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ABSTRACT 

In this paper, we propose the fast dense trajectories algorithm for 

human action recognition. Dense trajectories are robust to fast 

irregular motions and outperform other state-of-the-art descriptors 

such as KLT tracker or SIFT descriptors. However, the use of 

dense trajectories is time consuming. To improve the efficiency, 

we extract feature trajectories in the ROI rather than in the whole 

frames, and we use the temporal pyramids to achieve adaptable 

mechanism for different action speed. We evaluate the method on 

the dataset of Huawei/3DLife – 3D human reconstruction and 

action recognition Grand Challenge in ACM Multimedia 2013. 

Experimental results show a significant improvement over the 

dense trajectories descriptor in real-time, and adaptable to 

different speed.   

Categories and Subject Descriptors 

I.2.10 [Vision and Scene Understanding]: Video analysis; I.4.8 

[Scene Analysis]: motion 

Keywords 

Fast dense trajectories; human action recognition; adaptable to 

different speed; real-time 

1. INTRODUCTION 
The recognition of human action and motion using computer 

vision has recently gained more and more interest in recent years 

[14][10][7]. The key point is detecting, tracking, recognizing 

humans from the video by the computer vision, and then 

understanding and characterizing their actions [16]. Action 

recognition has broad application prospect and potential economic 

value in the field such as intelligent surveillance, smart appliances, 

human machine interface, and content-based image retrieval. 

Because of individual differences, the diversity and complexity of 

actions, and complex backgrounds, action recognition is a 

challenging problem. We know the challenges in action 

recognition mainly are: (1) person localization in cluttered or 

dynamic environment; (2) lighting condition; (3) observed from 

different viewpoint or with the dynamic background or with the 

moving camera. At the same time, a robust human action 

recognition algorithm should be invariant to different rates of 

execution [14]. 

From the viewpoint of application, action recognition can be 

divided into three types: (1) intelligent surveillance; (2) human 

machine interface and (3) automatic video annotation. There are 

two stages in human action recognition by computer vision: 

Action representation and classification of these representations. 

Action representations encode the human actions in the first stage, 

and have great affect on the second stage. An ideal representation 

should not only take into account the influence of the size of 

human body, the complex background, different viewpoint and 

the speed of the action, but also comprise sufficient information 

for the classifier to differentiate the actions. An effective classifier 

is expected to be able to distinguish existing and new action types. 

Action recognition can be categorized in three general approaches: 

the approaches based on local features, based on global features 

and the systematic approach. The local feature based approach 

represents actions using the local spatial-temporal information 

[13][9][6]. For instance, [4]used an unsupervised learning method 

similar to bag-of-words approach to learn the probability 

distribution of the spatial-temporal interested points. The methods 

proposed in [12] obtained the activities model using the data 

captured from the joint movement to recognize the actions. These 

two methods failed to combine the local features as a whole in 

recognition. The global methods use global features, for example 

the optical flow, to represent motion. In [2], Histogram of Optical 

Flow (HOF) was used to recognize the movement of the athletes. 

In [11][3], 3D spatial-temporal models were used to represent 

human actions. Yet these methods did not build a model for the 

dynamic time features. In the systematic approach, a dynamic 

system is built to recognize human actions according to the 

feature changes of the human movement. So the dynamic features 

are taken into account. In [1] the trajectories of the joint 
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movement and the counters of the shape were used to represent 

the features. In [15] a nonlinear model was built according to the 

trajectories. However these systems suffer from the shortcoming 

of inadequate local representations. 

In this paper, we propose a fast dense trajectories algorithm to 

recognize human actions. The algorithm of dense trajectories 

performs well in human action recognition, yet it makes heavy 

calculation load and not suitable for real-time systems. We extract 

foreground first and track the feature points in the foreground area 

to reduce the calculation significantly. Another contribution of 

this paper is using the temporal pyramid when tracking the 

trajectory, which makes our approach adaptable to the action 

speed. 

This paper is organized as follows. In section 2, we describe the 

fast dense trajectories and the use of spatial-temporal points to 

distinguish recursive actions. In section 3, we employ the 

temporal pyramid to make the algorithm adaptable to action speed.  

In section 4 we test our approach on the dataset of ACM 

Multimedia 2013, and compared it with the dense trajectories 

algorithm. At last in section 5 is the conclusion of the research. 

