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ABSTRACT
This paper concerns the development of locality-preserving
methods for object recognition. The major purpose is con-
sideration of both descriptor-level locality and image-level
locality throughout the recognition process. Two dual-layer
locality-preserving methods are developed, in which locality-
constrained linear coding (LLC) is used to represent an im-
age. In the learning phase, the discriminative locality-pre-
serving K-SVD (DLP-KSVD) in which the label informa-
tion is incorporated into the locality-preserving term is pro-
posed. In addition to using class labels to learn a linear
classifier, the label-consistent LP-KSVD (LCLP-KSVD) is
proposed to enhance the discriminability of the learned dic-
tionary. In LCLP-KSVD, the objective function includes a
label-consistent term that penalizes sparse codes from dif-
ferent classes. For testing, additional information about
the locality of query samples is obtained by treating the
locality-preserving matrix as a feature. The recognition re-
sults that were obtained in experiments with the Caltech101
database indicate that the proposed method outperforms ex-
isting sparse coding based approaches.

Keywords
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1. INTRODUCTION
Object recognition is that aspect of computer vision that

involves recognizing objects from photographs or videos. Al-
though humans can recognize objects with ease, machines
face numerous difficulties in so doing: for example the vari-
able orientation of objects relative to a camera may have a
huge effect on recognition performance, and the variation of
the size of a target object with the distance from the object
to the camera can greatly affect the accuracy of recognition.
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These difficulties make object recognition a highly challeng-
ing task.

Generally, the process of object recognition can be di-
vided into two main steps, which are feature extraction and
classification. Diverse methods exist for extracting the fea-
tures from image files. Scale-invariant feature transforma-
tion (SIFT) [12] is a method that solves the problem of the
rotated image. Another famous approach to resolving scale-
and rotation-invariance is based on speeded-up robust fea-
tures (SURF) [1]; the method creates a SURF descriptor us-
ing a precomputed integral image. Spatial pyramid match-
ing (SPM) [8] is a technique that solves the problem of scale
variation. SPM splits an image into blocks and computes
histograms of low-level descriptors, such as SIFT, for each
block. The histograms of each block are then concatenated
into a feature vector to represent the image. Originally, a
codebook that is generated by vector quantization (VQ) was
utilized to compute the histograms of descriptors. To avoid
the quantization loss that is associated with VQ, Yang et al.
[17] proposed a linear SPM that is based on sparse coding
(ScSPM). The ScSPM has been proven to be effective with
simple linear SVMs. Yu et al. [19] indicated that locality is
more important than sparsity in nonlinear learning. Based
on the work of Yu et al. [19], locality-constrained linear cod-
ing (LLC) was developed [14]. Zhang et al. [22] presented
low-rank sparse coding (LRSC), which jointly codes the local
region of descriptors for image classification. More recently,
locality-constrained low-rank coding (LCLR) [5] which ben-
efits from joint coding and locality, has also been developed.
The aforementioned locality-based representations [5, 14, 19,
22] provide favorable classification accuracy, even with linear
classifiers.

In the classification step, the extracted image represen-
tations are fed into classifiers such as the support vector
machine (SVM) [2], the sparse representation-based clas-
sification (SRC) [16] and others. Recently, the advent of
supervised dictionary-based methods [3, 7, 10, 18, 20, 21]
has massively improved object recognition; of these meth-
ods, discriminative K-SVD (D-KSVD) [21] is regarded as
one of the most representative. D-KSVD jointly learns the
dictionary and the linear classifier. The classification er-
ror term is incorporated into the reconstruction error term
in the objective function. This scheme improves the dis-
criminative power of the dictionary in face recognition task.
Label-consistent K-SVD (LC-KSVD) [6] was developed by
adding a label-consistent term to D-KSVD to improve the
distinguishability of the learned sparse codes. To preserve
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the local structure of data in dictionary learning, Wei et al.
[15] proposed a locality-sensitive SRC (L-SRC), which has a
close-form solution throughout the learning process. Liu et
al. [11] developed a locality-preserving K-SVD (LP-KSVD),
which integrates the locality penalty term into the D-KSVD
framework. However, to the best of our knowledge, although
various locality-based methods have been proposed, most
consider either locality on SIFT descriptors [5, 14, 19, 22],
or locality on image representations [11, 15].

