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ABSTRACT
The semantic gap between low-level visual features and high-
level semantics has been investigated for decades but still
remains a big challenge in multimedia. When “search” be-
came one of the most frequently used applications, “intent
gap”, the gap between query expressions and users’ search
intents, emerged. Researchers have been focusing on three
approaches to bridge the semantic and intent gaps: 1) de-
veloping more representative features, 2) exploiting better
learning approaches or statistical models to represent the
semantics, and 3) collecting more training data with better
quality. However, it remains a challenge to close the gaps.

In this paper, we argue that the massive amount of click
data from commercial search engines provides a data set
that is unique in the bridging of the semantic and intent
gap. Search engines generate millions of click data (a.k.a.
image-query pairs), which provide almost “unlimited” yet
strong connections between semantics and images, as well
as connections between users’ intents and queries. To study
the intrinsic properties of click data and to investigate how
to effectively leverage this huge amount of data to bridge
semantic and intent gap is a promising direction to advance
multimedia research. In the past, the primary obstacle is
that there is no such dataset available to the public research
community. This changes as Microsoft has released a new
large-scale real-world image click data to public. This pa-
per presents preliminary studies on the power of large-scale
click data with a variety of experiments, such as building
large-scale concept detectors, tag processing, search, defini-
tive tag detection, intent analysis, etc., with the goal to
inspire deeper researches based on this dataset.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing - abstracting methods, dictionaries,
indexing methods. Information Search and Retrieval - re-
trieval model, search process, relevance feedback.
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1. INTRODUCTION
It was estimated that there were more than 6 billion pho-

tos on Flickr, at least 690 million videos on YouTube and 220
billion or more photos on Facebook. Content-aware multi-
media managing, understanding, searching and consuming
is a key technology to deal with the explosion of images
and videos available on the Internet, desktops and mobile
devices.

However, visual content analytical technologies have not
been extensively exploited in real-world applications such as
tagging, searching, advertising and recommendation. The
primary barrier is that current media content understand-
ing technologies are still not mature enough to bridge the
“semantic gap” (the gap between the low-level features and
high-level semantics) and the “intent gap” (the gap between
the representation of users’ query/demand and the real in-
tent of the users), in terms of accuracy, scalability and cover-
age. The technologies are still not there to effectively power
real-world applications, especially when the data volume is
large and data complexity is high [7, 12].

There are three possible directions to bridge these gaps:
1) to develop more representative visual features from the
pixels in images or video frames, 2) to invent better learning
approaches and/or statistical models to model and learn the
semantics, and 3) to collecting more training data with bet-
ter quality. Considerable efforts on the first two approaches
have been made in the past decades (though the “gaps” re-
main). For the third, the key barrier is the availability of
high quality and large scale dataset.

Though there are already quite a few labeled image datasets
available to model and learn semantics for visual content,
such as ImageNet [5], the coverage (in terms of both labels
and images) of those datasets are far from being able to in-
fer semantics for real-world applications. A good dataset for
this purpose should not only contain large-scale data, but
also reveals the challenges in solving real-world problems,
enables creative researches to solve the challenges, and ver-
ifies the right solutions that are able to power real-world
applications. We argue that the click data from commercial
search engines meets these requirements.

Click data has been studied for some time in Web search
area. But to the best of our knowledge, only a few limited
research that is using large-scale click image data to bridge
semantic and intent gap can be found in literature [10]. In
this paper, we will discuss why and how large-scale click data
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Table 1: Comparison of different image datasets.

can be used to bridge semantic gap and intent gap in a vari-
ety of image applications. We call this direction “Clickage”,
which means the use of large-scale click data to build the
linkage among visual content, semantics and search intents.
In [9], a large-scale click based image dataset, Clickture, is
introduced. All the data used in this paper can be accessed
at a central website (http://www.clickture.info). Table 1
shows a summary of commonly used image datasets and
Clickture. More details of the unique features, construction
processes, and properties of Clickture can be found in [9].
This paper will focus on experiments on Clickture to explore
what this large-scale click-based dataset can provide and to
show that the idea of “Clickage” is a promising direction to
advance content-aware multimedia research.

The main purpose of this paper is not to present the“best”
solutions to the research problems discussed below, but to
introduce baselines for a variety of existing and new research
topics by using the Clickture dataset, as well as to inspire
deeper and more sophisticated studies based on this new
real-world image dataset.

We will briefly review the properties of the Clickture dataset
in Section 2. For the next three sections (3 to 5), we present
three sets of exemplary research problems on the dataset,
including query modeling, graph-based image analysis, and
query intent analysis. Extensive experimental results will be
reported and a dedicated“discussion”sub-section is included
in each section. We conclude the paper in Section 6 with a
highlight on a few additional research directions using the
Clickture dataset.