2. FAST DENSE TRAJECTORIES 
Dense trajectories contain rich information of movement [8], but 

the dense optical flow introduces heavy calculation load, and is 

not suitable for the real-time application. In this paper, we employ 

a fast method for dense trajectories which can significantly reduce 

the calculation, and thus makes dense trajectories applicable in 

real-time. 

2.1 Fast Dense Trajectories 
Dense trajectories are the sequences of the dense feature points in 

the video. Let the optical flow for the Image It be ( , )t t tu v  , 

feature point in It be ( , )t t tp x y ,then 
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where ,x yI I  is the gradient on the x and y directions respectively. 

The Eigen value for matrix A is 1 2,  , then the qualified feature 

point tp should satisfy 

1 2max( , ) eigT    (2) 

eigT is the threshold. Its speed should satisfy 

2
( , )t t t vx y T   (3) 

vT is the threshold for the moving speed. If the feature point 

tp satisfies conditions in (2) and (3), it will be selected as the seed 

and be tracked by optical flow, which means the small 

movements, which are usually caused by noise, will be abandoned. 

We track the seeds using the method as proposed in [8] on median 

filtering. 

1 1 1 ( , )
( , ) ( , ) ( * ) |

t t
t t t t t x y

P x y x y M       (4) 

where M is the median filtering kernel, and ( , )t tx y is the 

rounded position of ( , )t tx y . Because of the calculation errors, 

long term tracking will fail and drift away the real trajectories. 

Thus, we limit the trajectory length to L frames as [8]. That is, 

when the length of the trajectory exceeds L frames, we stop 

tracking that trajectory, in order to avoid tracking with the 

accumulated error. 

Figure.1 illustrates the dense trajectories of the action knocking. 

The circles indicate the current positions of the feature points, and 

the connecting lines are the trajectories. We can see that the 

trajectories are continuous, by which we can calculate the 

gradient and predict the next position so as to reduce the 

calculation and improve the property of real-time. 

 

Figure 1 Illustration of the dense trajectories 

We notice that in the dataset provided by the Huawei/3DLife – 

3D human reconstruction and action recognition Grand Challenge, 

only the corresponding limbs that perform the actions make 

movement while other parts of the body keep still. Based on this 

observation, in the first step, we extract the foreground in the 

video sequences. Then the trajectories are tracked only in the 

foreground. This approach allows reducing the calculation load 

significantly, and moreover, it helps improving the recognition 

performance by removing the noise in the videos. Here 

foreground extraction is achieved using a threshold-difference 

background subtraction method. 

2.2 SPATIAL-TEMPORAL POINTS 
In the video series used in our experiments, we observe that the 

same action is often repeated for several times, but with different 

speed. As we can see in the knocking video, the knocking action 

is performed first slowly and the speed of action increases. As a 

result, the same action has different trajectories length. It is 

necessary to distinguish real action from a mixture of several 

recursive trajectories as one action. So we employ the spatial-

temporal points to ensure each repeating action is clearly 

separated from others. 

Spatial-temporal interest points are the points with the local 

space-time features that correspond to interesting events in video 

data whose neighborhood are with high spatial-temporal variation 

or the “space-time corners”. Usually we can find spatial-temporal 

points at the end of an action sequence. For example, when the 

football player heading the ball, the ball’s trajectory will change, 

we can get the spatial-temporal point, as show in figure 2 [9]. 

Similarly, we can get spatial-temporal points at the connection 

spot between two recursive actions in the sequences. Here we use 

the approach proposed in [13]. First the frames are filtered by the 

Gaussian filter in spatial, and then by the 1D Gabor filter in 

temporal. The intensity value of each point can be calculated as: 
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Figure 2 Spatial-temporal points 

2 2( * * ) ( * * )ev odR I g h I g h   (5) 

where ( , ; )g x y  is two-dimensional spatial Gaussian smoothing 

kernel, evh and odh are two orthogonal one-dimensional Gabor 

filters. Here 
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2.3 DISTINGUISH BETEEN SIMILAR 

ACTIONS 
Some actions are similar, for example, head scratching, eye 

rubbing and touching one’s face. They all have the action putting 

the hands on the head, which makes the trajectories look alike. 

