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ABSTRACT
Fine-grained object retrieval, which aims at �nding objects be-

longing to the same sub-category as the probe object from a large

database, is becoming increasingly popular because of its research

and application signi�cance. Recently, convolutional neural net-

work (CNN) based deep learning models have achieved promising

retrieval performance, as they can learn both feature representa-

tions and discriminative distance metrics jointly. Speci�cally, a

generic method is to extract activations of the fully-connected layer

as feature descriptors and simultaneously optimize classi�cation

constraints (e.g., softmax loss) and similarity constraints (e.g., triplet

loss) to improve the representative capability of the features. How-

ever, the typical fully-connected layer activations are more focused

on representing global attributes of the corresponding image, thus

relatively less sensitive to speci�c local characteristics. Therefore,

the features learned through these approaches in general are not

su�ciently capable for retrieving �ne-grained objects. To attack this

issue, we propose an e�ective feature embedding by simultaneously

encoding original global features and discriminative local features,

in which the local features are extracted by exploiting strong neu-

ral activations on the last convolutional layer. We present that the

novel feature embedding can dramatically enlarge the gap between

inter-class variance and intra-class variance, which is the key factor

to improve retrieval precision. In addition, we show our architec-

ture can also be applied in person re-identi�cation. Experimental

results on multiple challenging benchmarks demonstrate that our

method outperforms the current state-of-the-art approaches by

large margins.
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Figure 1: Visualization of the feature map. (a) An image
from Stanford cars-196 dataset. (b) The feature map of a
random conv5 �lter (the basic network architecture is VG-
GNet [27]). The arrow indicates the strongest response and
its corresponding position in the raw image. The red rectan-
gles mark the weaker activation areas of the featuremap. (c)
Other images that have the strongest responses of the same
�lter. The cars in these images are all belonging to the same
�ne-grained category – Cadillac CTS-V 2012. The green rect-
angles mark the receptive �elds of the strongest responses.
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1 INTRODUCTION
Fine-grained object retrieval, which aims at searching objects be-

longing to the same subordinate class as the query object from a

large database, is becoming more and more important and mean-

ingful in computer vision community. For example, �ne-grained

car retrieval can be used for numerous purposes in intelligent trans-

portation, surveillance and public security areas, such as tracking a

suspicious car over multiple surveillance cameras when the license
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Figure 2: A schematic diagramof three �ne-grained category
feature distributions. Each color represents a speci�c cate-
gory and each point represents the global fully-connected
layer features of an image from the corresponding category.

plate is not reliable. Recently, deep convolutional neural networks

(CNN) [16, 27] have made great progress in �ne-grained catego-

rization on many �ne-grained object datasets such as birds [30],

dogs [13], cars [15], etc. And CNN features extracted from the

fully-connected layer can be viewed as a universal discriminative

representation to retrieve objects from the same sub-category, as

classi�cation task can take full advantages of category annotations

and learn an outstanding feature representation to di�erentiate sub-

ordinate classes. In the meanwhile, distance metric learning (e.g.,

contrastive information [6] or triplets [5]) has been exploited to

alleviate the issue of large intra-class variance and small inter-class

variance, which is known as the main challenge of �ne-grained

image understanding. Considering the above two aspects, a generic

�ne-grained object retrieval method [39] is to extract activations

of the CNN fully-connected layer as global feature representations

and simultaneously optimize softmax loss and triplet loss to im-

prove the representative capability of the features. That means, the

problem is formulated as constructing a multi-task network, which

e�ectively learns �ne-grained features by jointly optimizing both

classi�cation and similarity constraints.

