
Multimodal Graph-based Event Detection and
Summarization in Social Media Streams

Manos Schinas
CERTH-ITI

Thessaloniki, Greece
manosetro@iti.gr

Symeon Papadopoulos
CERTH-ITI

Thessaloniki, Greece
papadop@iti.gr

Georgios Petkos
CERTH-ITI

Thessaloniki, Greece
gpetkos@iti.gr

Yiannis Kompatsiaris
CERTH-ITI

Thessaloniki, Greece
ikom@iti.gr

Pericles A. Mitkas
Aristotle University of
Thessaloniki, Greece
mitkas@eng.auth.gr

ABSTRACT
The paper describes a multimodal graph-based system for
addressing the Yahoo-Flickr Event Summarization Challenge
of ACM Multimedia 2015. The objective is to automatically
uncover structure within a collection of 100 million pho-
tos/videos in the form of detecting and identifying events,
and summarizing them succinctly for consumer consump-
tion. The presented system uses a sliding window over the
stream of multimedia items to build and maintain a mul-
timodal same-event image graph and applies a graph clus-
tering algorithm to detect events. In addition, it makes use
of a graph-based diversity-oriented ranking approach and a
versatile event retrieval mechanism to access summarized in-
stances of the events of interest. A demo of the system is
online at http://mklab.iti.gr/acmmm2015-gc/.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Experimentation, Algorithms

Keywords
Event Detection, Clustering, Event Summarization

1. INTRODUCTION
As a result of the widespread use of media capturing de-

vices and social media sharing platforms, a growing amount
of diverse multimedia content is available online. Hence,
there is a profound need for information systems that can
effectively organize such content. As real-world events are
a key part of social life, the detection of events and the or-
ganization of content around them is an effective way for
navigating and searching large multimedia collections.
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Event detection in social media is a challenging task due
to the nature and characteristics of social multimedia: There
is a large number of multimedia items that are of personal
nature and/or not relevant with respect to an event. Also,
many items have missing fields, e.g., title or taken date, that
make difficult their linking to an already known event. Ad-
ditionally, the order of magnitude of available media content
creates excessive computational costs and calls for scalable
and efficient solutions. Furthermore, the presentation of de-
tected events poses additional challenges as the volume of
images for large scale events e.g., the Olympic Games, could
be massive. Not every image is of the same importance for
an event and long-running events can be quite complex con-
taining many aspects and numerous sub-events. Thus, there
is a need for event-based summarization methods that can
produce concise visual summaries for any time interval of
the event, covering its main aspects.

In this paper, we describe a prototype system addressing
the Yahoo-Flickr Event Summarization Challenge of ACM
Multimedia 2015. We detect events from a set of about
100 million images [12] and then summarize each detected
event by presenting only a representative and diverse sub-
set of images. Although the system uses Flickr images, it
could be applied to any multimedia collection with a sim-
ilar set of metadata. To handle the massive scale of the
dataset, the system uses a sliding time-window that enables
the discovery of new events or their merging into previously
detected events. During the procedure, an image graph is
constructed and updated on the fly, and a graph-based clus-
tering algorithm is applied periodically to detect dense sub-
graphs that correspond to events. In order to keep track of
evolving or periodic events, a graph of events is also gener-
ated incrementally. To perform summarization, the system
takes advantage of the image graph and applies per event a
graph-based ranking algorithm that produces a diverse set
of images, ranked by their importance.

2. RELATED WORK
Numerous approaches have recently appeared in the liter-

ature on the problems of event detection tracking and sum-
marization in social media content. There are two general
event detection and tracking approaches: document-pivot [1,
9] and feature-pivot methods [4]. The former aim to cluster
items related to the same event. The latter aim to first iden-
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tify the representative features (e.g., tags) of the underlying
events in the collection (typically by detecting bursty fre-
quency patterns along time or space) and then detect events
by leveraging these representative features.

The core idea of the majority of works in event summa-
rization is the segmentation of items set into coherent topics
or sub-events and the selection of the most representative
documents in each segment. For event segmentation sev-
eral approaches have been proposed, ranging from Hidden
Markov Models [3] to LDA extensions [2]. Regarding selec-
tion of representative documents, either centroid-based [10]
or graph-based ranking approaches [5] have been considered.

