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ABSTRACT

Cloud gaming has gained significant popularity recently due to

many important benefits such as removal of device constraints,

instant-on and cross-platform, etc. The properties of intensive re-

source demands and dynamic workloads make cloud gaming appro-

priate to be supported by an elastic cloud platform. Facing a large

user population, a fundamental problem is how to provide satisfac-

tory cloud gaming service at modest cost. We observe that software

maintenance cost could be substantial compared to server running

cost in cloud gaming. In this paper, we address the server provision-

ing problem for cloud gaming to optimize both server running cost

and software maintenance cost. We find that the distribution of

game softwares among servers triggers a trade-off between the soft-

ware maintenance cost and server running cost. We formulate the

problem with a stochastic model and employ queueing theories to

conduct solid theoretical analysis. We then propose several classes

of algorithms to approximate the optimal solution. The proposed al-

gorithms are evaluated by extensive experiments using real-world

parameters. The results show that the proposed algorithms are

computationally efficient, nearly cost-optimal and highly robust to

dynamic changes.

CCS CONCEPTS

• Information systems →Multimedia information systems;

•Mathematics of computing→Combinatorial optimization;

• Computer systems organization → Cloud computing;
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1 INTRODUCTION

High-end video games such as World of Warcraft (WoW) can tradi-

tionally run only on powerful machines due to massive demands

for computation, memory, and storage resources. Cloud gaming,

which has gained significant popularity recently, has been adopted

as a variable means to let players enjoy high-end video games on

lightweight devices such as laptops, tablets and smart phones. The
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Figure 1: Cloud Gaming

basic idea of cloud gaming is to run games on cloud servers while

players interact with games through thin clients (see Figure 1).

Specifically, cloud servers run the games, render and encode their

graphical outputs into videos, and stream the videos to networked

thin clients. The clients decode and display the video steams for

players to interact with the games, and send control command in-

puts by players to cloud servers. In this way, the major computing

load is transferred from the client side to the cloud and thus the

device constraints for the players are removed. Moreover, cloud

gaming also allows players to start games immediately without

time-consuming software downloads and installations. Due to all

these important benefits, cloud gaming has attracted a great deal

of interests from both academia and industry [2, 4, 9, 21].

Cloud gaming service has intensive resource demands and dy-

namic workloads. The elastic and on-demand nature of resource

provisioning on public cloud infrastructures makes them attractive

and suitable for supporting cloud gaming service [30]. When us-

ing public cloud infrastructures, the costs charged for the cloud

resources used are the major operational expenses for cloud gaming

service providers (CGSPs). A cloud gaming platform often provides

services for hundreds of games. In order to run a game on a server,

the game software must be installed on the server. Thus, in addition

to the server running cost, CGSPs also need to pay for the software

maintenance cost, which may include the storage cost etc. The soft-

ware maintenance cost can be substantial compared to the server

running cost. For example, the hourly cost of running a g2.2xlarge

server (a popular server type for running graphic intensive applica-

tions such as games) in Amazon EC2 is $0.69 (for US East) [5]. The

size of a high-end video game software is usually tens of GBs. The

price of Amazon EBS storage is $0.1 per GB-month [5]. If hundreds

of games are installed on a server, the hourly storage cost of the

server can be as expensive as its running cost.

The software maintenance cost normally increases with the

number of software copies that are installed. Due to the highly

interactive nature of gaming, it is not desirable to load games from

a shared repository in cloud gaming. This is because first, large

network traffic may saturate the bandwidth of the shared reposi-

tory, which could significantly slow down the game loading and
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hurt user interactions; second, large scale games are usually I/O

intensive, frequent read/write operations could lead to I/O conflicts

and consistency issues if the game softwares are shared by multiple

servers. Therefore, a practical way for cloud gaming is to install

game softwares locally on each server [14]. The distribution of game

softwares among servers triggers a trade-off between the software

maintenance cost and server running cost. Installing fewer games

on each server can reduce the software maintenance cost, but it

will increase the number of servers needed to serve requests. A new

server may have to be started for an incoming request even if there

are running servers having spare computing resources available,

because the requested game is not installed on these servers. This

will raise the server running cost.

In this paper, we address the server provisioning problem for

cloud gaming with the goal of minimizing the total server running

cost and software maintenance cost. Existing studies on server

provisioning for cloud gaming generally target at optimizing user

interactivity and server running cost [19, 33]. So far, little effort has

been devoted to exploring software maintenance cost and software

distribution issues. Our work makes the first attempt to address

this problem. The contributions of our study are summarized as

follows:

First, we construct a stochastic model to characterize the cloud

gaming system and study the complexity of the server provisioning

problem. We propose an approach that organizes the games into

disjoint groups and let each game group be served by a dedicated

pool of servers. This approach greatly simplifies the system model

without much loss in performance.