Although the global fully-connected layer features achieve com-

petitive results on �ne-grained classi�cation (e.g., 89% accuracy on

Stanford cars-196 dataset [15], which is very close to the state-of-art

result of 92.8% [14]), the retrieval precision is far from satisfactory

(e.g., only 68% on top-40 retrievals [39]). There are two observa-

tions that motivate our work. Firstly, as we can see from Figure 1(b),

the strong activations of conv5 (i.e., the last convolutional layer

of VGGNet [27]) �lters probably represent some discriminative

local semantic regions of the images, e.g., the �lter #34 is most

activated by a unique grille shape of a speci�c car model, which can

be veri�ed in Figure 1(c). However, for a speci�c conv5 �lter, some

weaker activations (red rectangles on Figure 1(b)), which may just

indicate some redundant content, are also encoded in the global

fully-connected layer features, i.e., the fully-connected layer acti-

vations encode global attributes of the raw images, thus relatively

less sensitive to speci�c local characteristics. Secondly, Figure 1(c)

shows that for di�erent sample images, the positions of discrimina-

tive local regions are un�xed due to di�erences in viewpoints or

poses. Thus, the corresponding strong activations on the feature

maps of the same conv5 �lter appear at di�erent positions.

These two observations show that the activations of the conv5

layer from the same �ne-grained category images have various

distributions. Consequently, the global fully-connected layer fea-

ture vectors su�er relatively large intra-class variance because the

global fully-connected layer activations before the “ReLU” layer

are just some linear combinations of the convolutional layer ac-

tivations. Figure 2 illustrates that we can easily classify di�erent

�ne-grained categories, but the retrieval precision will decline sig-

ni�cantly under the circumstances of large intra-class variance (e.g.,

the Euclidean distance d1 > d2, so C will be ranked higher than A
when a query point is close to B).

In this paper, we propose an e�ective feature embedding for �ne-

grained object retrieval. Inspired by [7, 9], we select and pool the

strong neural activation areas on each feature map of the last (i.e.,
highest-level) convolutional layer, then form a feature representa-

tion of speci�c local characteristics through fully-connected pro-

cedure. The new features, which can be called as local highlighted

fully-connected features in contrast to global fully-connected fea-

tures, are focused on describing discriminative local semantic re-

gions of raw images. After that, we concatenate the discrimina-

tive local features with the global features and project to a low-

dimensional feature space through fully-connected procedure to

form the �nal feature embedding. The �nal feature representa-

tion integrates both advantages, preserving global information and

being more sensitive to speci�c local location-independent char-

acteristics. Besides, the representative capability of local seman-

tic features can also be reinforced through the back propagation

pattern [17] during training. We demonstrate that, under some

reasonable assumptions, the novel feature embedding can dramati-

cally enlarge the gap between inter-class variance and intra-class

variance, which is the key factor to improve retrieval precision.

In addition to the above said, our proposed method has two

additional bene�ts. Firstly, our discriminative local features are ex-

tracted in a simple and unsupervised manner (i.e., part annotations

are not required). Notice that some previous models of �ne-grained

object recognition yield excellent performance by directly localiz-

ing and describing the critical parts [10, 14, 26, 38]. However, these

approaches either require more or less part level annotations, com-

plicated arti�cial participations, or su�er complex optimization,

making them not as simple and applicable as ours. Secondly, our

novel feature embedding can be seamlessly incorporated into the ex-

isting �ne-grained retrieval frameworks. For instance, in this work

we follow the learning strategy of [39], which is simultaneously

optimizing both softmax loss and triplet loss as aforementioned,

while replace the original global fully-connected layer features used

by [39] with our novel feature embedding. We conduct extensive

experiments on two commonly used �ne-grained object datasets:

Stanford cars-196 [15] and CUB-200-2011 [30]. Experimental re-

sults demonstrate that our introduced feature embedding gains

a much smaller intra-class variance and attains a consistent and

signi�cant performance gain compared with [39], which is one of

the current state-of-the-art �ne-grained retrieval methods. Further-

more, because person re-identi�cation (re-ID) can be considered

as some kind of �ne-grained retrieval problems if we view each

person identity as a sub-category, we also evaluate our method

on the classic person re-ID dataset: CUHK03 [18]. Similarly, we

outperform the current state-of-the-art person re-ID approaches

by notable margins.
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2 RELATEDWORK
In this section, we brie�y review the recent works on �ne-grained

categorization, triplet distance metric learning, image retrieval and

person re-ID. We only emphasize on the methods that are most

relevant to our approaches.

Fine-GrainedObject Categorization. Most of recent methods

focus on improving the categorization accuracy by capturing the

subtle appearance di�erences in speci�c object parts. A common

pipeline to address this problem consists of two main steps: (1)

learning a set of part detectors; (2) encoding part features into

the �nal representation. Some previous techniques rely heavily

upon the use of keypoint or part annotations [4, 33, 37]. Lately,

Krause et al. [14] propose a method based on generating parts

using co-segmentation and alignment, using no part annotations.