To exploit fully the potential of the locality-preserving
technique for object recognition task, this paper develops
two dual-layer locality-preserving methods. First, the dis-
criminative LP-KSVD (DLP-KSVD), which incorporates the
label information into locality-preserving term, is proposed.
Second, the label-consistent LP-KSVD (LCLP-KSVD) is de-
veloped to improve the discriminability of the learned dic-
tionary. By employing the LLC for image representation,
the proposed methods take both descriptor-level locality and
image-level locality into consideration.

The rest of this paper is organized as follows. Section 2
describes works relevant to the developed model. Section 3
elucidates details of the proposed model. Section 4 presents
experimental results. Finally, section 5 draws conclusions
and summarizes possibilities for future work.

2. RELATED WORKS

2.1 Locality-preserving Projections
LPP [4] is a linear dimensionality reduction algorithm. It

finds a linear transformation that exposes the locality of the
input signals. The objective function of the LPP can be
presented as,

min
∑
ij

(xi − xj)Lij (1)

where xi is the low-dimensional representation of input sig-
nal yi. L is a similarity matrix which is defined as:

Lij =

{
exp(

−‖yi−yj‖2
ρ

) ; e(yi, yj) = 1

0 ; e(yi, yj) = 0
(2)

where e(yi, yj) = 1 for k-nearest yj according to yi. ρ de-
notes a tunable parameter.

2.2 Sparse Representation Classifier
Sparse representation classifier (SRC) [16] is a classifier

that exploits sparse representation. The dictionary com-
prises training data. Following sparse coding, the recon-
struction error of each class can be calculated. The recogni-
tion results are obtained by minimizing the reconstruction
error.

Let Y be a training dataset that has N signals, each of
which has d dimensions, so Y = [y1, ...,yN ] ∈ Rd×N . For
the reconstruction of Y, the optimization formula of dic-
tionary learning can be conducted by solving the following
equation.

< D,X >= arg min
D,X
‖Y −DX‖2F s.t.∀i, ‖xi‖0 ≤ T (3)

where X = [x1, ...,xN ] ∈ Rm×N represents the sparse codes
of Y, D = [d1, ...,dm] ∈ Rd×m is the trained overcomplete
dictionary. m denotes the total number of dictionary atoms.
The sparse constraint T is applied to control the sparseness
of nonzero items in each sparse code.

2.3 Joint Dictionary Learning
Pham and Venkatesh [13] developed joint dictionary learn-

ing (JDL) as a method that combines dictionary learning
and classifier learning. The objective function is defined as,

< W,b >= arg min
W,b
‖H−WX− b‖22 + γ ‖W‖22 (4)

where W and b are parameters of the linear classifier H =
WX + b. H is the target matrix of the linear classifier.
Each column in H is a vector for which hi = [0, ...1, ..., 0, 0]
is class number that is associated with each input sample.
‖H−WX− b‖22 is the recognition error. ‖W‖22 is the regu-
larization penalty term. To simplify the objective function,
b is set to zero.

The dictionary learning objective function is based on the
combination of l0-norm and the linear classifier objective
function in (4):

< D,X,W >= arg min
D,X,W

‖Y −DX‖22 + β ‖H−WX‖22

+γ ‖W‖22 s.t.∀i, ‖xi‖0 ≤ T
(5)

where the parameters β and γ are used to balance the influ-
ence of each term.

