distance
preserving constraint with neural networks for unsupervised
binary hashing, which is probably due to the lack of labels
or class information. Semantic hashing [19] is a pioneering
work using deep learning techniques for hashing. They ap-
ply the stacked Restricted Boltzmann Machine (RBM) to
learn compact binary codes for visual search. [3] also uses a
point-wise objective function. It focuses on the binary auto-
encoder model, which seeks to reconstruct a data point from
binary code produced by the hash functions. Compared with
these unsupervised methods, our pseudo-supervised method
uses dual neural networks to realize linear distance projec-
tion relationship and simultaneously keep original hashing
functions learnt by existing hashing methods, which involves
pairwise constraint and adheres to the distance-preserving
goal of hashing.

3. OUR APPROACH
In this section, we first give some notations to facilitate

the following discussion in Section 3.1. Then, we discuss our
linear distance preserving objective and the corresponding
general hashing framework in Section 3.2 and 3.3. After
that, we discuss two instantiations of our hashing framework
in Section 3.4 and 3.5, respectively.

3.1 Notations
Given a dataset X ∈ Rn×D, each row of X is a high di-

mensional data vector xi ∈ RD. The Euclidean distance
between the original data vector xi and xj is computed by
L2-norm, d(xi,xj) = ‖xi − xj‖2, and we denote it as di,j
for conciseness.

Using binary hashing, each original high dimensional data
vector xi is mapped to a low dimensional binary vector
bi ∈ HL (usually, L << D). The resulted binary vectors sig-
nificantly reduce the memory cost and the distance in Ham-
ming space (i.e., Hamming distance) can be efficiently com-
puted by modern CPUs. The Hamming distance h(bi,bj)
between the corresponding binary vector bi and bj is de-
noted as hi,j for conciseness.

The usual paradigm of binary hashing is to first map each
data point into a low dimensional space, then quantize the
mapped data point to a binary vector. Usually the map-
ping function is supposed to be a linear form. Let W =
[w1,w2, . . . ,wL] ∈ RD×L be the learned projection matrix,
then the mapping of X can be obtained as U = XW, which
is further binarized to obtain the binary codes as follows:

B = (sgn(U) + 1)/2 = (sgn(XW) + 1)/2, (1)

where sgn(·) is an element-wise sign function.

Euclidean Distance

0 100 200 300 400 500 600 700 800

H
a
m

m
in

g
 D

is
ta

n
c
e

-5

0

5

10

15

20

25

30

35
Distance Map

Figure 2: Distance map between Hamming distance
and Euclidean distance of pairs. The Hamming dis-
tance of a pair of data points is computed from the
corresponding binary codes generated by ITQ[5].
Each blue point denotes the Euclidean distance and
the corresponding Hamming distance of a pair of
data points. The green dash line is adopted in BRE
[11]. The red line is generated by our method, which
fits the distribution of the distance map.

3.2 Linear Distance Preserving Objective
The main methodology of unsupervised hashing methods

is distance-preserving across the original Euclidean space
and Hamming space, i.e., hi,j ∝ di,j . To utilize the distance-
preserving constraint in our framework, we propose a new
distance preserving objective, in which we keep the linear
projection relationship of the two distances between pairwise
data points. The objective can be achieved by minimizing
the following function:

Φ(W, a, b) = ‖H− aE− b‖2F , (2)

where ‖·‖F denotes Frobenius norm, a and b1 are the pa-
rameters of linear distance transformation, which define the
red line in Fig. 2 for intuitive, and implicitly impact the
selection of the projection matrix W. E and H ∈ Rn×p,
where p denotes the number of pairs for each data point.
The element E(i, j) in E denotes the L2 distance between
xi and xj in the Euclidean space, i.e., di,j , while the element
H(i, j) in H denotes the Hamming distance between the cor-
responding binary code bi and bj in the Hamming space,
i.e., hi,j . To facilitate the solution, the Hamming distance
between the binary code bi and bj can be described as

H(i, j) = L− bT
i bj − (1L×1 − bi)

T(1L×1 − bj). (3)

We give a visual illustration for this distance preserving
goal in Fig. 2. We randomly select 10,000 pairs of data
points from ANN SIFT1M dataset [8] and compute their
Euclidean distances. Then we generate their correspond-
ing binary codes in Hamming space by ITQ [5] with code
length equal to 32 bits, and compute the Hamming distance
between the binary codes of these pairs. Each pair of data

1a, b are scalars, the multiplication between a and E is
element-wise multiplication between a and each element of
E, and the subtraction to b is also element-wise, we omit the
1 matrix for conciseness.

1259

points is painted by a blue marker in Fig. 2. The red linear
line is generated by Least Square method applied on those
distance pairs. All those data pairs distribute in a long strip
area, which locates around the red line. We can intuitively
find that if the strip area shrinks towards the red linear line,
i.e., becomes thinner, the distance preserving performance
of the hash functions will be better. The shrink manipula-
tion makes the pairs with the same Euclidean distance have
more similar Hamming distances, which implicitly realizes
the distance-preserving objective.