Further on, Zhang et al. [38] explore a uni�ed framework based

on two steps of deep �lter response picking which is free of any

object/part annotation at both training and testing stages. However,

these approaches need complicated arti�cial participations. In this

paper, we introduce a simple but e�ective method to extract one

discriminative local semantic feature representation for each high-

level convolutional �lter. The method in [38] is relevant to ours,

but the way to use �lter responses is signi�cantly di�erent: Zhang

et al. [38] pick deep �lters which respond to speci�c patterns to

learn part detectors, while we directly leverage strong neural �lter

activations to represent discriminative local semantic features.

Triplet Distance Metric Learning. Triplet loss deep convo-

lutional network aims at learning a feature representation in Eu-

clidean space such that data points from the same class are clustered

together, while those from di�erent classes are pushed apart from

each other. It is of vital important for �ne-grained object veri�-

cation and retrieval, as it can e�ectively measure both intra-class

and inter-class similarity. Wang et al. [31] propose a deep ranking

model to directly learn the similarity metric by sampling triplets

from images. Recently, Zhang et al. [39] jointly optimize triplet

information and traditional classi�cation objective simultaneously

and introduce label structures embedded into the framework by

generalizing the triplet loss. Liu et al. [20] employ a coupled cluster

triplet strategy to pick more stable anchor candidates. However,

these methods neglect how to select negative triplet candidates. In

this paper, we introduce an online training strategy to pick more

discriminative negative samples.

Image Retrieval. Some recent approaches mainly focus on

instance-level image retrieval such as highly variable scenes. MOP-

CNN [8] presents a scheme of extracting CNN activations for local

patches at multiple scale levels, performing VLAD pooling [11]

of the activations at each level separately and concatenating the

results. Following this idea, Ng et al. [36] introduce an approach for

extracting convolutional features from di�erent layers, Babenko et
al. [2] propose a local features aggregation method based on sum

pooling, and Paulin et al. [25] illuminate an unsupervised frame-

work to learn patch-level descriptors. These approaches above fol-

low the pipeline of generating abundant local patch descriptors and

aggregating them to provide a new global representation. Inspired

by their methods, we also explore the local features, however, there

are two di�erences compared with theirs: (1) We extract the local

features from feature maps of the last convolutional layer, instead

Figure 3: Illustration of feature embedding and multi-task
framework.

of raw images; (2) For each �lter of the last convolutional layer, we

only utilize the most activated area to represent a local semantic

region under the assumption that �ne-grained object’s discrimina-

tive features can be re�ected by strong neural activations, while

these approaches above generate a mass of patch windows of raw

images towards the goal of representing highly variable scenes, not

�ne-grained objects.

Person Re-identi�cation. CNN-based deep learning methods

can incorporate feature extraction and metric learning into a uni-

�ed neural network and jointly optimize these two components.

Thus, they make remarkable progress to signi�cantly boost the re-

ID performance [3, 18, 21, 34, 35]. Generally speaking, two types of

CNN models are commonly employed [43]: classi�cation model and

Siamese model. For large-scale datasets, such as CUHK03 [18] and

Market-1501 [42], the classi�cation model achieves excellent per-

formance without careful training sample selection [32, 41, 43]. We

mainly focus on the classi�cation model because they are much sim-

ilar to our method. However, we replace the global fully-connected

layer features with our novel feature embedding. Experimental re-

sults show that our method yields state-of-the-art re-ID accuracy

on CUHK03 [18] compared with the recent approaches.

3 PROPOSED METHOD
In this section, we �rstly present our motivation of exploiting strong

neural activations on feature maps of high-level convolutional �l-

ters and give the proof that under some reasonable assumptions,

the �nal feature embedding can enlarge the gap between inter-class

variance and intra-class variance. Then, we detail the carefully

designed local semantic feature extracting methods. Finally, we

illustrate the architecture and the loss function of our multi-task

end-to-end network, as shown in Figure 3.