Second, by following practical cloud charging models, we formu-

late the optimization problem for game software distribution. We

analyze the behavior of each server pool using queueing models,

and employ Markov theory to derive the server running cost and

software maintenance cost produced by each game group.

Third, we propose several categories of heuristic algorithms to

divide the games into groups, which include simple algorithms,

an ordered partition algorithm and a meta-heuristic algorithm. Ex-

tensive experiments are conducted using real-world parameters to

evaluate the proposed algorithms and the results demonstrate the

effectiveness of the algorithms.

The rest of this paper is structured as follows. The related work

is summarized in Section 2. Section 3 presents the system model,

problem formulation and service cost analysis. A set of heuristic al-

gorithms are proposed in Section 4 to solve the server provisioning

problem. In Section 5, the proposed algorithms are experimentally

evaluated. Finally, conclusions are made and future work is dis-

cussed in Section 6.

2 RELATEDWORK

Significant efforts have been devoted to cloud gaming in recent

years. There have been several cloud gaming platforms from both in-

dustry and academia, such as Sony’s PlayStation Now [4], NVIDIA’s

GeForce Now [2], Damai [1], GamingAnyWhere [21] and Rhizome

[30]. Some research work has been conducted towards measuring

and enhancing the performance of cloud gaming systems. The mea-

surement work has concentrated on measuring the latency and

network traffic of the existing commercial cloud gaming platforms

[11, 25]. The enhancement work has focused on video encoding

techniques and graphic rendering techniques for bit rate reduction

[7, 17]. However, little effort has been made towards optimizing

cloud resource provisioning in the above work.

There are some studies on selected resource management issues

in cloud gaming. Hong et al. [19] considered how to consolidate

game instances on the physical servers with the purpose of maxi-

mizing the service providers’ profit while guaranteeing the players’

Quality of Experience (QoE). Li et al. [26, 27] and Deng et al. [13]

have studied the play request dispatching policies for minimiz-

ing the total service cost of a cloud gaming system using public

cloud resources. Wu et al. [33] studied the request dispatching,

server provisioning and video streaming bit rate settings jointly

in a multi-region multi-datacenter cloud gaming system. The aim

was to optimize the players’ queueing delay, interaction latency

as well as the system service cost. However, none of these studies

considered the software maintenance cost and the game software

distribution issue.

Server provisioning is a hot research topic in many fields. In large

scale datacenters, server provisioning generally aims to improve

resource utilizations and save the power or energy of machines

[15, 28]. In the context of public clouds, server provisioning mainly

addresses the problem of how to combine different instance (virtual

machine) pricing models to serve time-varying demands at mini-

mum monetary expense [20, 32]. For online gaming, the general

purpose of server provisioning is to select servers from multiple

geographically distributed datacenters for optimizing the interac-

tion delay between users or minimizing server cost while meeting

some performance requirements [23, 38]. However, the software

maintenance cost was not considered in the above work.

Cloud gaming shares some similarities with the video-on-demand

or live streaming applications [31, 34, 37]. However, in the latter

applications, videos are often stored on one or a few networked

storage devices which are shared by all the servers. In this set-

ting, request dispatching among servers is trivial since the required

data is always available no matter which server a request is as-

signed to. In contrast, in cloud gaming, each server maintains local

copies of game softwares. This makes resource provisioning more

challenging because the operation cost will also be influenced by re-

quest dispatching policies. The game software distribution problem

is relevant to the data replication, data partition and data place-

ment problems in many distributed systems [16, 22, 35, 36]. These

problems usually concern how to distribute data among different

locations for optimizing the consistency, access latency, and update

cost of data. However, the storage cost has seldom been considered.

Our system model for server provisioning is also similar to multi-

skill call center (MSCC) [10], where servers correspond to agents

and games correspond to skills. The agents in the call center serve

customers by answering calls. In a MSCC, calls have different types,

which require different agent skills. Different agents may have dif-

ferent skill set, which lead to different hiring costs. A fundamental

problem in a MSCC is how to allocate agents to meet the service

level requirement (e.g., an acceptable call denial rate) while min-

imizing the hiring cost. However, there are some key differences

between these two models: first, each agent can only serve one

customer at a time in MSCC while a server can host multiple game

instances in our model; second, the skill set of each agent is given
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Table 1: Summary of Key Notations

Notation Definition

N the number of games

G = {д1, . . . ,дN } the set of games

λ(дi ) the request arrival rate for game дi
1/μ the mean session length of play requests

C the capacity of each server

P = {G1,G2, . . .}
a partition of G, where Gi s are game

groups

λi
the total request arrival rate for the games

in Gi

U (Gi )
the total busy hours per unit time for all

the servers of Gi

cs the cost rate of running a server

cm (дi ) the cost rate of a software copy of дi

in MSCC while the games to be installed on each server are to be

determined in our model; finally, the number of games (often over

hundreds) is much larger than the number of skills (generally less

than 10), which makes our problem more challenging.