3. SYSTEM OVERVIEW
The proposed system consists of three main components:

event detection and tracking, event summarization, and event
retrieval and presentation. The event detection and tracking
component identifies events per timeslot and keeps track of
their evolution from timeslot to timeslot. The summariza-
tion component calculates a score for each image per event
by applying a graph-based ranking algorithm. Finally, event
retrieval and presentation is the online component of the sys-
tem, used to present the detected events to end users.

3.1 Event Detection and Tracking
The system utilizes a sliding time-window to detect and

keep track of events. As the window moves along the time-
line, new images are inserted into the window while others
are removed. As days are a meaningful unit of time for
events, we set the step of the time-window to one day and
its length to three days. In other words, there is a signifi-
cant overlap of two days between successive timeslots. We
use this overlap to keep track of evolving and long-running
events as will be described in the next sections.

For images within a given timeslot we use what is termed
the Same Event Model (SEM) [7]. The SEM takes as input
the set of per modality similarities between two images and
predicts how likely it is that these two images belong to the
same event. A graph of images GI is constructed, in which
the existence of an edge between a pair of images denotes
the positive prediction of the SEM. Subsequently, a graph-
based clustering algorithm is applied on GI to obtain a full
clustering. Finally, the method either merges these clusters
into events from previous timeslots or creates new events.

3.1.1 Same Event Model
To implement the SEM, a Support Vector Machine (SVM)

with a linear kernel is utilized. An independent training
dataset from the 2014 MediaEval Social Event Detection
task (SED 2014) [8] was used for building the model. The
SED 2014 dataset contains 362,578 Flickr images that are
associated with 17,834 events. Several variations were con-
sidered for building the models, including: a) different ways
of sampling the training and test data, b) different sets of
features and feature similarities, and c) different values of
the classification threshold.

According to [9], sampling of the training and testing data
was found to be a critical factor for the usefulness of the
learned SEM. The problem arises because in reality, there
are pairs of images that have some similarity, according to
at least some modalities, e.g., time, but do not actually rep-
resent the same event. However, it is rather unlikely that
random sampling of negative instances, picks pairs of items

that are even marginally similar to each other. An alterna-
tive is to sample negative pairs so that the chosen pairs of
items are similar according to some modality. Empirically,
we observed that by doing this, although training accuracy
dropped test accuracy increased because the model was more
effective on difficult (borderline) cases compared to a model
that would have been trained on purely randomly selected
data. To be more specific, the models that were eventu-
ally used were trained with 80% randomly selected data and
20% non-randomly selected data. Each data point that was
not randomly selected involved the examination of a single
modality at a time, and all used modalities were equally con-
sidered for sampling the 20% of non-randomly selected data.
The single-modality similarities were based on the following
features:

• Taken time: Four similarity scores are extracted.
The first is the absolute difference in days between the
two image timestamps. The other three are binary in-
dicators signifying whether the difference between the
time each of the images was taken is smaller than 3
hours, 12 hours and 24 hours respectively.

• Text: Three text metadata fields are used, namely ti-
tle, description, and tags. For each field, we compute
a tf · idf vector and the corresponding cosine similar-
ity. Additionally, we extract named entities from these
fields by using Stanford NLP library1 and include three
additional similarity measures based on the number of
common locations, organizations and names of people.

• Image: We used SURF+VLAD using the implemen-
tation of [13]. In particular, we extract SURF features
from the raw image content and aggregated them us-
ing the VLAD scheme. We then used the L2 distance
between VLAD vectors to compute similarities.

The third variation that we explored for building the SEMs
was to tune the classification threshold. Intuitively, for each
image, the SEM will be evaluated against far more images
than the average event size. In a typical scenario, the “real
negative” evaluations of the SEM are expected to be much
more than the “real positive” ones. Therefore, in order to
produce a “clean” graph with not too many spurious edges,
it is useful to increase the true negatives rate. This can be
achieved by increasing the classification threshold for posi-
tive predictions, at the cost of a lower true positives rate.
According to our experiments, this significantly improves
the clustering performance. The test accuracy of the model
when the threshold is not tuned is 98.65% for positives and
98.81% for negatives (average 98.73%). When the threshold
for positive classification is set to 0.9, test accuracy for posi-
tives drops to 95.12%, while accuracy on negatives increases
to 99.87% (average accuracy is 97.49%).