3.1 Motivation and Formulation
As mentioned in Section 1, we make a further observation on fea-

ture maps of conv5 �lters (see Figure 1). For a certain input image,

a portion of conv5 �lters are activated and the responses on the fea-

ture maps of these �lters mostly have the following distribution: the

strongest activation may occur at any position, surrounded by some

relatively strong activations, and other weaker activations are ran-

domly distributed in di�erent places. In the meanwhile, strong acti-

vation areas of these �lters probably represent some discriminative
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local semantic regions of the raw images, which are shared among

the same sub-category (e.g., particular shapes of headlight, taillight,

fog light, grille or even typical car body type for car images), while

other weaker activation areas may just indicate some redundant

content. The phenomena above inspire us to directly exploit strong

neural activations towards the goal of approximately representing

local semantic features, which are helpful to distinguish the correct

sub-category images from other subordinate classes. Hence, we pro-

pose to compactly select one strong neural activation area for each

�lter of the last convolutional layer and pool location-independent

feature vectors to represent the discriminative local features. We

choose the last convolutional layer because deeper convolutional

layer generally has more powerful semantic representation capabil-

ity. Notice that for the corresponding input image, there are also

part of conv5 �lters being less activated (i.e., even the strongest

response on these feature maps has a extremely small numerical

value) and the response distributions on the feature maps of these

�lters are either messy or sparse. Extracting local features from

these �lters seems uninterpretable and meaningless, but due to

their tiny numerical activation values, the in�uence of these �lters

can be almost negligible compared with those activated ones.

Then, we propose an e�ective feature embedding by concate-

nating the above discriminative local features with original global

features, and projecting to a low-dimensional feature space through

fully-connected procedure. The aforementioned motivation is un-

der the assumption that discriminative local features of a speci�c

�ne-grained category can be re�ected by some typical strong neu-

ral activations, i.e., for images from a certain sub-category, their

local features are more similar to each other than the images from

another �ne-grained class. Going a step further, we can naturally

assume that, if we utilize the Euclidean distance of the above local

features as distance metric, then the distance between an anchor

image and a positive image (i.e., from the same sub-category) is

smaller than that between the anchor image and a negative image

(i.e., from a di�erent sub-category). Under such assumption, we

prove that, compared with the original global fully-connected layer

features, our proposed feature embedding can enlarge the gap be-

tween inter-class variance and intra-class variance, which is the

key factor to improve retrieval precision. Technically speaking, we

give the theorem and proof as follows.

Theorem 3.1. For images of a typical sub-category, assuming their
feature representations x ∈ Rn , we de�ne the intra-class variance

Vintra = E‖x − µ+x ‖
2

2
,

and the inter-class variance

Vinter = E‖x − µ−x ‖
2

2
,

where µ+x , µ
−
x is the expectation of all the feature vectors among the

same sub-category and among the other di�erent categories. Suppose
xg ∈ Rn is a traditional global feature, xs ∈ Rn is a local feature
learned from strong activation prior, and xc = [xg; xs] is the concate-
nating feature. xs+ has the same class label as xs, while xs− has the
di�erent class label as xs. If we have

E(‖xs − xs−‖22 − ‖xs − xs
+‖2

2
) > 0, (1)

then, we can prove that

E‖xc − µ−xc ‖
2

2
−E‖xc − µ+xc ‖

2

2
> E‖xg − µ−xg ‖

2

2
−E‖xg − µ+xg ‖

2

2
. (2)

Proof. Because

E(‖xs − xs−‖22 − ‖xs − xs
+‖2

2
) > 0,

we can obtain

E(‖xc − xc−‖22 − ‖xc − xc
+‖2

2
) > E(‖xg − xg−‖22 − ‖xg − xg

+‖2
2
).

Without loss of generality, we normalize the feature as
x
‖x‖2

, then

we have ‖x‖2 = 1. Thus,

E(‖x − x−‖2
2
− ‖x − x+‖2

2
)

is equivalent to

E(xT x+ − xT x−) + consta ,

and

E‖x − µ−x ‖
2

2
− E‖x − µ+x ‖

2

2

can be written as

‖µ+x ‖
2

2
− ‖µ−x ‖

2

2
+ constb .