A very preliminary study on the game distribution problem in

cloud gaming has been conducted by David et al. [14]. They first

revealed the game distribution strategy used by the cloud gaming

company OnLive and claimed that OnLive’s approach incurs a

huge waste of storage space. Then, they proposed a more efficient

hill-climbing algorithm to reduce the storage space usage in game

distribution. Our work differs from David et al.’s work in many

aspects: (1) we consider both server running cost and software

maintenance cost while only the storage space is considered in

their work; (2) we focus on cloud gaming supported by public cloud

infrastructures while they consider a private cluster; (3) we allow a

server to run multiple game instances concurrently while a server

can only run one game instance at a time in their model.

3 PROBLEM FORMULATION

3.1 System Model

We shall model the cloud gaming system as a stochastic process.

Consider a cloud gaming platform which provides services for N
different games. Denote byG = {д1,д2, . . . ,дN } the set of N games.

For each game дi ∈ G, we assume that the arrivals of play requests

for дi follow a Poisson process with an arrival rate λ(дi ). Each play

request corresponds to a sessionwhich is defined as the period when

the requested game instance is running.

When a play request arrives, if there are some servers having

sufficient residual capacity to handle the request and having the

requested game installed, the request will be assigned to one of

these servers according some specific dispatching policy. Otherwise,

if no such server is available, a new server is started to accommodate

the request. In general, once a game instance starts, it will run on

the same server during the entire game session. Migrating game

instances from one server to another is not preferable due to large

migration overheads and interruption to game play. Suppose the

cloud servers are homogeneous with the same capacity. Each server

can run up to C game instances concurrently. We assume in this

paper that there is an unlimited supply of servers from the cloud

infrastructure, while the proposed analysis can easily be applied to

the scenario where a fixed number of servers are specified.

The goal of server provisioning is to determine the set of games

to be installed on each server so that the total service cost (namely,

the sum of server running cost and software maintenance cost) is

minimized. If games are allowed to be installed on servers arbitrarily,

various servers could install different but overlapping sets of games.

In this case, the system behaves as a complex queueing network

which is very difficult to analyze. Moreover, the number of games

and game popularities can change dynamically in practice, which

requires server provisioning to be resilient to changes. Therefore,

it is necessary to simplify the system model for designing simple,

efficient and robust server provisioning strategies.

To simplify the system model, we consider partitioning the set

of games G into disjoint subsets. Let P = {G1,G2, . . .} denote a

partition, where G1,G2, . . . are the subsets such that
⋃

Gi ∈P
Gi = G

and Gi ∩Gj = ∅ for i � j. We call each subset Gi ∈ P a game group.

For each game group Gi , we allocate dedicated cloud servers for

serving the requests of the games in Gi . All the games in Gi are

installed on every server allocated toGi . The partitioning approach

brings many benefits. First, after partition, the servers of each game

group Gi are identical (with the same set of games installed) and

independent of the servers of other game groups Gj (j � i). In this

way, the overall system is decomposed into several independent

queueing systems, one for each game group, which are easier to

analyze. Second, once the partition is decided, the game software

distribution is determined, which simply installs all the games in

each group on every server of that group. Finally, even though

games are partitioned into groups, the games in the same group

will still share servers, which ensures high resource utilizations and

flexibilities of servers.

3.2 Problem Formulation

By the partitioning approach, the server provisioning problem is

transformed to finding the optimal partition of games that min-

imizes the total service cost. We say that a server is busy if it is

serving at least one request. Under the “pay-as-you-go" billing

model of today’s clouds [5], both server running cost and software

maintenance cost associated with a server are proportional to its

busy hours. Servers can be switched off for saving costs when they

are not busy. Given a partition P, consider a game groupGi ∈ P. Let

U (Gi ) denote the total busy hours per unit time for all the servers

of group Gi . Let cs denote the cost rate for running a server. For

each game д ∈ G, let cm (д) denote the cost rate for maintaining a

software copy of д on a server. Then, the service cost per unit time

of group Gi is given by

U (Gi ) · (cs +
∑
д∈Gi

cm (д)). (1)

The total service cost of partition P is the sum of the service cost of

all groups, i.e.,∑
Gi ∈P

(
U (Gi ) · (cs +

∑
д∈Gi

cm (д))
)
. (2)

The game software distribution problem is to find the optimal

partition P that minimizes the total service cost.
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Figure 2: System state transition diagram of group Gi

3.3 Busy Hours Analysis

According to (2), in order to calculate the service cost produced by

a given partition, the total busy hoursU (Gi ) should be analyzed for

each game group Gi . For each server in the system, the busy hours

of the server are not only determined by the workload parameters

(e.g., arrival rates, session lengths etc), but also highly dependent

on the policies that assign play requests to the servers [26]. In this

paper, we shall use the First Fit dispatching algorithm (the most

commonly used algorithm for bin packing and job scheduling) as

an example to illustrate the analysis of the busy hours for each

server. The proposed analysis approach can be extended to other

dispatching algorithms in a similar way.