2. THE NEW DATASET: WHAT AND WHY
To make the paper self-contained, in this section, we briefly

review what are included in the Clickture dataset and then
summarize the unique properties of this dataset. As afore-
mentioned, more details can be found in [9].

2.1 The Datasets
The dataset, named Clickture, was sampled from one-year

click log of a commercial image search engine. It consists of
a big table with 212.3 million triads:

Clickture = {〈K,Q,C〉}. (1)

A triad {〈K,Q,C〉} means that the image “K ” was clicked
“C ” times in the search results of query “Q” in one year
(maybe by different users at different times). Image K is
represented by a unique “key” which is hash code generated
from the image URL, together with the original URL. Query
“Q” is a textual word or phrase, and click count C is an

Table 2: Basic numbers of Clickture-Full and Clickture-Lite.

integer which is no less than one. One image may correspond
with to one or more entries in the table. One query may also
appear in multiple entries triads that are associated with
different images. There are 40 million unique (in terms of
URLs) image keys, that is, images in the dataset, and 73.6
million unique queries (based on textual string comparison
in lower case) in the Clickture.

Through users’ click action during When doing image
search, a user often clicks one or more images that are rel-
evant to the query, thus mostly the query Q in the triad is
relevant linked to the image K. In general, the bigger the
click count C is, the higher probability that the correspond-
ing query is relevant to the image. For convenience, we call
Q a “clicked query” of Image K, and K a “clicked image”
of query Q, and call 〈K,Q〉 a “clicked image-query pair”,
and the triad 〈K,Q,C〉 as “click data”. We also call “clicked
queries” of an image as “labels” of the image.

To enable the use of Clickture by a wide range of re-
search organizations and individuals with different comput-
ing, networking, storage and programing capacities, a sub-
set of Clickture images (1 million images and 11.7 million
queries), is provided. We call this set Clickture-Lite and the
full 40M dataset Clickture-Full (or in brief Clickture). The
1M images in Clickture-Lite are randomly sampled from
the 40M image dataset (based on click frequency). Table 2
shows the basic numbers of Clickture-Full/-Lite, in which
“terms” means individual words in a query. For example,
query white dog contains two terms: white and dog.

Figure 1 shows the distributions of query lengths (i.e.,
number of words in a query) of Clickture (for clarity of
the figure, only the percentage numbers for the Full set are
shown). It is observed that most queries have 3 or 4 words
(around 53% for both sets) and more than 83% queries have
2 to 5 words. Less than 2% of the queries only have one
word. Around 15% queries have six of more words, which
maps to 1.7M and 11.3M queries in Clickture Lie and Full
sets, respectively. These queries give us sufficient data to
study the challenge of both long and short queries in image
search.
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Figure 1: Query length distribution.

Table 3: Top 5 domains.

Table 3 shows the top 5 domains where the image URLs
come from. We can see that top domains are all from social
media websites (including blog websites and photo sharing
websites), which is accordant to the fact that social media
now is receiving increasing attention from Internet users. At
the same time, it also shows that Clickture provides suffi-
cient data to facilitate researches on social media data.

2.2 The Advantages of Click Data
Most existing image datasets consist of limited number of

images, which in general have relatively high accuracy but
lower coverage in terms of both images and labels. Usually
it only contains hundreds of object categories and is far from
revealing the real-word complexities and meeting the needs
of real-word applications, which needs to deal with millions
of objects. Datasets based on social media sharing web-
sites (for example, NUS-Wide [3], in which the user-input
tags on Flickr were regarded as the labels of the images)
typically contain big noises as well as the problem that the
labels are often too generic because users generally tend not
to spend too much time on labeling [5]. TinyImage [18]
and ImageCLEF (the part for scalable image annotation)
use the results returned by search engines directly [1], which
are very noisy. ImageNet improved the label quality by us-
ing crowdsourcing labeling, which reaches 99.7% precision
in average. ESP dataset [21] and LabelMe [19] are also
constructed through crowdsourcing, one through ESP im-
age labeling game and the other through volunteered online
labeling. LabelMe only has 183 categories because manu-
ally labeling regions is still tedious even by leveraging online
volunteers. Labels generated through ESP game are mostly
“basic level” semantics as humans tend to label easily ac-
cessible semantics, although they are accurate. The labels
in ImageNet are based on WordNet hierarchy, which have
better coverage than ESP data. However, its overlap with
the queries that people are using in daily search is very low.
For example, it only covers 0.01% of the distinct queries in
Clickture [9].