Similar to our approach, BRE [11] imposes distance pre-
serving constraint by minimizing the deviation between the
normalized Hamming distance and the normalized Euclidean
distance. It can be regarded as a special case of our method,
when a = L/emax, b = 0 (emax is the maximum of the Eu-
clidean distance). The BRE method chooses the diagonal
of the coordinate area as the supervisor of distance map, as
the green dash line in Fig. 2. We can intuitively find the
diagonal line is not essentially the best choice for the real
data distribution, which makes the strip area shrink slow
and degrades the performance.

3.3 Linear Distance Preserving Framework
In our framework, we randomly select Np pairs of data,

and save their indices into P =
[
pT
1 ,p

T
2 , . . . ,p

T
Np

]T
∈ RNp×2,

where each row pi ∈ R1×2 denotes the indices of a pair of
data points. Then we can compute the L2 distance d for
these pairs. Noted that the d ∈ RNp×1 here is a vector,
which can be seen as the vector form of the matrix E in
Eq. (2). To make our description clear, we rewrite two vec-

tor forms of the indices P as P̃ =
[
p1(1),p2(1), . . . ,pNp(1),

p1(2),p2(2), . . . ,pNp(2)
]T

and P̂ =
[
p1(2),p2(2), . . . ,pNp(2),

p1(1),p2(1), . . . ,pNp(1)
]T

. We use these indices to reorga-

nize our training data matrix X as X̃ = X(P̃) ∈ R2Np×D,

in which each row x̃i of X̃ is xP̃i
. Similarly, X̂ = X(P̂),

in which each row x̂i of X̂ is xP̂i
. In our optimization,

we replace the sign function with sigmoid function, i.e., the
projected data U = sigmoid(XW) ∈ Rn×L, and the binary

codes B = round(U). We reorganize U as Ũ = U(P̃) ∈
R2Np×L, and Û = U(P̂). And we can compute Hamming
distance h for all the pairs as Eq. (3).

Our linear distance preserving framework simultaneously
considers the pairwise linear distance preserving objective,
point-wise constraint, and orthogonal projection constraint.
The whole optimization function of the proposed framework
can be devised as follows:

min
W,a,b

λ

Np
‖h− ad− b‖22 +

α

Np

∥∥∥Ũ−C
∥∥∥2F +

β‖WTW − I‖2F , (4)

where the first term focuses on linear distance preserving,
which can be seen as the vector form of Eq. (2), and the third
term imposes the orthogonality constraint between projec-
tion vectors to achieve the bit independence. The second
term is a point-wise constraint, and C can be interpreted in
different ways, which leads to different instantiations. When
C is obtained by a certain existing binary hashing method,
we can obtain a pseudo-supervised hashing scheme, which
can be realized with dual neural networks, as discussed in
the following Section 3.4. On the other hand, we can also re-

gard C as a constant matrix and derive a new unsupervised
hashing scheme, which will be discussed in Section 3.5.

3.4 Linear Distance Preserving Pseudo Super-
vised Hashing

Since the existing unsupervised hashing methods have fully
explore the data distribution or the intrinsic properties of ex-
pected binary codes, which helps learn good hashing func-
tion. We instantiate the proposed framework by a pseudo-
supervised hashing method, which can boost the perfor-
mance of existing unsupervised hashing methods by fur-
ther imposing the pairwise distance preserving objective.
In this implementation, we first select an existing unsuper-
vised hashing method to generate binary codes C as pseudo-
supervised information. The supervised binary codes C are
also reorganized as C̃ = C(P̃) ∈ H2Np×L. This method pre-
serves the linear distance transformation relationships, and
simultaneously keeps the hashing functions learnt by origi-
nal unsupervised hashing methods. It merges the pseudo-
supervised information into our framework as follows:

min
W,a,b

λ

Np
‖h− ad− b‖22 +

α

Np

∥∥∥Ũ− C̃
∥∥∥2F +

β‖WTW − I‖2F , (5)

where the second part of this objective aims to preserve the
fidelity of the involved unsupervised method. This part can
make the binarized output of our method similar with the
output of the original unsupervised hashing method, which
preserves the projections of the referred unsupervised hash-
ing functions. Here to solve the whole objective function
with pairwise distance-preserving constraint, we propose a
new learning algorithm based on dual neural networks. We
use neural networks here with the motivation of the fact that
neural networks can imitate the transformations of any com-
plexity. The two neural networks share the same structure,
parameters, and weight matrices, but are fed with different
input samples, as shown in Fig. 1.