Consider a game groupGi . Let λi denote the total request arrival
rate of all the games inGi , i.e., λi =

∑
д∈Gi

(λ(д)). For simplicity, we

assume that the session lengths of requests follow an exponential

distribution with a mean of 1/μ. The analysis can be extended to

non-exponentially distributed session lengths using many approxi-

mation techniques [8, 18]. We label the servers of Gi as s1, s2, ... in
the order of their first starting times, a smaller index indicating ear-

lier starting time. On each play request arrival, First Fit dispatches

the request to the server with the smallest index among all servers

which have sufficient residual capacity to host the game instance. If

no such server is available, a new server is started to accommodate

the request.

In order to analyze the busy probability of a server sj (j ≥ 1),

consider the first j servers s1, s2, ..., sj . Let N (1, j − 1) denote the

number of requests being served by servers s1, s2, . . . , sj−1 and N (j)
denote the number of requests being served by server sj . LetQ(m,n)
denote the system state where N (1, j − 1) =m and N (j) = n. Based
on the above definitions, we build a Markov state diagram of system

state transition, which is illustrated in Figure 2.

From state Q(m,n), the system has a transition ratemμ to state

Q(m − 1,n) and a transition rate nμ to state Q(m,n − 1). On the

other hand, a new request arrives at the rate of λi . According to

the First Fit rule, if the first (j − 1) servers are not fully occupied,

the new request would be assigned to one of these servers. If these

servers are fully occupied, the new request would be assigned to

server sj . Thus, from state Q(m,n), the system has a transition rate

λi to state Q(m + 1,n) if m < (j − 1)C (C is the server capacity),

and a transition rate λi to state Q(m,n + 1) if m = (j − 1)C and

n < C . Following these observations, the transition rates among all

system states can be derived. Figure 3 shows the full state transition

diagram (Markov chain) for the case of j = 3 and C = 2.

Let pm,n denote the probability that the system is in each state

Q(m,n). Let J = (j−1)C . According to the transition rates as shown

Q0,2 Q1,2 Q2,2 Q3,2 Q4,2

Q0,1 Q1,1 Q2,1 Q3,1 Q4,1

Q0,0 Q1,0 Q2,0 Q3,0 Q4,0

λi

μ

λi

2μ

λi

3μ

λi

4μ

λi

μ

λi

2μ

λi

3μ

λi

4μ

λi

μ

λi

2μ

λi

3μ

λi

4μ

2μ

μ

2μ

μ

2μ

μ

2μ

μ

2μ λi

μ λi

Figure 3: Markov chain for j = 3, C = 2

in Figure 2, the balance (steady-state) equation of each Qm,n can

be generated according to the following general formula:

( mμ︸︷︷︸
e1

+ nμ︸︷︷︸
e2

+ λi︸︷︷︸
e3

+ λi︸︷︷︸
e4

) · pm,n = λi · pm−1,n︸�������︷︷�������︸
e5

+ λi · pm,n−1︸�������︷︷�������︸
e6

+ (m + 1)μ · pm+1,n︸����������������︷︷����������������︸
e7

+ (n + 1)μ · pm,n+1︸���������������︷︷���������������︸
e8

,

where e1 and e5 hold form > 0, e3 and e7 hold form < J , e2 holds
for n > 0, e4 holds for n < C andm = J , e6 holds for n > 0 and

m = J , and e8 holds for n < C .
Define matrix P = [p0,0 p0,1 · · · p J ,C ]

T (the size of P is (C +
1)(J + 1)). The set of balance equations can be rewritten as

ΛP = 0, (3)

where Λ is the matrix of coefficients. According to Markov theory,

we also have

J∑
m=0

C∑
n=0

pm,n = 1. (4)

Thus, pm,ns can be derived by solving the equations (3) and (4). It

is worth noting that the equations could be solved efficiently since

the matrix Λ is rather sparse.

Denote by u(sj ) the busy probability of server sj . It follows that

u(sj ) = p{N (j) > 0} = 1 −

J∑
i=0

pi,0. (5)

For the special case where j = 1, the behavior of the first server (i.e.,

s1) can be modeled as an M/M/C/C queue. According to Erlang’s

loss Formula [6], it follows that

u(s1) = p{N (1) > 0} = 1 −
1∑C

n=0
(λi /μ)n

n!

. (6)

According to (5) and (6), the total busy hours per unit time for

all the servers of group Gi , i.e.,U (Gi ), can be calculated according

to

U (Gi ) =

+∞∑
j=1

u(sj ). (7)

Note that u(sj ) decreases rapidly as j increases. When j is suffi-

ciently large, u(j) will be very small and can be neglected in the

practical calculations. Therefore, given a sufficient small thresh-

old ε , U (Gi ) can be approximated by
∑j∗

j=1 u(sj ), where j∗ is the

maximum j such that u(sj ) > ε .
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4 ALGORITHM DESIGN AND ANALYSIS

It can be shown that finding the optimal game partition to minimize

the total cost is NP-hard in general. We develop several classes of

partition heuristics which are computationally efficient.