us map mitt romney fall leaves
united states map romney fall

map of united states mit romney autumn

flowers house funny
rose nice house funny cats

rose flowers nice homes cat

Figure 2: Random examples in click data

The primary shortcoming of existing image datasets is the
low coverage of real-world semantic to reveal and verify the
real-world challenges and complexities, thus the researches
based on those datasets still have a large gap from being ca-
pable of powering real-world applications. On the contrary,
Clickture was constructed by a totally different approach:
using search engine click logs. As a byproduct of commer-
cial image search engines, and with the increase of the image
indexed as well as the number users that are using image
search, Clickture can potentially grow both in amount of
data collected and its coverage, and be extended unlimit-
edly. It also reflects common users’ searching and consum-
ing interests and covers the semantics (textual queries) that
people desire to search in daily life. Labels in Clickture are
more accurate than datasets that are using search results
from search engines or user-input tags in Flickr, though less
accurate than manual labeling. Figure 2 shows a few random
exemplary images with top three clicked queries. We observe
that the quality of the label is generally high, though noises
can also be observed. Figure 3 shows the top 100 clicked im-
ages of query chair, which contains a variety of chairs with
diverse appearances.

Figure 3: Top 100 clicked images of query “chair”.
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3. EXAMPLARY RESEARCH (I): QUERY
MODELING

In this section, we will use Clickture as “labeled” data
for semantic “concept” (a.k.a., “queries” in this paper) mod-
eling and classification and then use the classification re-
sults to improve the ranking of image search. Throughout
the section, for each image in the dataset, we use a 1000-
dimensional feature vector, which includes color histogram,
color wavelet, gradient histogram, face, etc.

3.1 Top Query Modeling
In this experiments, we evaluate statistical models learned

from Clickture for queries with relatively larger number of
clicked images. For Clickture-Lite, we filter out queries with
less than 100 clicked images and form a “top query list”,
which contains 6891 queries. We also use this list for the
Clickture-Full. Table 4 shows the distribution of the num-
ber of clicked images of these queries in the Full and Lite
datasets. A few examples can be found in Figure 4 and 6.

Table 4: Number of clicked images for top queries.

Table 5: Top query modeling performance on Clickture-Lite.

Acc.: Accuracy; P.: Positive; Prec.: Precision; T.: Time Cost

(in machine-hour); FRC: Fast Rank Classification; PM: Parameter

Mixer; AP: Averaged Perception; LR: Logistic Regression.

Table 6: Top query modeling performance on Clickture-Full.

Abbreviations are the same as Table 5.

In the first set of experiments, we regard clicked images
with click count equal to or greater than n as “real” positive
samples for the corresponding query in the top query list.
The larger the n is, the more accurate the training data is.
The tradeoff is that there are fewer training samples satisfy-
ing the accuracy criteria. We selected negative samples by
randomly sampling from the rest of the dataset, with the

(a) “backsplash designs”

(b) “bunk beds”

(c) “lifted trucks”

Figure 4: Top query modeling examples (upper row: training
data; lower row: top predicted positive).

images that do not contain the target query in the clicked
query list.

Five learning algorithms are applied on the top query
dataset in Table 4, with 6891 top queries with their clicked
images: Linear SVM [16], Fast Rank Classification (Boost-
ing Decision Trees) [6], Parameter Mixer [15], Averaged Per-
ception [4] and Logistic Regression [2]. Two-fold cross vali-
dation is used to evaluate the performance of the algorithms.
Parameters of those algorithms are fine-tuned on a ran-
domly sampled query set with 50 queries. All the learning
and prediction are carried out on a low-end cluster with 12
machines (Quad-Core 2.1 GHz CPU, 8G RAM, Windows
Server 2008).

Table 5 and 6 shows the performance numbers (accu-
racy, positive precision/recall, and negative precision/recall)
of those five algorithms on Clickture-Lite and -Full respec-
tively, including training and test time costs of each experi-
ment.

From the two tables, we can see Fast Rank Classification
perform the best in all metrics. Moreover, when is set to 1,
the results are almost always better than those when n = 2,
which shows that more data generates better results though
at the same time more noises are brought in.

Figure 4 shows the randomly selected three queries with
accuracies larger than 0.95, on the Clickture-Full dataset
when n = 1, using the best learning algorithm in Table 6
(i.e., Fast Rank). The top ten positive training samples
(according to click counts) are shown in the first row and
the top ten images from the test part which have the highest
prediction confidence (though may not be correct) are shown
in the second row.

3.2 Image Annotation by Query Modeling
In the above experiment, we used clicked images as both

training data and ground-truth for evaluation. In this sec-
tion, we apply the models learned in Section 3.1 to annotate
a different set of images.