It is difficult to simultaneously optimize the Eq. (5) with
respect to W, a, and b. To address this difficulty, we propose
an alternative scheme. First, we fix W, and optimize the
objective function with respect to a and b. Then we fix
a and b, and optimize the objective function with respect
to W. The above two steps are repeated until we achieve
a convergence. In the following, we discuss the learning
process in details.

3.4.1 a, b-step
With W fixed, the optimization on the objective function

in Eq. (5) becomes

min
a,b
‖h− ad− b‖22. (6)

This is a Linear Regression problem, which can be directly
solved by Least Square method.

3.4.2 W-step
With a and b fixed, the optimization in Eq. (5) degenerates

to

min
W

λ

Np
‖h− ad− b‖22 +

α

Np

∥∥∥Ũ− C̃
∥∥∥2F +

β‖WTW − I‖2F . (7)

1260

In our optimization, we use the Back Propagation to learn
the weight matrices of neural networks. We only need to
compute the gradient of the objective function with respect
to the weight matrix of output layer, which is denoted by
W for simplicity.

To compute the gradient of the output layer, we expand
the Eq. (7) as follows:

J(W) =
1

Np

∑
i

{
λ (hi − adi − b)2 + α‖upi(1) − cpi(1)‖

2
2

+α‖upi(2) − cpi(2)‖
2
2

}
+ β‖WTW − I‖2F . (8)

According to the above objective function and the chain
rule in computing derivatives, we can compute the gradient
of the objective function as follows:

∂J

∂W
=

2

Np

∑
i

{
λ (hi − adi − b)

(
∂hi

∂bpi(1)

·
∂bpi(1)

∂W

+
∂hi

∂bpi(2)

·
∂bpi(2)

∂W

)
+ α

(
upi(1) − cpi(1)

) ∂upi(1)

∂W

+α
(
upi(2) − cpi(2)

) ∂upi(2)

∂W

}
+ 2βW

(
WTW − I

)
, (9)

where

∂hi

∂bpi(1)

= (1− 2bpi(2)),
∂hi

∂bpi(2)

= (1− 2bpi(1)). (10)

For the
∂bpi(1)

∂W
and

∂bpi(2)

∂W
in Eq. (9), we can not compute

them directly because bpi(1) and bpi(2) are not continuous.
We use the sigmoid function instead of the binarized func-

tion. In other words, we use the
∂upi(1)

∂W
instead of

∂bpi(1)

∂W
,

and
∂upi(2)

∂W
instead of

∂bpi(2)

∂W
. The terms

∂upi(1)

∂W
and

∂upi(2)

∂W
are computed as the classical neural networks do. Compared
with classical neural networks, we can find the dual neural
networks have different coefficients for each ∂u

∂W
.

In the experiments, we use the original unsupervised hash-
ing method to pretrain the neural networks. The objective
function used in the pretraining is the same as the second
term in Eq. (5). The binary codes generated by the original
unsupervised hashing method are used as supervised infor-
mation in the pretraining. Since the two neural networks
in the dual neural networks share the same parameters, we
initialize them with the same pretrained neural networks.

Note that after each iteration, we use one neural network
from the dual neural networks as the hash projection func-
tions, and generate a new supervised matrix instead of the
old C. Since after the updating process for W converges, the
binary codes generated by our hash functions are expected
to compute new parameters of linear distance transforma-
tion. The new parameters are expected to be better than
the old ones to fit the distance distribution. The learning
algorithm is summarized in Algorithm 1.

3.5 Linear Distance Preserving Unsupervised
Hashing

In this section, we describe a simple instantiation of our
proposed linear distance preserving hashing framework, in
which the quantization loss is considered as most unsuper-
vised hashing methods do. This leads to an unsupervised
hashing method, we denote it as Linear Distance Transfor-
mation Hashing (LDTH). The final objective of our LDTH

Algorithm 1 The pseudo-supervised boosting method

Input:
Training data matrix X, the number of training pairs
Np, the required length L of binary code, and the
pseudo-supervised binary codes C generated by one un-
supervised hashing method.

Output:
One trained neural network W.

1: Initialization:
Randomly select Np training pairs P;
Pretrain one neural network;
Initialize the dual neural networks with the pretrained
neural network.

2: Generate P̃ and P̂.
3: Compute the L2 distance d for all the pairs.
4: Repeat:
5: Input X, compute the output of neural networks U,

B = round(U), C̃ = C(P̃).
6: Compute the Hamming distance h for all the pairs.
7: Compute a, b in Eq. (6) using Least Squared method.
8: Repeat:
9: Input X, compute the output of neural networks U,

B = round(U), Ũ = U(P̃), Û = U(P̂).
10: Compute the Hamming distance h for all the pairs.
11: Compute the gradient of output layer as Eq. (9).
12: Update the weight matrices of dual neural networks

by Back Propagation.
13: until convergence
14: Generate new pseudo-supervised binary codes C by

one trained neural network.
15: until convergence

method is described as follows:

min
W,a,b

λ

Np
‖h− ad− b‖22 −

α

Np
‖Ũ− 0.5‖2F +

β‖WTW − I‖2F , (11)

where λ, α, and β are set as constants, and Np denotes the
number of all involved training pairs. Maximizing the second
term in the above function is equivalent to minimize the
quantization loss2.