Because

m∑
i=1

m∑
j=1

x
(d )
i x

(d )
j =

( m∑
i=1

x
(d )
i

)
2

,

where m is the number of data points, and x
(d )
i represents the d-th

dimension of the i-th point, then we can see that

E(xT x+ − xT x−)

is equivalent to

‖µ+x ‖
2

2
− ‖µ−x ‖

2

2
.

It means

E(‖x − x−‖2
2
− ‖x − x+‖2

2
)

is equivalent to

E‖x − µ−x ‖
2

2
− E‖x − µ+x ‖

2

2
+ constc .

consta , constb , constc represents some constants. In this way, we

can prove that

E‖xc − µ−xc ‖
2

2
− E‖xc − µ+xc ‖

2

2
> E‖xg − µ−xg ‖

2

2
− E‖xg − µ+xg ‖

2

2
.

�

Actually, there are also some approximations in implementation,

such as xc is followed by fully-connected procedure to reduce di-

mension and form the �nal feature embedding. However, as can

be seen in Section 5, the experimental performances show the

e�ciency of our simpli�ed proposal. By utilizing our feature em-

bedding, the intra-class variance is signi�cantly reduced and the

inter-class variance has a slight raise, making the gap between inter-

class variance and intra-class variance substantially increasing.
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3.2 Local Semantic Feature Extraction
How to select strong neural activation areas and pool location-

independent feature vectors, is at the core of our approach, thus

we present two techniques to solve this issue.

Fixed-Size Window Pooling. In this method, we utilize the

classic sliding window fashion through the whole feature map

of each �lter and select the rectangle window in which has the

strongest average response. For each �lter k of a speci�c high-level

convolutional layer where k = 1, . . . ,K and K is the total number

of �lters (e.g., 512), let w,h be the �xed width and height of the

sliding window, Pk
(x,y ) the activation value of coordinates(x ,y) on

the corresponding feature map of �lterk andXk
the set of all sliding

windows. The window ik ∈ Xk
is chosen by:

argmax

ik

xik +w∑
x=xik

yik +h∑
y=yik

Pk(x,y ) , (3)

in which (xik , yik ) represent the left-top coordinates of window ik .

Particularly, we add the constraint that the selected window must

contain the pixel corresponding to the strongest activation value.

Then, we view each selected window as region of interest (RoI)

and apply RoI pooling proposed in [7] to pool �xed size (w × h)

convolutional features for each window. After that, we get aK×w×h
dimension vector and extract it to be a D-dimension (e.g., D =
4096) vector through fully-connected procedure. This local fully-

connected vector is proposed to describe local highlighted features

of the raw image.

It is noteworthy that when w,h are both equal to 1, the method

degenerates to Global Max Pooling [29], which means we just

seek a local feature representation by pooling the strongest neural

activation.

Variable-Size Window Pooling. This method is almost the

same as the above one instead of utilizing an arbitrary size window

for each neuron. Let Pk
(x,y ) be the strongest activation of �lter k

and (x ,y) be the corresponding coordinates. We select an rectangle

window around (x ,y), in which the activation of the pixel (x j ,yj ) on

the boundary satis�es: Pk
(x j ,yj )

>= ηPk
(x,y ) , where η is a threshold

(e.g., η = 0.5). In other words, we expand pixels towards four

orthogonal directions simultaneously until the activation of the

speci�c pixel is less than some threshold.

3.3 Multi-task Framework
Feature Embedding and Network Architecture. As aforemen-

tioned, we �rstly extract local semantic features through window

selecting and RoI pooling procedure. Then we form the novel fea-

ture embedding by concatenating the local highlighted features

with the global fully-connected layer features and projecting to a

low-dimensional feature space, in which the �nal feature represen-

tation preserves global information and is more sensitive to speci�c

local location-independent characteristics. On one hand the �nal

features are directly used for the task of �ne-grained categorization.

On the other hand, we further project the �nal feature embedding

to a compact Euclidean space and go through L2 normalization pat-

tern, generating a lower-dimensional vector to accomplish the task

of �ne-grained retrieval. Learning strategies, which are optimizing

softmax loss and triplet loss, are simultaneously employed to learn

the feature embedding. Figure 3 illustrates the whole framework in-

tuitively. The multi-task learning architecture is designed to impose

knowledge sharing between multiple correlated tasks, boosting the

performance of a part or even all of the tasks [40].