4.1 Simple Algorithms

We first propose two simple partition algorithms:

1-Group Partition: In this approach, we put all the games into

one group, i.e., let P = {{д1,д2, . . . ,дN }}. Each server installs all the

games and thus servers can be shared by different games as much

as possible, thereby minimizing the server running cost. However,

the total number of software copies installed is very large and thus

the software maintenance cost is high.

N-Groups Partition: This approach partitions the games intoN
groups, each with only one game, i.e., P = {{д1}, {д2}, . . . , {дN }}.

Thus, each server installs only one game. In this way, the number of

software copies installed is small and thus the softwaremaintenance

cost is minimized. However, different games cannot share servers

in this approach, which will increase the total server running cost.

4.2 Ordered Partition Algorithm

The basic idea of this algorithm is to sort all the games into a

sequence according to their popularities (request rates), and then

partition the ordered sequence into several segments, each of which

corresponds to a game group. The motivation behind is to put

the games with similar popularities (adjacent to each other in the

ordered sequence) into the same group since the numbers of copies

required by these games are similar. Without loss of generality,

we assume that 〈д1,д2, . . . ,дN 〉 is an ordered sequence of all the

games, where λ(д1) > λ(д2) > · · · > λ(дN ).

Given the ordered sequence 〈д1,д2, . . . ,дN 〉, the optimal parti-

tion that minimizes the total service cost among all the partitions of

the sequence can be obtained by a dynamic programming algorithm.

Let P∗(i) (1 ≤ i ≤ N ) denote the optimal partition when only the

first i games in the sequence (i.e., д1,д2, . . . ,дi ) are considered. Let
cost(P∗(i)) denote the total service cost produced by partition P∗(i),
which can be calculated according to (2). Let G[i, j] denote a game

group composed by дi ,дi+1, . . . ,дj . Denote by cost(G[i, j]) the ser-
vice cost of group G[i, j], which can be calculated according to (1).

It is easy to see that P∗(1) = {д1} and cost(P
∗(1)) = cost(G[1, 1]).

In order to find P∗(i), suppose the last game group of P∗(i) is
G[i ′, i] (1 ≤ i ′ ≤ i), it is easy to prove that P∗(i) = P∗(i ′ − 1) ∪

{G[i ′, i]} and cost(P∗(i)) = cost(P∗(i ′−1))+cost(G[i ′, i]). Therefore,
for each i > 1, we have the following recurrence:

cost(P∗(i)) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cost(P∗(i − 1)) + cost(G[i, i])

cost(P∗(i − 2)) + cost(G[i − 1, i])

...

cost(P∗(1)) + cost(G[2, i])

cost(G[1, i])

(8)

Based on (8), cost(P∗(N )) can be calculated and the optimal par-

tition P∗(N ) can be derived accordingly. The pseudo code of the

dynamic programming algorithm is shown in Algorithm 1 (referred

to as Ordered). The variablemaдic[j] denotes the size of the last

game group (i.e., the right-most segment of the sequence) in the

optimal partition when only the first j games (i.e., д1,д2, . . . ,дj ) are
considered. So, the size of the last game group in P∗(N ) is given by

maдic[N ]. Similarly,maдic[N −maдic[N ]] denotes the size of the

second last game group in P∗(N ), and so on. Then, the size of every

game group in P∗(N ) can be derived and P∗(N ) can be determined

accordingly.

Algorithm 1 Ordered Partition Algorithm (Ordered)

1: cost(P∗(1)) := cost(G[1, 1])
2: maдic[1] := 1

3: for each i from 2 to N do

4: k∗ := argmin1≤k≤i−1(cost(P
∗(i − k)) + cost(G[i − k + 1, i]))

5: if cost(G[1, i]) < cost(P∗(i−k∗))+cost(G[i, i−k∗+1]) then
6: cost(P∗(i)) := cost(G[1, i])
7: maдic[i] := i
8: else

9: cost(P∗(i)) := cost(P∗(i − k∗)) + cost(G[i, i − k∗ + 1])
10: maдic[i] := k∗

11: end if

12: end for

4.3 Genetic Algorithm

Genetic algorithms (GAs) have been shown very efficient in solv-

ing combinational optimization problems [12]. In this section, we

apply the GA to our game partitioning problem. As illustrated in

Section 4.2, given a sequence of the games, the optimal partition of

the sequence that minimizes the service cost can be calculated by

dynamic programming. Based on this fact, our GA aims to search

for the best sequence of the games (i.e., the sequence whose optimal

partition gives the minimum service cost). Then, the optimal parti-

tion of the games can be derived accordingly, which is the optimal

partition of the best sequence.