Similar with the optimization scheme discussed in Section
3.4, we alternatively optimize Eq. (11) over W and a, b. We
first fix W and optimize with respect to a and b. This step
is the same as the solution of Eq.(6) discussed in Section
3.4.1. After that, we fix a and b, and optimize with respect
to W. The only difference between Eq. (5) and Eq. (11) is
the second part of the two objective functions. The second
part of Eq. (11) focuses on the quantization loss, while the
second part in Eq. (5) imposes the fidelity constraints of the
referred unsupervised hashing method. This step is a little
different from the solution described in Section 3.4.2. In the
following, we describe the learning process with respect to
W in detail.

20.5 is a scalar, the subtraction to 0.5 is an element-wise
manipulation, i.e., each element of Ũ subtracts 0.5. We
omit the full-one matrix 1 for conciseness.

1261

With a and b fixed, the optimization in Eq. (11) becomes

min
W

λ

Np
‖h− ad− b‖22 −

α

Np
‖Ũ− 0.5‖2F +

β‖WTW − I‖2F . (12)

We use Gradient Descent algorithm to solve the above
optimization problem. To compute the gradient, we first
expand the above function as follows:

J(W) =
1

Np

∑
i

{
λ (hi − adi − b)2 − α‖upi(1) − 0.5‖22

−α‖upi(2) − 0.5‖22
}

+ β‖WTW − I‖2F . (13)

According to the Eq. (13) and the chain rule in computing
derivatives, we can compute the gradient of the objective
function as follows

∂J

∂W
=

2

Np

∑
i

{
λ (hi − adi − b)

(
∂hi

∂bpi(1)

·
∂bpi(1)

∂W

+
∂hi

∂bpi(2)

·
∂bpi(2)

∂W

)
− α

(
upi(1) − 0.5

) ∂upi(1)

∂W

−α
(
upi(2) − 0.5

) ∂upi(2)

∂W

}
+ 2βW

(
WTW − I

)
, (14)

where ∂hi
∂bpi(1)

and ∂hi
∂bpi(2)

share the same forms as in Eq. (10).

And we also use the
∂upi(1)

∂W
instead of

∂bpi(1)

∂W
, and

∂upi(2)

∂W

instead of
∂bpi(2)

∂W
. Then we compute the gradient of the

objective function as follows:

∂J

∂W
= X̃T

({
λ

[
h− ad− b
h− ad− b

]
◦
(

1− 2B̂
)
− α

(
Ũ− 0.5

)}

�Ũ�
(

1− Ũ
)) 2

Np
+ 2βW

(
WTW − I

)
. (15)

where � denotes element-wise multiplication, and ◦ denotes
that each element of the left vector element-wisely multiplies
the elements from the same row of the right matrix. After
that, we can update the projection matrix as follows

W = W − δ ∂J
∂W

, (16)

where δ denotes learning rate, and we empirically set δ = 0.8
in all the experiments. At the beginning of our learning al-
gorithm, we initialize W as a randomized orthogonal ma-
trix. We repeat this gradient-descent algorithm until the
objective function in Eq. (12) converges. The whole learn-
ing algorithm is summarized in Algorithm 2.

Although our method can not guarantee to converge to a
global minimum, it always leads to a local minimum, which
suffices to give a good result. Typically, we show the con-
vergence curve of our cost function in Fig. 3.

4. EXPERIMENTS

4.1 Setup
We evaluate our method on two large-scale datasets: (1)

ANN SIFT1M [8]: this dataset consists of 10,000 query vec-
tors, 1,000,000 base vectors, and 100,000 training vectors,
with each vector corresponding to a 128-D SIFT feature.

Algorithm 2 Linear Distance Transformation Hashing

Input:
Training data matrix X, the number of training pairs
Np, the required length L of binary code.

Output:
The projection matrix W.

1: Initialization:
Randomly select Np training pairs P,
generate a randomized orthogonal matrix W.

2: Generate P̃ and P̂.
3: Compute the L2 distance d for all the pairs.
4: Repeat:
5: U = sigmoid(XW), B = round(U).
6: Compute the Hamming distance h for all the pairs.
7: Compute a, b in Eq. (6) using Least Squared method.
8: Repeat:
9: U = sigmoid(XW), B = round(U),

Ũ = U(P̃), B̂ = B(P̂).
10: Compute the Hamming distance h for all the pairs.
11: Compute the gradient of objective function in

Eq. (12) as Eq. (15).
12: Update W = W − δ ∂J

∂W
.