Loss Function. Fine-grained object datasets usually have mul-

tiple labels, and some labels even have hierarchical structures. For

instance, Stanford cars-196 dataset [15] annotates each car image

with a ground-truth car type label (such as SUV, Sedan) and a car

category label, in the meanwhile, a unique hierarchy is presented

for the car category label, which is three levels from top to bot-

tom: make, model, and released year. This structure indicates a

direction to make multi-label attributes classi�cation, i.e., simul-

taneously output the prediction of car �ne-grained category, car

type and car make, etc. Formally, let’s assume a training dataset of

images xi , each associated with multi labels yki , where i = 1, . . . ,N ,

k = 1, . . . ,K . That is, we have N samples, each with a kind of K
labels. The multi-label softmax loss is formulated as:

Lcls =
∑
k

λk
∑
i
− log

*.
,

e
fyki∑
j e

f kj

+/
-
, (4)

where hyperparameters λk (k = 1, . . . ,K) are used to control the

balance between the multi-label prediction losses and we use the no-

tation f kj to mean the j-th element of the vector of k-th class scores

f k . This enrichment of multi labels forms a mini-multi-task within

classi�cation constraints learning, boosting the performance of each

classi�cation task. Notice that for the datasets, which just have sin-

gle category labels such as CUB-200-2011 [30] and CUHK03 [18],

we just leverage the conventional softmax loss, which is formulated

as:

Lcls =
∑
i
− log *

,

efyi∑
j e

fj
+
-
, (5)

where the de�nition of parameters is similar to Eq. 4.

Next, for a standard triplet loss network, the inputs are a batch

of triplet units (ai ,pi ,ni ), where ai is the anchor image from a

speci�c category, pi an image from the same category, and ni an

image from a di�erent category. As shown in Figure 3, our network

projects the �nal full-connected feature vector of a raw image ri
to a lower-dimensional vector f (ri ) ∈ R

D
in a compact Euclidean

space, after L2 normalization. The classic triplet loss can be denoted

as:

Lsim =
N∑

max(Φ(ai ,pi ) − Φ(ai ,ni ) +m, 0), (6)

where Φ(ri , r j ) is the squared Euclidean distance between two vec-

tors (f (ri ), f (r j )) de�ned above andm is a certain margin satis�ed

m > 0. Our novel triplet units selecting strategy is expounded in

Section 4.3.

In summary, the loss function of the whole multi-task framework

is de�ned as:

Lmulti−task = Lcls + µLsim , (7)

where the hyperparameter µ is used to control the balance between

the two task losses.

Testing.When a query happens, images in the gallery are ranked

according to their similarities with the probe image, in which the
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similarity between image features is computed by Euclidean dis-

tance. Following the same criterion as training, we project the �nal

feature embedding to a lower-dimensional Euclidean space and go

through L2 normalization pattern. Then, we leverage such features

for computing distance.

4 EXPERIMENTS
4.1 Datasets and Protocols
Fine-Grained Object Retrieval. The empirical evaluation is per-

formed on two �ne-grained benchmarks: Stanford cars-196 (Cars) [15]

and CUB-200-2011 (Birds) [30]. Stanford cars-196 contains 16, 185

images of 196 car types, while CUB-200-2011 has 11, 788 images

of 200 species of birds. Both datasets have a single bounding box

annotation in each image. We use the default training / testing split,

which gives us around 40 training examples per class for Cars and

around 30 training examples per class for Birds. In our experiments,

we employ the widely used protocol in object retrieval: mean aver-

age precision (mAP), to evaluate all the methods. Particularly for

Stanford cars-196, we also report the precision on top-40 retrievals

(following the standard of comparison mentioned in [39], using

top-40 since each �ne-category contains around 40 images).

Person Re-identi�cation. We conduct experiments on the

large dataset CUHK03 [18], which consists of more than 14, 000

images of 1, 467 pedestrians. Li et al. [18] provide two types of

bounding boxes: labeled (human annotated) and detected (automat-

ically generated). In this work, we report results on the labeled set.