From the top 6891 queries, we randomly select 100 queries
with accuracy higher than 0.90, and then for each query
model, top 50 search results of the corresponding query from
a search engine are used for evaluation. The 100 best clas-
sifiers (from the aforementioned five algorithms, retrained
using all the click data) are applied on 5K images. The accu-
racy, positive precision/recall, and negative precision/recall
are 0.8412, 0.8292, 0.8590, 0.8541 and 0.8233, respectively.
Figure 5 shows a few prediction results.
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Figure 5: Examples of image annotation by top query modeling.
The query is “cars”. Images with blue, green and orange borders
mean: true positive, true negative and false negative, respectively.
No false positive is found in this example query.

3.3 Rank Learning
We investigate how Clickture can be used to improve im-

age search ranking. The development set in the MSR-Bing
Image Retrieval Challenge 2013 [9] is used for testing, which
contains around 80K image-query pairs. The task is to es-
timate the relevance of the image and the query for each
query-image pair, and then for each query, we order the im-
ages based on the prediction scores returned by the trained
classifiers.

As in [9], Discounted Cumulated Gain (DCG) [11] is ap-
plied to measure ranking results against the manually la-
beled ground-truth,

DCGp = αp

p∑
k=0

2relk − 1

log2(k + 1)
(2)

where p = 25, αp = 0.01757, relk is graded relevance score
of the result in position k in the labeled dataset, and relk =
{Excellent = 3;Good = 2;Bad = 0}. And last, the average
of the DCGs on all the queries is the final evaluation result.

In this experiment, we discard queries in the development
set that do not intersect in the Clickture. In total 352 and
546 queries intersect with Clickture-Lite and -Full, respec-
tively. We randomly select 100 shared queries from these
two intersections for evaluation. Fast Rank Regression [6] is
used to learn a ranking function, and all the clicked images
of the selected queries are used as training data. Two set-
tings were tried: Setting 1: regarding the ranking label of
all clicked images as “relevant” and randomly selected neg-
ative samples as “irrelevant”; Setting 2: regarding images
with click count greater, equal, less than m as “Excellent”,
“Good”, and “Average”, respectively and negative samples
as irrelevant (m is set to 3 in this experiment).

For Setting 1, DCG numbers on the Full and Lite sets
are 0.474 and 0.482, respectively. The DCGs increased to
0.483 and 0.493 for Setting 2, which shows more training
data generates better results, and grading click counts also
further improve the DCG numbers. In Section 5, we will see
that query intent estimation from click data will improve
these results.

3.4 Discussion

3.4.1 Applications of Query Modeling
Experiments in this section showed promising results on

annotating images with queries. When the number of queries
(labels) is small, the annotations cannot improve the search
quality in any significant way due to only a small portion of
the images in the index will be impacted by those classifiers,

as well as that sufficient number of Web images in general
already have textual meta-data that are relevant to those
categories. However, those small number of classifiers may
significantly assist personal photo search because personal
photos in general are lack of text descriptions. In Section
5, we will show that small-scale classification helps general
web image search when the categories are sufficiently broad
and when they are combined with query intent estimation.

3.4.2 Large-Scale Query Modeling
In 3.3, we only evaluated queries that can be found in the

training datasets, and only trained classifiers for those top
queries. In real search systems, this will not improve the
search quality too much as it cannot cover queries that are
not in the top query list. Two possible approaches can be
applied: query modeling and n-gram modeling. The most
difficult aspect here is handling the scalability issue, that is,
training large-number of classifiers efficiently and predicting
labels over large-number of labels in real-time [9, 8].

3.4.3 Completeness of Clicked Queries
The primary purpose of “query modeling” is to use click

data to connect image content with semantics. The advan-
tage of using click data is that it conveys a very wide range
of “semantics” through a variety of “queries”. Though those
“queries” are not a “complete” list of textual descriptions of
the image content, we believe it covers most“semantics”that
average users care in their daily search. At the same time,
the study of the completeness of the clicked query list of an
image is a separate research topic which is very interesting
and challenging.

3.4.4 Modelability of Queries
We first tried to model“query”with large number of clicked

images and also discussed possible approaches to model ev-
ery queries and n-grams with clicks. However, not every
query can be modeled through the low-level features that
we extracted and the statistical models that we choose. For
example, the 10 queries with the worst accuracy (less than
0.61) under the best experimental setting in Table 6 are:
images quotes, crazy, s (letter “s”), image, cool stuff, pic-
tures of stuff, image of art, funny animated pictures, fun,
and Chinese.

Figure 6 shows a few exemplar clicked images for some of
these queries. We can hardly find any “patterns” to model.
It is also difficult to design specific features to model them.
We plan to investigate on identification of those tough to
model queries, and investigate their feature discovery and
selection in a future work.