3.1.2 Generation of Image Graph
As the time-window moves forward, new images are in-

serted into the image graph GI . At the same time, the out-
of-window images and the corresponding edges are removed
from the graph. For the newly inserted images, edges be-
tween them and images already in the graph are calculated
based on the SEM as described in section 3.1.1. To limit the
number of SEM evaluations and make the approach more

1http://nlp.stanford.edu/software/CRF-NER.shtml
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scalable, we apply a candidate neighbor selection step [9].
For each image, we utilize appropriate indices to obtain the
most similar images according to each modality and eval-
uate the SEM only for them. More specifically, for each
image we retrieve all the nearest images in terms of textual
and visual content provided that they exceed a predefined
threshold and are within the current timeslot. Then, we cal-
culate the same event score only for the union of these two
sets. For text we used an indexing scheme based on Locality
Sensitive Hashing, while for visual content, we used Product
Quantization on top of the SURF+VLAD representation.

To detect the events in a time window we opted for a
graph clustering algorithm, namely the Structural Cluster-
ing Algorithm for Networks (SCAN) [14]. We apply SCAN
on GI to identify dense sub-graphs of images. These sub-
graphs represent the events in the set of images of this time
window, i.e. each event e ∈ E is represented as a set Ge
of highly connected images on the graph. However, a sub-
stantial amount of images is kept outside of the detected
clusters. These images are divided into two categories, hubs
and outliers. Hubs are bridges to more than one clusters,
while outliers are images that may be connected to images of
a cluster but do not belong to any of them. We add hubs to
the clusters to which they are connected under the condition
that the number of edges exceed a predefined threshold (10
edges). Note that after this step hubs may belong to more
than one clusters. Once the set of events E are detected,
we use images associated with each eventi ∈ E to calculate
an aggregated representation of the event. Namely, for each
event, we compute the minimum, maximum and average
taken time of the images and calculate three merged tf · idf
vectors that describe the aggregated textual content of ti-
tle, description and tags. As named entities are expected
to be particularly relevant for each event, we also aggregate
persons, locations and organizations.

3.1.3 Event Tracking
As new events are detected, the system tries to link them

with detected events from earlier timeslots. To identify
that two clusters are referring to the same event we use the
structural similarity between the underlying sub-graphs, ex-
pressed as the Jaccard coefficient of their edges. If this sim-
ilarity exceeds a certain threshold (0.6), we merge the two
clusters into a single event. Intuitively in our case, if two
sub-graphs of successive timeslots share a significant amount
of edges, the later sub-graph is arising from the previous one.
Note that the overlap of edges is feasible due to the content
overlap (of two days) between successive timeslots. When
such a similarity is detected, the new event is merged into
the older. Namely, the images of the new event are added to
the previous event and its aggregated representation is up-
dated accordingly. Furthermore, we also check for inactive
events. As inactive, we define the events that have no new
inserted images for the last three days. As the length of the
timeslot is also three days, it is unlikely that these events
will have any overlap with events in the following windows.
We remove those from the set of active events and discard
events with less than 10 images. For the rest, we calculate
whether they are local, regional or global. More specifically,
for each event we find a median point and an average radius
based on the latitude and longitude of its images. Events
with radius <100km are considered to be local. Between 100
and 500km they are classified as regional, while events with

Figure 1: Event tracking in successive timeslots.

average radius >500km are defined as global. Also, events
with images from a single user are tagged as personal. Fi-
nally, we calculate the significance scores of images as will be
described in the next section, and we store and index them
in MongoDB and Solr respectively.