13: until convergence
14: until convergence

#iterations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

c
o
s
t

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09

0.092

Figure 3: The convergence curve of our cost func-
tion.

The groundtruth for each query corresponds to its 100 near-
est neighbors ordered by increasing Euclidean distance. (2)
ANN GIST1M [8]: this dataset consists of 1,000 query vec-
tors, 1,000,000 base vectors, and 500,000 training vectors,
and each vector is a 960-D GIST feature. The groundtruth
for each query contains its 100 nearest neighbors ordered by
Euclidean distance in ascending order.

Since our method is unsupervised, we compare it with
five representative unsupervised hashing methods, includ-
ing LSH [4], BRE [11], SpH [7], ITQ [5], and MLH’s unsu-
pervised version [18]. In our experiments, we use the im-
plementations of all these five hashing methods released by
their authors with the default parameters.

In this paper, we use binary codes to perform approximate
nearest neighbor search based on hash code ranking strat-
egy, which sorts the binary codes by increasing Hamming
distance. Based on this strategy, we use three evaluation
metrics to measure the performance of different methods in
this paper:

• Precision@K: it measures the percentage of the true
neighbors in the top K retrieved results.

1262

Table 1: Comparison on Precision(%)@500. The bold number indicates the best result under the same bit
length setting. The underline text denotes the case that our pseudo-supervised boosting method does not
give an improvement over the original algorithm. “Ours” denotes our pseudo-supervised boosting methods
on the corresponding unsupervised hashing methods. LDTH denotes the proposed linear distance preserving
unsupervised hash method.

Dataset Code Length
Approaches

LSH[4]/Ours BRE[11]/Ours MLH[18]/Ours SpH[7]/Ours ITQ[5]/Ours LDTH

ANN SIFT1M

16 0.94/1.12 0.83/1.69 0.71/0.84 1.38/1.51 1.32/2.30 1.66

32 2.52/2.95 2.20/4.27 2.63/2.73 3.65/3.93 3.54/5.09 4.12

64 5.23/6.20 4.45/7.15 5.84/6.39 7.06/7.51 7.03/7.71 7.46

128 9.30/10.21 7.70/8.62 8.64/9.12 10.63/11.42 10.82/10.78 11.22

ANN GIST1M

16 0.32/0.69 0.86/0.99 0.65/0.92 0.76/0.91 1.09/1.24 1.23

32 0.76/1.35 1.85/1.95 1.38/2.00 1.87/1.91 2.22/2.37 2.45

64 1.61/2.79 3.06/3.05 2.74/3.75 3.51/3.55 3.37/3.55 3.74

128 3.25/4.63 4.62/4.76 4.07/5.36 5.39/5.49 4.40/5.46 5.18

• Recall@K: it counts the percentage of true neighbors
among all the ground-truth in the retrieved K samples.

• mAP (mean Average Precision): it is obtained by com-
puting the area under the Precision-Recall curve.

4.2 Evaluation for the Pseudo-Supervised Hash-
ing

In this section, we focus on evaluating the results of our
pseudo-supervised hashing method on different hashing meth-
ods on different datasets. We use the dual neural networks to
solve our boosting objective. There are two neural networks
sharing the same structure and weight matrices. Consider-
ing the computational complexity issue, we adopt a neural
network with three layers, including one input layer, one hid-
den layer, and one output layer. In terms of the activation
functions, we select the tanh function for the hidden layer,
and sigmoid function for the output layer. The number of
units in hidden layer is simply set as the number of units in
the input layer, and the number of units in the output layer
is equal to the code length of objective binary codes. The
parameters are set as α = 0.05, β = 5×10−5, and λ = 1/2L
in all the experiments, where L denotes the code length.
And for each dataset, we randomly select 20,000 training
samples from the training datasets, and the total number of
pairs Np is 200,000. We alternatively optimize the a, b-step
and W-step until convergence. In the alternating update
for W, we train the neural networks for 10 epoches with the
batch size equal to 500.

Fig. 4, and Fig. 5 show the recall of original unsupervised
hashing methods and our corresponding pseudo-supervised
boosting method on the ANN SIFT1M dataset with the
code length equal to 16 and 32 bits. Comparing with the
original methods, our boosting methods consistently make
considerable improvements. Fig. 6, and Fig. 7 show the
recall comparisons between the five methods and our corre-
sponding boosting methods on ANN GIST1M dataset with
the code length equal to 16 and 32 bits. Note that on each
dataset we only show the results with two settings of code
length, the comparisons with other code lengths are similar.
We present the precision comparisons on different datasets
with more settings of code lengths over all the five unsuper-
vised hashing methods in Table 1. The mAP comparisons

on different datasets are shown in Table 2. In sum, our
boosting method consistently improves the performances of
the five unsupervised hashing methods on different datasets
under all code lengths.