2.4 Discriminative K-SVD
Zhang and Li [21] developed a method of simultaneously

training the dictionary and the classifier, called discrimina-
tive K-SVD. The objective function of D-KSVD is defined
as,

< D,X,W >= arg min
D,X,W

‖Y −DX‖22 + β ‖H−WX‖22

s.t.∀i, ‖xi‖0 ≤ T
(6)

where H ∈ Rc×N is the object matrix of c-classes linear
classifier. Each column in H is a vector such that hi =
[0, ...1, ..., 0, 0] is the class number for each input data. W
is a linear classifier. β is a parameter that modifies the in-
fluence between reconstruction error and recognition error.
Notably, the regularization penalty term ‖W‖22 in joint dic-
tionary learning is discarded to simplify the objective func-
tion.

To obtain the dictionary, sparse codes, and linear classifier
simultaneously, the objective function in (6) is modified as,

< D,X,W >= arg min
D,X,W

∥∥∥∥( Y√
βH

)
−
(

D√
βW

)
X

∥∥∥∥2
2

s.t.∀i, ‖xi‖0 ≤ T
(7)

K-SVD can be used to obtain dictionary D and linear
classifier W at the same time. After training, the sparse
code x′ of the query y′ can be identified. The recognition
result is computed by multiplying the linear classifier W by
the sparse code x′:

l = Wx′ (8)

where l is the recognition result.
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Figure 1: An overview of the proposed method.

3. DUAL-LAYER LOCALITY-PRESERVING
K-SVD FOR OBJECT RECOGNITION

This work developed two dual-layer locality-preserving me-
thods for object recognition. Sections 3.1 and 3.2 address
the difference between them. Both of the proposed meth-
ods comprise two main stages, which are feature extraction
and classifier learning. In the first stage, LLC [14] features
are extracted from the images. In the second stage, the
sparse codes are learned from LLC features based on the pro-
posed methods, DLP-KSVD and LCLP-KSVD. Thereafter,
the linear classifier is used with the learned sparse codes to
recognize objects. In so doing, both descriptor-level locality
and image-level locality are considered. Figure 1 displays
an overview of the proposed dual-layer locality-preserving
methods.

3.1 Discriminative LP-KSVD (DLP-KSVD)
The proposed DLP-KSVD is derived by combining the

preservation of locality with dictionary learning. Unlike the
work of Liu et al. [11], a discriminative target matrix is
proposed to preserve locality. Label information is incor-
porated into the proposed locality target matrix to further
enhance the discrimination of learned sparse codes. Adding
the locality-preserving term into the original D-KSVD yields
the objective function as,

< D,P,W,X >= arg min
D,P,W,X

‖Y −DX‖22 + α
∥∥∥L̆−PX

∥∥∥2
2

+β ‖H−WX‖22 s.t.∀i, ‖xi‖0 ≤ T
(9)

where α and β are parameters that fine-tune the effects of
reconstruction term, locality term, and recognition term on
each other. P denotes a linear transformation matrix that
maps X into locality-preserving code space. W denotes
the linear classifier. L̆ indicates the discriminative locality-
preserving matrix, defined as,

L̆ij =

 exp(
−‖yi−yj‖2

ρ
) ; ĕ(yi, yj) = 1

−(1− exp(−‖yi−yj‖
2

ρ
)) ; ĕ(yi, yj) = 0

(10)

where ĕ(yi, yj) = 1 for k-nearest yj , which belongs to the
same class as yi, and ĕ(yi, yj) = 0 for k-nearest yj , which
belongs to a different class from yi.