We follow the protocol used by [32] and randomly pick a set of

100 identities for testing. We draw roughly 20% of all the images in

training set for validating the classi�cation task. In our experiments,

we employ the commonly used Cumulative Matching Characteris-

tics (CMC) [22] top-1 accuracy to evaluate all the methods and the

evaluation results are reported under single-query setting.

4.2 Implement Details
Our algorithm is implemented based on the deep learning frame-

work Ca�e [12] and runs on a workstation con�gured with a

NVIDIA M40 GPU card. The basic convolutional network archi-

tecture is VGGNet [27]. For all experiments, we extract local fea-

tures from the conv5 layer (the last convolutional layer of VG-

GNet) because deeper convolutional layer has more powerful se-

mantic representation capability. As a large region on the feature

map of conv5 layer corresponds to a huge receptive �eld of the

input image, a relatively small siding window size is chosen for

Fixed-Size Window Pooling and we report the experimental re-

sults based on 1 × 1 and 3 × 3 size (Notice that 1 × 1 size equally

means Global Max Pooling). For Variable-Size Window Pooling,

we select η = 0.7. The local semantic features and the global fully-

connected layer features are both 4096-dimension, the concatenat-

ing features and the �nal feature embedding are 8192-dimension

and 4096-dimension, and the projected feature vectors for retrieval

are 1024-dimension, which can be shown in Figure 3. We �ne-tune

our network based on the ImageNet pre-trained model and choose

by grid search the initial learning rate 0.001 (decreases to its 1/10

every 100 epochs), momentum 0.9, weight decay 0.0005, margin

parameter m = 0.2 in Eq. 6, regularization parameters µ = 0.4

in Eq. 7. For Stanford cars-196 dataset which has multi labels, we

choose λcateдory = 0.6, λtype = 0.3, λmake = 0.2 in Eq. 4.

4.3 Triplet Sampling Strategy
The training process for the experiments and our algorithm of con-

structing triplet units are detailed as follows. Firstly, we run stochas-

tic gradient descent (SGD) to minimize softmax loss individually

(i.e., setting the loss weight of triplet loss to zero) for 20 epochs

to reach a relatively stable state (i.e., the classi�cation accuracy

maintaining a high level). Then we introduce our novel strategy of

generating triplet units and minimize both softmax loss and triplet

loss simultaneously for another 280 epochs until convergence. This

two-stage procedure aims to make the method of choosing negative

samples from the categories similar to positive ones meaningful.

After stage one, we normalize the �nal fully-connected feature vec-

tor of each image and compute the mean feature vector of images

belonging to the same �ne-grained category respectively. Euclidean

distances between each mean vector are calculated next and for ev-

ery �ne-grained category, its top-k (k = 14) neighboring categories

are marked. To form an online training procedure, we repeat above

neighboring categories selecting pattern every 50 epochs. Then,

among a mini-batch, in which the batch-size is 64 and the number

of positive samples is 8, the anchor is selected as the cluster center

of the positive set as mentioned in [20], and the left 56 negative

candidates are equally chosen among the closest k (we choose a

relatively large number, e.g., k = 14, to make sure the samples in

a mini-batch are as stochastic as possible) neighboring categories.

Within a mini-batch, we form each triplet unit with the anchor, a

random positive sample and the hardest negative candidate among

all negative samples.

5 RESULTS AND DISCUSSION
5.1 Comparison with State-of-the-art Methods

on Stanford Cars-196 Dataset
Extensive experiments are conducted to evaluate our proposed