A large number of queries in Clickture only have very
limited number of images, which are very difficult to be
well modeled. We plan to investigate the modelling of such
query by leveraging other semantically-similar queries and
returned images in our future work as well.

3.4.5 Handling Noises
Though clicked queries are in general relevant to the cor-

responding image, noises exist in Clickture. Some images
may be clicked by mistake as they attracted users’ attention
for whatever reason (for example, very unique or strange
images, even though they are not relevant to the current
query). Clicked labels may also contain typos. As search en-
gines typically are tolerant to“typos”, they show indexed im-
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Figure 6: Queries that are difficult to model (top: “crazy”; middle:
“fun”; bottom: “cool stuff”).

ages of the (automatically) corrected query to users. There-
fore, some clicked images may be associated with queries
with typos. The query count is a good indicator for the con-
fidence or relevance of the label to the image. By grouping
multiple visually duplicate and/or similar images into a clus-
ter, it is possible to reduce the noises in the clicked queries.
Reduction of noise will be discussed more in Section 4.

3.4.6 Leveraging Correlations among Queries
Quite a few similar clicked queries will appear for “popu-

lar” images (images with a large number of clicked queries).
For example, “cat”, “cats”, “cat picture”, “image of cats”,
“image of cat”, “cats images”, “kitten”, “image of kitten”,
etc., may be clicked queries of the same image. A pre-
processing step of removing non-essential phrases, such as
“picture”, “image”, “image of”, and “picture of” from the
query labels, will combine clicked images of semantically-
equal queries into one single set.

In addition, if the “correlations” of queries can be discov-
ered, for example, if we know “labradoodle dog” is a kind
of “dog”, and “dog” is a kind of animal, the clicked images
of those queries can be leveraged upon each other to en-
hance query modeling. WordNet provides such an ontology.
The shortcoming is that it only covers a limited number of
queries. Researchers have also found ways to automatically
create term ontologies, such as Needle Seek [27], which can
be applied here.

4. EXAMPLARY RESEARCH (II): GRAPH-
BASED IMAGE UNDERSTANDING

In this section, we will build a similarity graph on the 40
million Clickture-Full dataset and then use it to do “tag pro-
cessing”, image search and image annotation. Experimental
results and discussion remarks will be presented at the end
of this section.

4.1 Building Image Graph and Image Index
We represent each image with a 768-dimensional float vec-

tor. Mixture of Gaussian models are used to generate 12
representative colors in the color space [22], and for each
RGB color, we compute a probability histogram indicating

its similarity to the 12 colors. For each image, we divide it
into a 9 × 9 grid. A color histogram is generated for each
2 × 2 cells. As a result, we get 64 histograms, from which
a 768-dimensional feature vector is produced by concatena-
tion.

As in [23], a hierarchical partition tree partitions the whole
data set into one million clusters, and then a similarity graph
is built for the one million cluster centers. Each cluster
center is assigned with a unique ID and then regarded as a
“visual word”to describe the image. We build up an inverted
index structure that maps each cluster ID (a.k.a. visual
word) to its member images in Clickture-Full.

For each image in Clickture-Full, we then search over the
inverted index to obtain the nearest 100 images to the query
image as the initial similar images. Finally, we re-rank those
images using the Euclidean distance between the original
features of the images and the query image [23]. By this way,
we have generated a 100-NN graph on the 40M Clickture-
Full dataset.

4.2 Tag Processing
Here “tag” means a clicked query of an image in Clickture-

Full dataset. As aforementioned, noises exist in the dataset
and the clicked queries are not complete, tag processing will
reduce the noises as well as adding more tags to the images.

4.2.1 Tag Ranking
Tag ranking is to rank the tags of an image according to

their relevance or importance to the image [14, 13]. Different
from the work in [14, 13], tag ranking here not only ranks
existing tags of the image, but also enriches tags from its
neighbors, and this can be done in a unified way, as below.

Suppose the nearest neighbor list of query image x0 is
{〈xi, di〉, 0 ≤ i ≤ m}, among which xi is an image, di is the
distance of xi to the query image, with d0 = 0. Then a tag
t’s weight to x0 is

wt =

m∑
i=0

ClickCount(xi, t) · e−αdi (3)

where ClickCount(xi, t) is the click number of image xi un-
der query t, and α is a parameter to adjust the importance
of image distance.

In equation (3), click count is used to indicate the confi-
dence of a tag. To avoid to be dominated by images with
very high click counts, we clip click counts to T (T = 25
in this paper). At the same time, to suppress the possible
noises in neighbors, when computing the weight of each tag,
we only use the nearest M candidates that have that tag.
For each image, besides re-weighting the existing tags of the
target image, we enrich at most 5 tags from its neighbors
(M is set to 20 here).