Equation (9) can be rewritten by using K-SVD to mini-
mize the objective function as,

< D,P,W,X >= arg min
D,P,W,X

∥∥∥∥∥∥
 Y√

αL̆√
βH

−
 D√

αP√
βW

X

∥∥∥∥∥∥
2

2

s.t.∀i, ‖xi‖0 ≤ T
(11)

3.2 Label-consistent LP-KSVD (LCLP-KSVD)
Except for using class labels to learn a linear classifier,

the label consistent term is utilized to improve the discrim-
inability of the learned dictionary. Following the work of
Zhang and Li [21], the label information is associated with
each dictionary atom in the learning process. Adding the
label consistent term into the original LP-KSVD yields the
objective function as,

< D,P,W,A,X >= arg min
D,P,W,A,X

‖Y −DX‖22 + α ‖L−PX‖22

+β ‖H−WX‖22 + γ ‖Q−AX‖22 s.t.∀i, ‖xi‖0 ≤ T
(12)

where α, β and γ are parameters that fine-tune the effects
of reconstruction term, locality term, recognition term, and
label consistent term on each other. Q denotes the discrim-
inative sparse codes of input signals [21].

Similarly, Eq. (12) can be rewritten by using K-SVD to
minimize the objective function as,

< D,P,W,A,X >= arg min
D,P,W,A,X

∥∥∥∥∥∥∥∥


Y√
αL√
βH√
γQ

−


D√
αP√
βW√
γA

X

∥∥∥∥∥∥∥∥
2

2

s.t.∀i, ‖xi‖0 ≤ T
(13)

3.3 Locality-incorporated Dictionary Learning
For a query sample z, the corresponding sparse code can

be obtained as,

x′ = arg min
x′

∥∥z−Dx′
∥∥2
2

s.t.∀i,
∥∥x′i∥∥0 ≤ T (14)

Finally, after the training step, the recognition result can
be computed using Eq. (8). To incorporate the locality in-
formation into the query, the locality-preserving matrix is
regarded as a new feature. The objective function is rewrit-
ten as,

< D′,P,W,X, >= arg min
D,P,W,X

∥∥Y′ −D′X
∥∥2
2

+β ‖H−WX‖22 s.t.∀i, ‖xi‖0 ≤ T
(15)
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Table 1: Accuracy rates of different training data
sizes on Caltech101 dataset

# of Tr. Images 5 10 15 20 25 30

SRC 49.00 58.81 63.90 66.96 69.47 71.83
D-KSVD 52.59 62.08 66.94 69.66 72.00 74.21

LC-KSVD 52.49 62.14 66.80 69.35 71.49 73.67
LP-KSVD 52.51 62.09 66.90 69.65 71.99 74.23

LCLP-KSVD 55.69 64.59 69.95 71.90 74.50 75.72
LCLP-KSVD+ 55.66 64.78 69.59 71.86 74.63 75.62

DLP-KSVD 55.73 64.75 69.57 72.02 74.80 76.67
DLP-KSVD+ 55.67 64.67 69.48 72.26 74.95 76.79

where Y′ =

(
Y√
αL̂

)
, D′ =

(
D√
αP

)
. K-SVD was used

to solve the objective function as in (11). The locality-

preserving feature L̂ is set to L̆ in DLP-KSVD, whereas it
is set to set to L in LCLP-KSVD.

When a query sample z is addressed, the training data Y
were utilized to calculate locality-preserving feature which
is defined as,

L̄j =

{
exp(

−‖z−yj‖2
ρ

) ; e(z, yj) = 1

0 ; e(z, yj) = 0
(16)

where e(z, yj) = 1 for k-nearest yj according to z.
We combine the query z and L̄. Extracting sparse code

x̄ and then utilize (8) to obtain the recognition result. The
objective function is defined as,

x̄ = arg min
x̄

∥∥∥∥( z√
αL̄

)
−D′x̄

∥∥∥∥2
2

s.t.∀i, ‖x̄i‖0 ≤ T (17)

where D′ denotes the locality-incorporated dictionary for
coding the query.