3.2 Event Summarization
Our goal is to generate a concise summary of a selected

event e for an arbitrary time-frame. A summary is a set
of representative images depicting the key aspects of the
selected time interval. To support this at retrieval time, we
calculate a significance score for each event image according
to its position on the sub-graph Ge. This calculation is based
on the MGraph summarization method [11], which first finds
sub-events within the event and uses these sub-events to
calculate a prior score for each image. Then, to incorporate
diversity into image scoring, it uses DivRank [6], a variant
of PageRank that aims at diversity. In our case, instead of
finding sub-events within an event by clustering its images,
we perform time-based segmentation. Namely, we create
segments/clusters corresponding to one-day timeslots, and
apply scoring in the same way as done in [11]. At the end
of this process, for an event lasting D days, we have a rank
of the images within each time-slot ti, i = 1...D.

3.3 Event Retrieval and Presentation
At retrieval time, there are two main tasks: The first is

to obtain a set of events that match a specific query q. The
second is to use the calculated DivRank scores to generate
a summary of arbitrary length.

Regarding retrieval, the initial query q is usually short,
e.g., olympic games, and although this usually yields re-
sults of high relevance, it cannot fully capture the underly-
ing information need of the user. To improve the expressive
power of q and increase recall, query expansion is applied:
q → qext. For this purpose we use the tags and named en-
tities of the retrieved events to expand the query with new
terms. As single tags and named entities could yield noisy
results, we combine them in pairs. The final query is the
logical OR between the aforementioned pairs.

For each retrieved event e with associated images I, the
user can select to see a summary of length L for a specific
time-frame F . To this end, we use the scores described in
section 3.2. To achieve this, we keep images IF within F and
iterate over the timeslots of F to form a summary follow-
ing a greedy approach. We first calculate the compression
rate CR = L/|IF |, needed to achieve a summary of length
L. Then, for each timeslot tj ∈ F , we get the correspond-
ing images Ij and find the number of images that need to
be selected to meet the budget of L messages. Namely, the
local target for timeslot tj , is Lj = CR · |Ij | messages.
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Table 1: Details of predefined events
Event #events #items i/ev u/ev
Occupy Movement 120 9,814 81 3.45
Batkid 2 624 312 2
Olympic Games 117 11,535 98 5.2
Eyjafjallajokull Eruption 12 588 49 1.7
Holi, festival of colors 2 52 26 1
Byron Bay Bluesfest 9 707 78 2.4
Hanami 16 3106 194 6.6

Table 2: Basic Statistics of event detection process
between 1/1/2009 and 1/1/2014

Statistics Personal Social Total

Events 23,184 45,729 68,913
Avg. items/event 39 47 44
Avg. users/event 1 5.25 3.82
Local 17,334 24,453 41,787
Regional 765 11,196 11,961
Global 171 7,929 8,100
Avg duration (hours) 19.11 42.9 34.84
Max duration (days) 9.83 19.25 19.25

The algorithm iterates through the images in Ij sorted by
their DivRank score and selects the top Lj images provided
that the value of Equation 1 is below a predefined thresh-
old Rth. As the maximum possible L2 distance is

√
2 we

set Rth =
√

2/2 ' 0.7. In case that the length of a local
summary is still below than the desired one, we re-calculate
the compression rate to select more images from the next
timeslots.

Redundancy(im) = min
im′∈S

L2(im, im′) (1)

The score of Equation 1 measures the redundancy intro-
duced by an image im with respect to the set of already se-
lected images. To this end, we compute its minimum visual
distance, based on L2, to the already selected images. Fil-
tering based on redundancy during image selection ensures
that no visual duplicates are including in the summary.

4. RESULTS
Table 1 presents some statistics for the set of seven pre-

defined events. The number of sub-events in each event and
the number of associated items exhibits high variance. Large
scale real-world events, such as the Occupy Movement and
the Olympic Games, consist of several sub-events and the
number of items per event is high. Also, the average num-
ber of users per event is higher as more users are engaged
in these events. On the other hand, single day events, such
as the batkid case, consist of a small number of sub-events
with many associated items.

Table 2 presents some basic statistics for all the events de-
tected in the YFCC dataset between 1/1/2009 and 1/1/2014.
In total, there are 68,913 events, of which 45,729 are social
events, i.e. the multimedia content for the same event comes
from more than two users. Regarding the characteristics of
personal and social events, a marked difference is the follow-
ing: personal events are typically tagged as local, since it is
unlikely that the same user can post content for the same
event from different locations. At the same time, the ratio of
events tagged as regional and global is considerably higher
for social events.
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