4.2.2 Definitive Tag Generation
In many scenarios, it is beneficial to generate one most

representative tag for the image. We call this tag the defini-
tive tag of the image. For example, in “search by image”
scenario, a “best guess” of the user uploaded image is to
show the definitive tag. Moreover, “search by image” can
then search over the image database using both the defini-
tive tag and the query image’s visual features, which will
lead to improved quality of the search results comparing
with searching by only visual features.
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Based on “tag ranking” in 4.2.1, the top one tag of the
image can be regarded as “definitive tag”. A more sophisti-
cated approach can take into account the balance of “gener-
ality” and “specificity” of tags to find a more representative
tag. For example, “dog” is a correct tag for an image of a
labradoodle dog, but “labradoodle dog” is more specific thus
a more informative tag than the generic tag “dog”.

4.3 Annotation by Nearest Neighbor Search
After tag processing over the graph, the tag quality of the

images in Clickture is greatly improved. Then, can we use
this“graph”to annotate images that are not in Clickture? In
Section 3, we have shown that this can be done by building
statistical models for queries and then applying the learned
models on the image to get annotations. However, when we
have built a large image graph with quality tags, a different
approach can be employed.

Actually, this can be done easily by using the same ap-
proach of tag processing, where the difference is that the
query image does not have any initial tag. First, we extract
visual words using the approach mentioned in Section 4.1
from the “out-of-database” image, then get a list of nearest
neighbors from the inverted index. And last, use equation
(3) to get the tags for the target image.

4.4 Similar Image Search
To search for similar image of a given image, we first find

its nearest neighbors based on only image features (that is,
visual words matching through the inverted index and then
re-ranking based on the original image features). This is the
baseline results of similar image search.

4.4.1 Re-Ranking by Tag Filtering
When the query image is in the database and it has some

tags, we can improve the similar image search result simply
by applying a tag filter. After the baseline image list is
obtained, we check each of the image on whether it shares
a common tag with the query image. We move all images
that do not share a common tag with the query to the end
of the image list.

4.4.2 Re-Ranking by Tag Ranking
Using the equation of tag ranking, we can re-rank the

baseline “similar image list” by

Sim(xi) = e−αdi
k∑
j=1

wtj · ClickCount(xi, tj) (4)

where w(tj) is the weight of tag tj to image xi, 1 ≤ j ≤ K.
In (4), both click counts and tag ranks/weights are applied
to re-rank the baseline similar image list.

4.5 Definitive Image Generation
For a given“tag”or query, what are its most representative

images? After tag ranking, the tag weight measures the
relevance of a tag/query to an image. For all images that
contains a certain tag, we can sort the image by the tag
weight to rank images and identify the most representative
images.

More sophisticated approaches can take the balance of
diversity, visual quality, representativeness, freshness and
completeness into account in ranking the images and gener-
ating representative images.

4.6 Experimental Results
We randomly sampled 1000 images from Clickture-Full

dataset to evaluate the approaches presented in this section.
In case the query image should not be included in Clickture
(a.k.a. “out-of-database” images) in an experiment (for ex-
ample, annotation by NN search, definitive tag for images
that are not in Clickture, etc.), to save labeling cost, we use
the same 1000 images but remove their tags and at the same
time remove them from Clickture.

Table 7 lists the average numbers of tags or accuracy of
image search with the following definitions:

• Number of Original Tags: number of tags with the
query image

• Number of Original Useful Tags: number of tags that
are strongly connected to the query, labeled manually

• Number of Enriched Tags: number of tags got from
the candidate neighbors. Always 5 in this experiments

• Number of Enriched Useful Tags: number of tags got
from the candidate neighbors that are strongly con-
nected to the query

• Number of Good Definitive Tag : for each image, we re-
garded the tag with the largest weight as the definitive
tag, and count how much percentage of the primary tag
can well represent the sematic content of the image

• Rate of Baseline Relevant Images: number of the im-
age with same sematic content in the first 20 images
after ranking by only image features

• Rate of Relevant Image After Tag Filtering : number
of the image with same sematic content in the first 20
images after tag filtering

• Rate of Relevant Image After Tag Ranking : number
of the image with same sematic content in the first 20
images after refinement

From the table, on average, tag ranking adds 1.18 strong
relevant tags for in-database images. The number increased
to 2.04 for out-of-database images. The reason is that the in-
database images already contain 1.89 strongly relevant tags
(on average) so there is less room to add more high-quality
tags.

Table 7: Tag precessing evaluation.