4.3 Evaluation for LDTH
We report the results of our proposed LDTH method on

different datasets. All the data points used in our method
are pre-processed by PCA (Principal Components Analy-
sis), which makes the pairwise dimensions in one data point
uncorrelated. This helps to produce an efficient code, as
justified in [5]. In all the experiments for each dataset,
we randomly select 20,000 training samples from the train-
ing datasets, and randomly select two data points from the
training samples as a pair. The total number of pairs Np is
200,000. And we set α and β as 5×10−7, and set λ as 1/2L
in the experiments. We alternatively optimize the a, b-step
and W-step until convergence. In the alternating update
for W, we iteratively run the Gradient-Descent algorithm
for 10 times before the update of a and b.

Fig. 8 shows the Recall@K on ANN SIFT1M under dif-
ferent bit length settings. And Fig. 9 shows the Recall@K
on ANN GIST1M under different bit length settings. We
evaluate the precision@500 of different methods under dif-
ferent code length settings in Table 1. The mAP compari-
son is shown in Table 2. From all the comparisons, we can
see that our LDTH method outperforms the state-of-the-art
methods, if not, gives comparable results.

4.4 Complexity and Time Cost
In this section, we make an analysis on the complex-

ity of our pseudo-supervised hashing method and the pro-
posed unsupervised LDTH method. The main time cost
of our method lies in the W-step, i.e., computing the gra-
dient of objective function with respect to W. The com-
putational complexity of computing gradient in LDTH is
O(NpL

2+L3). The pseudo-supervised boosting method will
be a little slower than LDTH, because it has a more complex
networks structure, which gives a large constant factor to
the computational complexity. Finally, we test the compu-
tational time of the proposed LDTH and boosting methods,
and compare them with the baseline unsupervised hashing
methods. Our PC is configured with dual-core 2.00 GHz

1263

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ITQ-Ours

ITQ

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

MLH-Ours

MLH

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

SpH-Ours

SpH

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

BRE-Ours

BRE

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

LSH-Ours

LSH

Figure 4: Recall@K comparisons on ANN SIFT1M between the original unsupervised hashing methods and
our corresponding pseudo-supervised boosting methods. Code length: 16

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ITQ-Ours

ITQ

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.05

0.1

0.15

0.2

0.25

MLH-Ours

MLH

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SpH-Ours

SpH

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

BRE-Ours

BRE

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.05

0.1

0.15

0.2

0.25

LSH-Ours

LSH

Figure 5: Recall@K comparisons on ANN SIFT1M between the original unsupervised hashing methods and
our corresponding pseudo-supervised boosting methods. Code length: 32

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

ITQ-Ours

ITQ

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

MLH-Ours

MLH

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

SpH-Ours

SpH

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

BRE-Ours

BRE

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

LSH-Ours

LSH

Figure 6: Recall@K comparisons on ANN GIST1M between the original unsupervised hashing methods and
our corresponding pseudo-supervised boosting methods. Code length: 16

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ITQ-Ours

ITQ

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

MLH-Ours

MLH

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

SpH-Ours

SpH

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

BRE-Ours

BRE

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

LSH-Ours

LSH

Figure 7: Recall@K comparisons on ANN GIST1M between the original unsupervised hashing methods and
our corresponding pseudo-supervised boosting methods. Code length: 32

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 1
6

 b
it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
MLH

SpH

ITQ

BRE

LSH

Ours

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 3
2

 b
it
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
MLH

SpH

ITQ

BRE

LSH

Ours

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e

c
a

ll
@

 6
4

 b
it
s

0

0.1

0.2

0.3

0.4

0.5

0.6
MLH

SpH

ITQ

BRE

LSH

Ours

Figure 8: Recall@K comparisons between our LDTH method and the comparison methods on ANN SIFT1M.
The code length of the three figures (from left to right) is 16, 32, and 64, respectively.

1264

Table 2: Comparison on mAP(%). The bold number indicates the best result under the same bit length
setting. The underline text denotes the case that our pseudo-supervised boosting method does not give
an improvement over the original algorithm. “Ours” denotes our pseudo-supervised boosting methods on
the corresponding unsupervised hashing methods. LDTH denotes the proposed linear distance preserving
unsupervised hash method.