We first illustrate the design of the GA for our problem:

Coding: The coding scheme in a GA determines how a candidate

solution is represented by a chromosome-like data structure. For

our problem, a solution refers to a sequence of the games. We adopt

a simple approach which encode a sequence of games as a string

composed by the indices of the games. For example, the sequence

〈д1,д3,д2,д4,д5〉 will be encoded as “1 3 2 4 5".

Selection: Selection is an operation to select two parent chro-

mosomes for generating a new chromosome. We adopt a widely

used selection approach proposed in [29]. Let K be the population

size in each generation. We denote the K chromosomes in the t-th
generation by Xt = (xt1 ,x

t
2 , . . . ,x

t
K
). Recall that each chromosome

xti represents a sequence of games. Denote by P(xti ) the optimal

partition of the sequence represented by xti . Let cost(x
t
i ) denote the

service cost produced by P(xti ), i.e., cost(x
t
i ) = cost(P(xti )), which

can be calculated according to (8). Then, xti will be selected as a

parent according to the selection probability

p(xti ) =
[costK (X

t) − cost(xti )]
2

∑
x t
i
∈Xt [costK (Xt) − cost(xti )]

2
,

where costK (X
t) = max{cost(xti )|x

t
i ∈ Xt}, i.e., costK (X

t) is the

maximum cost among all solutions.
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Crossover: Crossover is an operation to generate a new chromo-

some (i.e., child) from two parent chromosomes. In this paper, we

consider two commonly used crossover operators:

(1) One-point crossover. In this crossover operation, one point

(a position of the sequence) is randomly selected for dividing one

parent. The set of games on one side (each side is chosen with the

same probability) is inherited from one parent to the child, and the

other games are placed in the order of their appearance in the other

parent.

(2) Two-point crossover. In this crossover operation, two points

are randomly selected for dividing one parent. There are two ways

to generate the child based on the points selected: (i) The games

outside the selected points are inherited from one parent to the child,

and the other games are placed in the order of their appearance in

the other parent; or (ii) The games between two points are inherited

from one parent to the child, and the other games are placed in the

order of their appearance in the other parent.

Mutation: Mutation is an operation to change the order of

games in each chromosome generated by a crossover operator.

A mutation operation can be viewed as a transition from a current

solution to its neighborhood solution in local search algorithms. In

this paper, we examine the following three mutation operators:

(1) Shift. In this mutation, a game at one position is removed

and put at another position in the sequence. The two positions are

randomly selected.

(2) Swap. In this mutation, the games at two different positions

are exchanged. The two games to be swapped are randomly selected.

(3) Mixed. This mutation is a combination of one shift mutation

and one swap mutation.

Based on the above definitions, let Pt and Ct be the parents

and child chromosomes at generation t . The outline of the genetic
algorithm is shown in Algorithm 2 (referred to as Genetic).

Algorithm 2 Genetic Algorithm (Genetic)

1: t := 0

2: Generate the initial population Pt

3: Evaluate each chromosome in Pt

4: while t < Max_Iterations do
5: Select K pairs of parents from Pt

6: Apply one of the above crossover operators to each of the

selected pairs to generate Ct

7: Apply one of the above mutation operators to each of the

chromosome in Ct

8: Select the top K best chromosomes (the chromosomes with

the smallest service costs) from Pt and Ct as Pt+1

9: t := t + 1
10: end while

Particularly, in the real implementation, we include a special

chromosome which is generated using the ordered sequence of

the games (as discussed in Section 4.2) in the initial population. In

this way, the game partition obtained by Genetic will be always

superior than the game partition obtained by Ordered. Note that,

the partitions obtained by Ordered and Genetic are the optimal

partitions of some specific game sequences. Therefore, Ordered and

Genetic will always outperform 1-Group and N-Group since the

partitions given by 1-Group and N-Group can be considered as the

possible partitions of any game sequence.

5 EXPERIMENTS

We develop a discrete event driven simulator and conduct extensive

experiments to evaluate the performance of the proposed algo-

rithms. We first briefly introduce the simulation settings, and then

present the evaluation results.

5.1 Simulation Settings

The models and parameter settings used in the simulation are based

on measurements in a real cloud gaming system [14]. We simulate

N = 100 games in the experiments. Each game дi (1 ≤ i ≤ 100)

has a popularity and a game size, which are denoted by p(дi ) and
s(дi ) respectively. According to [14], the popularities of games in

cloud gaming follow Zipf’s law. Thus, we let p(дi ) = 1/iα , where
α is the shape parameter of the Zipf distribution function. In this

way, a game with a smaller index has higher popularity, i.e., we

have p(д1) > p(д2) > · · · > p(дN ). We collect the sizes of 100

randomly selected XBox games (http://www.xbox.com/zh-CN/ ) and

use them as the game sizes in our simulations. For each game дi ,
play request arrivals follow a Poisson process with an arrival rate

of λ(G) ·p(дi )/
∑
дi ∈G p(дi ), where λ(G) is the total arrival rate of all

the games. On request arrivals, First Fit is used for dispatching the

requests to the servers. The session length of each game request is

randomly generated from an exponential distribution with a mean

1/μ.
We set the server running cost at cs = $0.69 per hour, which is

the real cost of a g2.2xlarge instance of Amazon EC2 in Virginia.