4. EXPERIMENTS
Experiments were performed on Caltech101 [9] database.

Caltech101 contains 102 classes (101 main classes and a
background class) and a total of 9144 images. Each class
is associated with 31 to 800 images of various sizes and the
sizes vary hugely among classes. SRC [16], D-KSVD [21],
LC-KSVD [6], and LP-KSVD [11] were selected as base-
line algorithms for comparison. SPM [8] was used to ex-
tract the features in the SRC, D-KSVD, LC-KSVD, and LP-
KSVD methods. For simplicity, the proposed methods with
locality-incorporated dictionary learning are abbreviated as
DLP-KSVD+ and LCLP-KSVD+, respectively. LP-KSVD,
DLP-KSVD and LCLP-KSVD used 60 nearest neighbors
(k = 60) in the calculation of the locality-preserving matrix.
The parameters α, β, and γ are set to 0.001. To obtain a
reliable result, all of the experiments were carried out ten
times and the mean value of the results was obtained.

4.1 Comparison of Effects of Variously Sized
Training Data

To determine the effect on the size of the training dataset,
5, 10, 15, 20, and 25 images per class were selected at random
for training with dictionary size 510, 1020, 1530, 2040, 2550,

and 3060 respectively, and the remaining images were used
as the testing data.

The experimental results, presented in Table 1, confirm
that the proposed DLP-KSVD performed best. Specifically,
LCLP-KSVD is 1.5% to 2.5% better than LP-KSVD with
25 and 30 training samples per class, respectively. DLP-
KSVD outperforms LP-KSVD by approximate 1% in the
same condition. DLP-KSVD+ and LCLP-KSVD+ under-
performed DLP-KSVD and LCLP-KSVD when the number
of training samples was small but outperformed them when
the number of training samples was large. This observation
indicates that the incorporated locality information becomes
more important as the number of training samples increases.

4.2 Comparison of Effects of Variously Sized
Dictionaries

To elucidate the effect of dictionary size on the Caltech101
dataset, 30 images were randomly selected to provide train-
ing data. The dictionary size was set to 510, 1020, 1530,
2040, 2550, or 3060. As shown in Table 2, the proposed
methods achieve the most accuracy for all dictionary sizes.
The proposed DLP-KSVD (76.79%) is much better than the
other sparse coding based methods in Table 3, which are
SRC (71.83%), D-KSVD (74.21%), LC-KSVD (73.67%), and
is approximately 1.5% better than the LPKSVD.

Table 2: Accuracy rates of different dictionary sizes
on Caltech101 dataset

Dictionary Size 510 1020 1530 2040 2550 3060

SRC 71.57 72.00 71.75 71.50 71.60 71.83
D-KSVD 72.03 72.42 71.97 70.81 72.00 74.21

LC-KSVD 72.16 72.22 71.19 71.32 71.19 73.67
LP-KSVD 71.89 72.35 71.96 72.01 71.95 74.23

LCLP-KSVD 73.10 74.19 74.17 73.79 74.33 75.72
LCLP-KSVD+ 73.02 74.21 74.43 73.76 74.42 75.62

DLP-KSVD 73.11 74.34 74.48 74.62 74.91 76.67
DLP-KSVD+ 73.40 74.75 74.47 74.68 75.30 76.79

5. CONCLUSIONS AND FUTURE WORKS
This work developed the dual-layer locality-preserving mo-

del, which improves conventional dictionary learning ap-
proaches by jointly considering descriptor-level locality and
image-level locality. The addition of a locality-preserving
term improves the distinguishability of the classifier for ob-
ject recognition problems. Specifically, label information is
incorporated into the locality-preserving matrix. A label-
consistent term is utilized to enhance the discrimination of
learned sparse codes. Experimental results demonstrate the
superiority of the proposed DLP-KSVD and LCLP-KSVD
with Caltech101 database. The locality-incorporated dictio-
nary learning has been shown to play an important role when
the training dataset is sufficiently large. Possible future work
includes extending the presented approach to the online dic-
tionary learning, which is highly applicable to large-scale
data processing. Also, treating the locality-preserving ma-
trix as the target of another nonlinear classifier to perform
discriminative feature extractions, will be of interest.
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