Dataset Code Length
Approaches

LSH[4]/Ours BRE[11]/Ours MLH[18]/Ours SpH[7]/Ours ITQ[5]/Ours LDTH

ANN SIFT1M

16 0.56/0.70 0.57/1.09 0.48/0.56 0.84/0.98 0.93/1.62 1.13

32 2.12/2.55 1.75/4.18 2.17/2.33 3.37/3.75 3.31/5.52 4.07

64 6.29/7.92 4.71/9.73 6.88/7.92 9.47/10.38 9.34/11.29 10.53

128 15.71/18.26 11.11/13.11 12.94/14.19 19.42/21.74 19.91/19.68 21.40

ANN GIST1M

16 0.18/0.38 0.43/0.52 0.38/0.53 0.41/0.49 0.64/0.75 0.74

32 0.56/1.11 1.26/1.40 0.92/1.46 1.34/1.44 1.77/1.96 2.03

64 1.38/2.54 2.75/2.77 2.45/3.68 3.43/3.51 3.39/3.57 3.86

128 3.51/5.29 5.18/5.28 4.35/6.23 6.45/6.49 5.53/6.56 6.30

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e
c
a
ll

@
 1

6
 b

it
s

0

0.02

0.04

0.06

0.08

0.1

0.12
MLH

SpH

ITQ

BRE

LSH

Ours

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e
c
a
ll

@
 3

2
 b

it
s

0

0.05

0.1

0.15

0.2

0.25
MLH

SpH

ITQ

BRE

LSH

Ours

The number of retrieved samples

0 200 400 600 800 1000 1200

R
e
c
a
ll

@
 6

4
 b

it
s

0

0.05

0.1

0.15

0.2

0.25

0.3
MLH

SpH

ITQ

BRE

LSH

Ours

Figure 9: Recall@K comparisons between our LDTH method and the comparison methods on ANN GIST1M.
The code length of the three figures (from left to right) is 16, 32, and 64, respectively.

CPU. Table 3 shows the training and testing time of dif-
ferent hashing methods on ANN GIST1M dataset with the
code length equal to 32 bits. The training time of boosting
method does not comprise the training time of the origi-
nal hashing method. We see that training time of LDTH
method is similar with the baseline hashing methods, and
that of our boosting method is a little higher than our unsu-
pervised hashing method because of the more complex net-
work structure. The test time of our methods is comparable
to those previous methods.

Table 3: Computational time of different hashing
methods on ANN GIST1M dataset. LDTH de-
notes the proposed linear distance-preserving unsu-
pervised hash method. “boosting” denotes our lin-
ear distance preserving pseudo-supervised hashing
method.

Method Training(seconds) Testing(seconds)

LSH[4] 0.002 26.584

BRE[11] 498.001 43.690

MLH[18] 255.325 30.772

SpH[7] 4.901 45.207

ITQ[5] 1.284 29.249

LDTH 56.120 26.459

boosting 106.726 28.289

5. CONCLUSIONS AND DISCUSSIONS
In this paper, we propose a general unsupervised hashing

framework which simultaneously applies pairwise distance-
preserving objective and point-wise constraint. Our pairwise
linear distance preserving objective aims at keeping the lin-
ear projection relationships between the Euclidean distance
in the original space and the Hamming distance in the binary
space. This direct distance-preserving objective makes our
method fully cohere with the fundamental of binary hash-
ing. We give two instantiations of this framework. The first
one is a pseudo-supervised hashing method, which aims to
use the pseudo-supervised information generated by a se-
lected hashing method to improve the performance of the
selected unsupervised hashing method. It provides a general
paradigm to boost existing unsupervised hashing methods.
The second one is an unsupervised hashing method, which
considers the quantization loss into the framework. Fully
considering the pair-wise and point-wise constraints in the
same framework makes our unsupervised hashing method
achieve promising performance. The experiments on two
large-scale datasets demonstrate that our pseudo-supervised
method makes an obvious improvement for five unsupervised
hashing methods, while our LDTH method outperforms the
state-of-the-art unsupervised hashing methods.

In our future work, we will extend our framework with
different distance-preserving constraints, such as high-order
distance relationships and triplet-wise constraints. Besides,
we will also explore the potential of our framework to boost

1265

supervised hashing methods, in which deeper neural net-
works or convolutional neural networks may be involved.

6. ACKNOWLEDGEMENTS
This work is supported in part by the 973 Program un-

der Contract 2015CB351803, the National Natural Science
Foundation of China under Contract 61390514, 61325009,
61472378, 61429201 and 61472392, the Natural Science Foun-
dation of Anhui Province under Contract 1508085MF109,
and the Fundamental Research Funds for the Central Uni-
versities. It is also supported in part to Dr. Qi Tian by the
ARO grant W911NF-15-1-0290, and Faculty Research Gift
Awards by NEC Laboratories of America and Blippar.

7. REFERENCES
[1] J. L. Bentley. Multidimensional binary search trees

used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[2] L. Cao, Z. Li, Y. Mu, and S.-F. Chang. Submodular
video hashing: a unified framework towards video
pooling and indexing. In ACM Multimedia, pages
299–308, 2012.

[3] M. A. Carreira-Perpinán and R. Raziperchikolaei.
Hashing with binary autoencoders. In CVPR, 2015.

[4] A. Gionis, P. Indyk, and R. M. others. Similarity
search in high dimensions via hashing. In VLDB,
volume 99, pages 518–529, 1999.