In practice, the software maintenance cost may include expenses

for storage, license fees, etc. For simplicity, we take the storage

cost as the software maintenance cost in the simulation. Let cr
denote the storage cost rate. We set cr to $0.1 per GB-month by

default, according to the price of Amazon’s EBS. Therefore, the

softwaremaintenance cost of a single copy ofдi is given by cm (дi ) =
cr ·s(дi ) (s(дi ) is the size of game дi ). For Genetic, by testing various
parameter specifications, we found thatK = 50 (the population size)

andMax_Iterations = 10000 (the maximum number of iterations)

work well. In the experiments, various parameter settings are tested.

For each parameter setting, we calculate the partition generated by

each algorithm and simulate a cloud gaming system for a period

of 30 days to collect the service cost produced by the partition. By

default, the server capacity (C) is set at 4 requests per server and
the shape parameter α of Zipf’s law is set at 2.0.

For comparison, we derive an approximate lower bound of the

total service cost. Recall that 1-Group installs all games on each

server, which maximizes server utilizations. Therefore, it is reason-

able to assume that the server running cost produced by 1-Group

is a lower bound of server running cost. On the other hand, N-

Group makes each server serve only one game, which minimizes

the number of software copies installed for each game. Thus, it is

rational to assume that the software maintenance cost produced

by N-Group is a lower bound of software maintenance cost. There-

fore, a lower bound of the total service cost can be computed as

the sum of 1-Group’s server running cost and N-Group’s software

maintenance cost. We normalize the total service cost produced by
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Figure 6: Impact of server capacity

each algorithm with respect to this lower bound, which we call the

normalized cost. It is worth noting that the above lower bound is

not limited to our proposed partitioning approach, but holds for

any game distribution strategy. It is not necessarily achievable by

any algorithm.

5.2 Performance under Different Parameter

Settings

We first evaluate the impact of the total workload, which is defined

by λ(G)/μ. Figure 4 shows the normalized cost produced by each

algorithm against different workload. Basically, the normalized

cost (except for 1-Group) decreases with increasing workload for

all the algorithms. This is because when the request rate is high,

all the servers have high utilizations for serving the continuously

arriving requests in each algorithm, and thus, the server running

costs produced by the algorithms are similar and are close to the

optimal server running cost. Among all the algorithms, Genetic

gives the best performance while Ordered is also very competitive.

They both outperform the other two algorithms.

It also can be observed from Figure 4 that the normalized costs

produced by Genetic and Ordered are very low in most cases, im-

plying that the service costs produced by these two algorithms are

close to the lower bound. Recall that the lower bound is the mini-

mum service cost that can be produced by any game distribution

strategy. It implies that our proposed partitioning approach is very

effective. We also see that the normalized cost produced by 1-Group

is far higher than other algorithms. This is because all the servers

install all the games in 1-Group, which incurs high software mainte-

nance cost. It confirms the motivation of our work that the benefit

of optimizing software maintenance cost could be significant. In

the rest experiments, unless otherwise stated, λ(G)/μ is set at 400

by default.

The results in Figure 5 illustrate how the ratio of software main-

tenance cost to server running cost influences the performance of

the algorithms. We fix the server running cost rate cs and vary the

storage cost rate cr in [0.01, 0.03, 0.1, 0.3, 0.9, 2.7, 8.1]. We see that all

the algorithms (except for N-Group) produce similar costs when the

storage cost rate is very small. This is because the software mainte-

nance cost is very low in this case, which makes all the algorithms

(except for N-Group) put all the games in one game group and thus

produce similar costs. We also see that the performance of all the

algorithms (except for 1-Group) is comparable when the storage

cost rate is large. In this case, the server running cost becomes

insignificant compared to the software maintenance cost, implying

that reducing the number of software copies is more important than

grouping games together. All the algorithms (except for 1-Group)

generate similar partitioning results (many small game groups) and

thus the costs produced are similar. In contrast, 1-Group installs

all the games on each server, which incurs much higher software

maintenance cost compared to other algorithms.

Next, we examine how the server capacity influences the per-

formance of the algorithms. Figure 6 shows the normalized cost

produced by each algorithm as the server capacity varies from 1

to 32 (the GPU technology is currently able to support up to 32

game instances on a single board [3]). We see that the normalized

cost produced by N-Group grows fast when the server capacity

increases. This is because different games cannot share servers in

N-Group. When the server capacity is large, most of the capacities

are not utilized and thus the total server running cost is high. By

contrast, servers are shared by all the games in 1-Group, giving the

best server utilizations compared to other algorithms. Therefore,

as the server capacity grows, a trend of cost decrease is observed

for 1-Group in Figure 6. Similar to the previous results, Ordered and

Genetic outperform 1-Group and N-Group significantly in most of

the cases.