It is also observed that, for in-database images, tag fil-
tering improves the relevance 12 points compared with the
baseline (in terms of percentage of relevant images in top
20 returned results), and tag ranking improves more than
21 points. For out-of-database image, tag ranking improves
19.6 points (tag filtering will not work in this case). Figure 7
and 8 shows a few exemplar results of in-database and out-
of-database image queries, respectively. The third result in
Figure 7 is an example with worse result after tag ranking.
The reason is that a few images about music notes have a
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(a) Ranked High Confidence Tags: Cocker, Spaniel, Puppies

(b) Ranked High Confidence Tags: Jeep, Jeeps, Orange

(c) ‘Ranked High Confidence Tags: Shoes, Music, Notes

Figure 7: Three In-Database Example. Each example has three
sets of results shown and (top-left image is the query image):
top row: baseline search results; middle row: re-ranking by tag
filtering; bottom row: re-ranking by tag ranking. The ranked
high confidence tags are shown under each result set and the first
one is the detected “definitive tag”.

very similar shape with a shoe, thus the tags of music notes
are wrongly propagated to the shoe image. Figure 9 shows
more results of definitive tag detection.

To evaluate definitive image detection, we randomly sam-
pled 1000 queries and compare the top one definitive images
for the following two settings: (1) based on original click
counts only; (2) based on ranks after tag ranking. Table 8
shows the evaluation results and Figure 10 shows a few ex-
amples.

4.7 Discussion
It is possible to use different features and distance met-

rics to build graphs. Different tags (clicked queries) may be
more effectively and precisely propagated on different fea-
tures and/or distance metrics.

After tag filtering and refinement over graphs, the noise
in the clicked log reduces. We may be able to build better
statistical models upon them.

Building sub-graphs on certain domains is another idea to
more effectively using the correlations among images. Im-
ages within a specific domain, for example, people, land-
marks, animals, etc., generally have denser and more trustable
connections.

Going one step further, connecting image graph with web
page graph (which is constructed through in-links and out-
links on the web pages), and query/label ontologies is an-
other promising direction to infer more accurate semantics.

(a) Definitive Tag is “House Family”.

(b) Definitive Tag: “AR Rifles Gun”

(c) Definitive Tag: “Watch Spiral Rolex”

Figure 8: Three out-of-database examples. For each example,
first row: baseline results; second row: re-ranking by tag ranking.
The first image of each result is the query image.

Table 8: Definivtive image evaluation.

This may blur the boundary between image semantic un-
derstanding and image search, as they are leveraging each
other to achieve better understanding/search performance.

5. EXAMPLARY RESEARCH (III): QUERY
INTENT ANALYSIS

Preliminary intent analysis has been reported in [26]. Be-
sides revealing the connections between image content and
semantics, click data also reflect users’ query intents. Through
image categorization and click data analysis, we may be able
to discover users’ search intent of a query.

Search intent of a query (or “query intent” in brief) can
be described by categories in different levels. For example,
in a relatively higher level, we may say the search intent of

Figure 9: Example of definitive tag detection.
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Figure 10: Examples of definitive images (top five in order). From
top to bottom: forest, jeep, lighting, shoes, and stadium.

“Canon 60D” is “searching images of a product”, while in a
relatively lower level, the intent can be described as “search-
ing images of a camera”, or “searching images captured by
cameras of a certain model”. If the intent of a query is
known, the search results can be ranked better accordingly.

Query intents can also be“implicit”, which we can also call
it query “types”. For example, for an image query of “World
War II”, most people would like to see real World War II
pictures, instead of pictures in a movie about World War II.
As all real World War II pictures are mostly in black and
white, then “black and white” can be an implicit or hidden
“query intent”. This kind of “type/intent” categorization
can also help ranking. For example, we will not rank color
images high for query “World War II” when we know the
query intent of this query is “black and white”.

One thing we should point out is that “query intents” are
not necessarily exclusive to each other. For example, query
“World War II Criminals” can be classified as “black and
white” and at the same time “people”.

After define a set of“query intent”categories, search intent
of a query can be learned from labeled data. Alternatively,
if we can classify the images into corresponding image cate-
gories, users’ search intent can be mined from click data. For
example, if we can detect whether an image contains peo-
ple’s face, we can classify whether a query’s intent is looking
for people or not.

5.1 Query Intent Estimation
In this experiment, we estimate a set of implicit or explicit

query intents that the corresponding image type classifica-
tion approaches are relatively mature, which include 11 non-
exclusive categories: black & white, portrait photo, clipart,
high visual quality, line drawing, indoor, outdoor, cityscape,
landscape, human full body, and head & shoulder. Exem-
plary approaches to extracting those features can be found
in [17, 24, 20, 25]. These classifiers were built on separate
annotated datasets. The output of each classifier is either 1
(positive) or -1 (negative), or 0 if cannot be categorized into
either of them.