The biggest difference is what the hands touch with on the spatial-

temporal points. So we recognize the hand and its connecting 

body parts using the haar cascade classifier. To some extend it 

helps improve the recognition accuracy. 

3. TEMPORAL PYRAMID 
The same action performed by different executors may take 

unequal time. For example, the kicking action requires the person 

first lift one of his leg, and then stretches it out, at last back it and 

stand straight. Such a series of actions may take different time. In 

order to ensure the proposed method is adaptable to the action 

speed, temporal pyramid is employed. In the pyramid, the top 

level 0j  is a histogram over the full temporal extent of 

trajectories of the actions acquired as explained in section 2 and 3. 

The next level is the concatenation of two histograms obtained by 

temporally segmenting the action clip into two halves, and so on. 

We can get a coarse-to-fine representation by concatenating all 

such histograms together 

12
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where jT is the temporal extent on the 'j th of the pyramid and 
jx is the feature on that segment. The scale factors define an 

implicit correspondence based on the finest temporal resolution at 

which a model feature matches a video feature. This allows us to 

extract the trajectories in an adaptable manner. The same action 

with different speed can be correctly recognized. 

We train a classifier with the public SVM implementation of [5] 

0min( ... ... ,0.02)
T

j Lx x x x     (7) 

Several histogram kernels have been considered in our 

experiments, but we found a simple linear kernel defined on an 

L1-normalized feature works well. 

4. EXPERIMENTS 
We tested our approach on the dataset of Huawei/3DLife – 3D 

human reconstruction and action recognition Grand Challenge in 

ACM Multimedia 2013. There are 26 kinds of 

gestures/movements in the dataset, among which 5 are static 

gestures, and the others are more dynamic. Each 

gesture/movement is performed by 7 individuals being recorded 

from six different viewpoints. We tested our algorithm on the 21 

dynamic action types, and compared with the dense trajectories, 

as shown in Table1. Table 1shows that the clapping, pushing and 

walking actions have the highest recognition accuracy, because 

the trajectories are easy to distinguish from others. While eye 

movement and facial expression has the worst score, for they are 

somewhat static because only the eyeballs and the muscles on the 

face are moving, which are hard to track. And the two approaches 

perform basically equal for these actions. Our approach 

outperforms dense trajectories significantly for actions of the head 

scratching, eye rubbing and touching one’s face. 

 In both our approach and the dense trajectories, the neighborhood 

size of the feature point has great influence on the recognition 

efficiency. In figure 3 the top row is the dense trajectories with 

different neighborhood size, and the bottom row is for our 

approach. The number indicates the size. We can see that when 

the size is small (D5 compared with F5), there are many useless 

feature points for fast dense trajectories. And when the size gets 

bigger, the feature points become less (D20 and F20). The 

calculation time gets smaller, as shown in figure 4. For fast dense 

trajectories, the size s=10 is the optimal option, and s=17 is the 

best for dense trajectories. 

      

D5     D10  D15           D20 

      

F5    F10  F15  F20 

Figure 3 Influence of the neighborhood size of feature points 

5. CONCLUSION 
This paper has presented a fast dense trajectories algorithm for 

human action recognition. Dense trajectories perform well in 

action recognition. However it is time consuming. We extract the 

foreground first, and then track the feature points in the ROI 

instead of in the entire frame, which can improve the recognition 

efficiency greatly. Then we employ the temporal pyramid to make 

the algorithm adaptable to different action speed. For the similar 

actions, we use the interacting objects to distinguish. Our 

379



approach outperforms the dense trajectories in the efficiency, and 

more robust to different action speed. 

 

Figure 4 the neighborhood size feature  

Table 1 Recognition performance 

  
Recognition 

accuracy (%) 
  