Finally, we evaluate the impact of game popularity distribution

on the performance. Figure 7 shows the normalized cost produced

by each algorithm as the Zipf function’s shape parameter α varies

from 0.5 to 3. A small α will make the popularity distribution more

uniform while a large α will make the popularity distribution more

skewed. We see that the performance of N-Group, Ordered and

Genetic are comparable when α is very large. This is because when

α is very large, the game popularities are highly skewed, where a

smaller number of games have very high popularities and dominate

the cost. It is similar to the case of partitioning a small number of

games each with a high request rate. According to the previous

observations (in Figure 4), all the servers have high utilizations in

this case and thus the costs produced by these three algorithms

are similar. However, the software maintenance cost produced by

1-Group is far higher than other algorithms when α is large since

all the games are installed on each server in 1-Group.
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5.3 Resilience to Dynamic Changes

As we know, the workload of online gaming is often dynamic. The

workload variations in online gaming usually present the following

two patterns [24]: (1) the number of players varies greatly in the

period of a day, late evening is usually the peak hours while early

morning is the slack period; (2) the numbers of players in different

days are similar, implying that game popularities vary slowly at a

large time scale. In this section, we study whether our proposed

approaches are robust to these workload variations.

The experiments are designed as follows. Let ρpeak be the work-

load (i.e., λ(G)/μ) in peak hours. We first run the proposed algo-

rithms to generate partitions according to ρpeak , which we call

peak-hour partitions. In order to examine how the peak-hour par-

titions perform in non-peak hours, we generate various workload

for non-peak hours according to ρ ′ = ν · ρpeak , where 0 < ν < 1 is

a scaling factor. For each ρ ′, we run the proposed algorithms again

to calculate partitions according to ρ ′, which we call real-time par-

titions for workload ρ ′. It is easy to see that the peak-hour partition

and real-time partition are the same for both 1-Group and N-Group.

After that, for each ρ ′, we run simulations with ρ ′ as the workload
for all peak-hour partitions and real-time partitions.

Figure 8 shows the normalized cost produced by different par-

titions for different scaling factors ν when ρpeak = 400. It can be

seen that peak-hour partitions of Ordered and Genetic produce com-

parable performance to the corresponding real-time partitions in all

the cases, and they outperform 1-Group and N-Group significantly

(1-Group’s normalized cost is higher than 2.0 and thus cannot be

seen in Figure 8). It implies that Ordered and Genetic are very robust

to workload variations. The partitions generated by Ordered and

Genetic according to the workload in peak hours are also effective

for non-peak hours. This is possibly because although the total

workload varies greatly, the relative ranking of games by arrival

rates keeps almost unchanged, giving rise to similar partition results

for different workloads.

Next, we evaluate how the proposed algorithms perform when

the game popularity changes. Given the initial game populari-

ties, we first run algorithms to generate partitions which we call

initial partitions. To simulate game popularity changes, we ex-

change the popularities between games (the intention here is to

keep the Zipf’s distribution) according to parameter β , an inte-

ger that defines the exchanging range. For each game дi , we ex-
change дi ’s popularity with a randomly selected game in the range

[дmin{1,i−β },дmax{N ,i+β }]. It is easy to see that a larger β will lead

to more significant popularity changes. After that, we run the pro-

posed algorithms again to calculate the partitions according to

the new game popularities, which we call new partitions. We then

run simulations using the workload of new game popularities to

evaluate all initial partitions and new partitions.

Figure 9 shows the normalized cost produced by different parti-

tions for different β values. For Ordered and Genetic, we observe

that the performance of the initial partitions of Ordered and Genetic

are very close to the new partitions for small β values, which out-

performs 1-Group and N-Group significantly (again, 1-Group cannot

be seen since its normalized cost is higher than 2.0). Since game

popularities change slowly (i.e., β should be small) in real world, it

implies that Ordered and Genetic can perform well without frequent

re-executions.

6 CONCLUSIONS

In this paper, we have investigated the server provisioning problem

for optimizing the service cost in cloud gaming, taking both the

software maintenance cost and game software distribution into

account. We model the problem as a stochastic optimization prob-

lem and propose an effective simplification of the model. Several

classes of computationally efficient heuristic algorithms are pro-

posed, which are experimentally evaluated by simulations with

real-world parameters. The results show that Ordered and Genetic

perform quite well in most cases, and the partitioning approach

is robust to dynamic changes. As a first attempt to the problem,

we have assumed that some parameters of the system are homoge-

neous, such as the service level requirement, server capacity and

the distribution of session lengths. A future direction is to study

the impact of heterogeneities of these parameters.
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