[5] Y. Gong and S. Lazebnik. Iterative quantization: A
procrustean approach to learning binary codes. In
CVPR, pages 817–824, 2011.

[6] K. He, F. Wen, and J. Sun. K-means hashing: An
affinity-preserving quantization method for learning
binary compact codes. In CVPR, pages 2938–2945,
2013.

[7] J. Heo, Y. Lee, J. He, S. Chang, and S. Yoon.
Spherical hashing. In CVPR, pages 2957–2964, 2012.

[8] H. Jegou, M. Douze, and C. Schmid. Product
quantization for nearest neighbor search. IEEE
TPAMI, 33(1):117–128, 2011.

[9] T. Ji, X. Liu, C. Deng, L. Huang, and B. Lang.
Query-adaptive hash code ranking for fast nearest
neighbor search. In ACM Multimedia, pages
1005–1008, 2014.

[10] A. Joly and O. Buisson. A posteriori multi-probe
locality sensitive hashing. In ACM Multimedia, pages
209–218, 2008.

[11] B. Kulis and T. Darrell. Learning to hash with binary
reconstructive embeddings. In NIPS, pages 1042–1050,
2009.

[12] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing. IEEE TPAMI, 34(6):1092–1104, 2012.

[13] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous
feature learning and hash coding with deep neural
networks. In CVPR, pages 3270–3278, 2015.

[14] R.-S. Lin, D. A. Ross, and J. Yagnik. Spec hashing:
Similarity preserving algorithm for entropy-based
coding. In CVPR, pages 848–854, 2010.

[15] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou.
Deep hashing for compact binary codes learning. In
CVPR, 2015.

[16] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.
Supervised hashing with kernels. In CVPR, pages
2074–2081, 2012.

[17] Z. Liu, H. Li, W. Zhou, R. Zhao, and Q. Tian.
Contextual hashing for large-scale image search. IEEE
TIP, 23(4):1606–1614, 2014.

[18] M. Norouzi and D. M. Blei. Minimal loss hashing for
compact binary codes. In ICML, pages 353–360, 2011.

[19] R. Salakhutdinov and G. Hinton. Semantic hashing.
International Journal of Approximate Reasoning,
50(7):969–978, 2009.

[20] J. Wang, S. Kumar, and S. Chang. Semi-supervised
hashing for large-scale search. IEEE TPAMI,
34(12):2393–2406, 2012.

[21] J. Wang, J. Wang, N. Yu, and S. Li. Order preserving
hashing for approximate nearest neighbor search. In
ACM Multimedia, pages 133–142, 2013.

[22] M. Wang, W. Li, D. Liu, B. Ni, J. Shen, and S. Yan.
Facilitating image search with a scalable and compact
semantic mapping. IEEE Transactions on Cybernetics,
45(8):1561–1574, 2015.

[23] Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. In NIPS, pages 1753–1760, 2009.

[24] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised
hashing for image retrieval via image representation
learning. In AAAI, volume 1, page 2, 2014.

[25] L. Zhang, Y. Zhang, J. Tang, X. Gu, J. Li, and
Q. Tian. Topology preserving hashing for similarity
search. In ACM Multimedia, pages 123–132, 2013.

[26] P. Zhang, W. Zhang, W.-J. Li, and M. Guo.
Supervised hashing with latent factor models. In ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 173–182, 2014.

[27] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang.
Bit-scalable deep hashing with regularized similarity
learning for image retrieval and person
re-identification. IEEE TIP, 24(12):4766–4779, 2015.

[28] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep
semantic ranking based hashing for multi-label image
retrieval. In CVPR, pages 1556–1564, 2015.

[29] W. Zhou, H. Li, R. Hong, Y. Lu, and Q. Tian. Bsift:
toward data-independent codebook for large scale
image search. IEEE TIP, 24(3):967–979, 2015.

[30] W. Zhou, Y. Lu, H. Li, Y. Song, and Q. Tian. Spatial
coding for large scale partial-duplicate web image
search. In ACM Multimedia, pages 511–520, 2010.

[31] W. Zhou, Y. Lu, H. Li, and Q. Tian. Scalar
quantization for large scale image search. In ACM
Multimedia, pages 169–178, 2012.

[32] W. Zhou, M. Yang, H. Li, X. Wang, Y. Lin, and
Q. Tian. Towards codebook-free: Scalable cascaded
hashing for mobile image search. IEEE TMM,
16(3):601–611, 2014.

[33] W. Zhou, M. Yang, X. Wang, H. Li, Y. Lin, and
Q. Tian. Scalable feature matching by dual cascaded
scalar quantization for image retrieval. IEEE TPAMI,
38(1):159–171, 2016.

[34] X. Zhu, L. Zhang, and Z. Huang. A sparse embedding
and least variance encoding approach to hashing.
IEEE TIP, 23(9):3737–3750, 2014.

1266