Recognition 

accuracy (%) 

actions 
Our 

approach 

Dense 

trajectory 
actions 

Our 

approach 

Dense 

trajectory 

clapping 92.3 94.1 
knocking 

the door 
82.8 83.3 

crossing the 

arms 
87.7 88 

lifting an 

object 
88.6 88.8 

crossing the 

legs 
90.6 91.3 nodding 86.7 90.1 

eye rubbing 88.4 83.7 
punching/b

oxing 
86.3 88.2 

eye 

movement 

and facial 

expression 

73.1 70.3 

pushing 

away with 

both hands 

91.3 93.6 

fingers 

motion 
83.5 83.2 

bending the 

knees and 

standing up 

89 91.1 

fist 

clenched 
77 81.1 throwing 87.6 89.3 

head 

scratching 
87.1 82.5 

Touching 

one's face 
91.1 87.9 

head 

shaking 
89.1 91.2 

Walking on 

a treadmill 
90.2 93.4 

head tilting 88.7 89.1 
waving one 

hand 
84.2 84.5 

kicking and 

punching 
87.2 90.1   

  

6. REFERENCES 
[1] Bissacco, A., Chiuso, A., and Soatto, S., 2007. Classification 

and recognition of dynamical models: The role of phase, 

independent components, kernels and optimal transport. 

Pattern Analysis and Machine Intelligence, IEEE 

Transactions on 29, 11, 1958-1972. 

[2] Efros, A.A., Berg, A.C., Mori, G., and Malik, J., 2003. 

Recognizing action at a distance. In Computer Vision, 2003. 

Proceedings. Ninth IEEE International Conference on IEEE, 

726-733. 

[3] Yilmaz, A. and Shah, M., 2005. Actions sketch: A novel 

action representation. In Computer Vision and Pattern 

Recognition, 2005. CVPR 2005. IEEE Computer Society 

Conference on IEEE, 984-989. 

[4] Niebles, J.C., Wang, H., and Fei-Fei, L., 2008. Unsupervised 

learning of human action categories using spatial-temporal 

words. International Journal of Computer Vision 79, 3, 299-

318. 

[5] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and 

Lin, C.-J., 2008. LIBLINEAR: A library for large linear 

classification. The Journal of Machine Learning Research 9, 

1871-1874. 

[6] Willems, G., Tuytelaars, T., and Van Gool, L., 2008. An 

efficient dense and scale-invariant spatio-temporal interest 

point detector. In Computer Vision–ECCV 2008 Springer, 

650-663. 

[7] Pirsiavash, H. and Ramanan, D., 2012. Detecting activities 

of daily living in first-person camera views. In Computer 

Vision and Pattern Recognition (CVPR), 2012 IEEE 

Conference on IEEE, 2847-2854. 

[8] Wang, H., Klaser, A., Schmid, C., and Liu, C.-L., 2011. 

Action recognition by dense trajectories. In Computer Vision 

and Pattern Recognition (CVPR), 2011 IEEE Conference on 

IEEE, 3169-3176. 

[9] Laptev, I., 2005. On space-time interest points. International 

Journal of Computer Vision 64, 2-3, 107-123. 

[10] Liu, J., Kuipers, B., and Savarese, S., 2011. Recognizing 

human actions by attributes. In Computer Vision and Pattern 

Recognition (CVPR), 2011 IEEE Conference on IEEE, 3337-

3344. 

[11] Blank, M., Gorelick, L., Shechtman, E., Irani, M., and Basri, 

R., 2005. Actions as space-time shapes. In Computer Vision, 

2005. ICCV 2005. Tenth IEEE International Conference on 

IEEE, 1395-1402. 

[12] İkizler, N. and Forsyth, D.A., 2008. Searching for complex 

human activities with no visual examples. International 

Journal of Computer Vision 80, 3, 337-357. 

[13] Dollár, P., Rabaud, V., Cottrell, G., and Belongie, S., 2005. 

Behavior recognition via sparse spatio-temporal features. In 

Visual Surveillance and Performance Evaluation of Tracking 

and Surveillance, 2005. 2nd Joint IEEE International 

Workshop on IEEE, 65-72. 

[14] Poppe, R., 2010. A survey on vision-based human action 

recognition. Image and vision computing 28, 6, 976-990. 

[15] Ali, S., Basharat, A., and Shah, M., 2007. Chaotic invariants 

for human action recognition. In Computer Vision, 2007. 

ICCV 2007. IEEE 11th International Conference on IEEE, 1-

8. 

[16] Hu, W., Tan, T., Wang, L., and Maybank, S., 2004. A survey 

on visual surveillance of object motion and behaviors. 

Systems, Man, and Cybernetics, Part C: Applications and 

Reviews, IEEE Transactions on 34, 3, 334-352

 

380