To estimate query intent, we first apply image classifiers
on all the images in the Clickture datasets to get images
types. For a certain query q, suppose its clicked images are
{〈xi, Ci, fi〉, 1 ≤ i ≤ n}, where xi is the image, Ci is the
corresponding click count under this query, and fi is the
output of an image classifier of type t. Then the correspon-

dence between query q and image type t can be estimated
as

R(q, t) =

n∑
i=1

g(Ci)fi
g(Ci)

(5)

where g(Ci) is a weighting function to adjust the impor-
tance of click counts. In our experiments, we empirically set
g(Ci) to

√
Ci. Then the correspondence between q and t is

formulated by

R(q, t)

 ≥ δ Positve
∈ (−δ, δ) Nocorrespondence
≤ −δ Negative

(6)

Figure 11 shows a few examples of clicked images for a few
exemplar queries, together with the estimated query types.

(a) Query: “Nicole Kidman”. Positive Intent/Image Type: Portrait,

High Visual Quality, Human Full Body, Head and Shoulder.

Negative Intent/Image Type: Clipart, Line Drawing.

(b) Query: “Seattle”. Positive Intent/Image Type: Outdoor,

Cityscape, High Visual Quality. Negative Intent/Image Type:

Clipart, Line Drawing, Human Full Body, Black & White.

(c) Query: “Word War II”. Positive Intent/Image Type: Outdoor,

Back ‘& White. Negative Intent/Image Type: High Visual Quality,

Clipart, Human Full Body.

Figure 11: Examples of detected query intent types.

5.2 Search Re-Ranking by Query Intent
To verify whether query intent categorization help rele-

vance ranking, we apply a re-ranking step on the results
obtained in Section 3.3. Suppose the relevance prediction of
image I and query q is r, the image type vector is {ti} and
the query type vector is {qi}. Then the updated relevance
prediction of I and q is

r′ = ReRank(r,
∑

tiqi) (7)

where ReRank(·) is a re-ranking function combining the
original relevance prediction with the correspondence be-
tween image types and query types. Different re-ranking
functions can be designed. In our experiment, we set the
re-ranking function as

ReRank(r, s) = r +
αs

‖{ti}‖
(8)
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where α is a balancing weight. After applying query in-
tent based re-ranking, the DCG on the 100 selected queries
used in Section 3.3 is increased to 0.494 on Clickture-Lite
and 0.505 on Clickture-Full (under Setting 2), where we can
see obvious improvements (1.1 and 1.2 points, respectively)
compared with the original DCG results.

5.3 Discussion
This section demonstrates only a preliminary query intent

analysis and its application on search re-ranking. There is
still rooms to exploit along this direction.

Similar to generating ontologies from clicked queries that
we discussed in Section 3, ontologies for query intent is also
important for query understanding. In the above exem-
plary study, we generate a few query intents/types manually.
To support large-scale query intent analysis, automatic ap-
proach is desired. In addition, building connections between
query ontologies and intent ontologies is another topic to be
explored.

The query intents of a specific query can be complex. Dif-
ferent people may have different intents when a query is is-
sued. Even the same person may have different intents at
different time with the same query. For example, “Oscar”
could be a person’s name, or the academy awards, or a film,
etc. When a person queries this word during the Oscars
ceremony time in 2013, then the intent mostly could be the
pictures of the ceremony and pictures of awarded actors and
actresses in Oscar 2013. Studying and modeling the shifting
and revolution of query intents through click data analysis
can be another interesting research topic.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we show how Clickage can advance multi-

media research by doing extensive experiments on a number
of existing and new research problems based on a click-based
dataset. We argue that the growth of click data has the po-
tentials of bridging semantic and intent gap in search and
search related applications, and makes it highly valuable to
advance the state-of-the-art of multimedia research.

Besides the ideas we presented in the “discussion” part of
Section 3, 4 and 5, a variety of other research topics can be
carried out based on the Clickage idea, for example,

Distance Metric Learning : Clicked queries provide large-
scale additional and powerful hints to build a better distance
metric between images.

Image Clustering : Clicked queries can be used as features
to facilitate image clustering. The distance metric learned
through clicked data can also be applied to aid image clus-
tering.

Visualization and Browsing : Through semantic learned
from Clickture, we may be able to build better methods to
visualize and/or browse of search results and/or the entire
image corpus.

Other Image Related Applications: Such as image ad-
vertising, image recommendation, image completion, super-
resolution, compression, etc.

In addition, researchers may also use click data to study
whether a query, label or tag is learnable, or how difficult to
learn a specific label or a specific type of labels. New image
visual features may also be invented to model different types
of labels. Label relationship or ontology (for example, label
graph or label hierarchy) may also be built based on the
click data.
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