framework on Stanford cars-196 dataset. We compare our method

with three state-of-the-art baselines, which are: (1) distance met-

ric learning by triplet loss [31], (2) triplet-based �ne-tuning af-

ter softmax [24], (3) multi-task learning combined softmax with

triplets [39]. The above three methods directly use global fully-

connected features and di�erentiate by learning strategies. As re-

vealed in Table 1, [39] achieves better performance, which proves

the superiority of multi-task learning strategy. Therefore, we follow

the same learning strategy as [39], while replace the generic fully-

connected layer features with our novel feature embedding. The

results from Row-4 of Table 1 present a signi�cant performance

gain, strongly demonstrating the e�ciency of our introduced fea-

ture embedding. Then, we generalize the softmax loss to multi-label

softmax loss, i.e., simultaneously predict car category, car type and

car make, as mentioned in Section 3.3. We just employ multi-label

softmax loss for the experiments of Stanford cars-196, because only

this dataset provides multi-label annotations. This technique fur-

ther slightly improve the performance, as can be shown in Row-5

of Table 1. In summary, our method beats the latest state-of-the-

art approach [39] by a relative 11.7% increase in mAP and 13.4%

increase in top-40 retrieval precision.
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Table 1: Performance comparison of state-of-the-art methods on Stanford cars-196.

Method CNN Features Learning Strategy mAP Top-40 Precision

Baseline1 [31] Global Fully-connected Features Triplet Loss 57.5 52.5

Baseline2 [24] Global Fully-connected Features Triplet Fine-Tune after Softmax 60.7 56.1

Baseline3 [39] Global Fully-connected Features Multi-Task (Softmax and Triplet) 72.4 67.8

Our Method Our Feature Embedding Multi-Task (Softmax and Triplet) 79.3 75.1
Our Method Our Feature Embedding Multi-Task (Multi-label Softmax and Triplet) 80.9 76.9

Figure 4: Comparisons on Stanford cars-196 dataset. (a) Top-
k retrieval precision. (b) Intra-class variance. (c) Inter-class
variance.

Figure 5: Results of top-6 retrievals based on themethod uti-
lizing global fully-connected layer features [39] (top) and
our novel feature embedding (bottom). The true positive re-
sults are in green box, otherwise red.

In addition, Figure 4(a) intuitively illustrates the top-k retrieval

precision results. From Figure 4(b) and Figure 4(c), we can clearly

see that, by utilizing our feature embedding, the intra-class variance

is dramatically decreased and the inter-class variance has a slight

raise, compared with the original global fully-connected layer fea-

tures. These results well verify our theorem in Section 3.1. Figure 5

shows some examples of retrieval results, where we can see that

our method is signi�cantly less sensitive to di�erent viewpoints or

poses and achieves obvious superiority compared with the existing

methods.

We also su�ciently evaluate each of our algorithm components,

including using local features alone and di�erent local feature pool-

ing methods. We give the detailed analysis in Section 5.2.

Table 2: mAP on Stanford cars-196 of di�erent algo-
rithm components. “FP” indicates Fixed-size Window Pool-
ing, “GMP” indicates Global Max Pooling, “VP” indicates
Variable-size Window Pooling, all mentioned in Section 3.2.

Method mAP

Global FC Features Alone 72.4

Local Features Alone ( FP (3 × 3) ) 70.7

Feature Embedding ( FP (3 × 3) ) 78.3

Feature Embedding ( GMP (1 × 1) ) 78.9

Feature Embedding ( VP ) 79.3

Feature Embedding ( VP ) & Multi-label Strategy 80.9

5.2 E�ectiveness of Algorithm Components
Taking Stanford cars-196 dataset as an example, we detailed investi-

gate the e�ects of the proposed algorithm modules, including using

the local features alone, and our feature embedding with di�erent

local feature pooling techniques. The results are shown in Table 2.

We �rst evaluate the e�ect of using local features alone. From

Table 2, we can see that the performance of using local features

alone is worse than using global fully-connected features, while the

�nal feature embedding is signi�cantly superior to the above two.

Such phenomenon is reasonable. As aforementioned, our proposed

method is based on the assumption that, for images from a certain

sub-category, their local features are more similar to each other than

the images from another �ne-grained class, i.e., the local features

satisfy Eq. 1. It is a weak assumption and we do not suppose local

features are better than global fully-connected features. However,

under such assumption, we prove that the concatenated features

can enlarge the gap between inter-class variance and intra-class

variance compared with the original global fully-connected features

(see Eq. 2), which is the key factor to improve retrieval precision. As

a result, the �nal feature embedding achieves the best performance.

We can also know that several methods of local feature extraction,

including Fixed-size Window Pooling and Variable-size Window

Pooling, are all e�ective designs. Generalizing the softmax loss to

multi-label softmax loss can further slightly improve the perfor-

mance because that it leverages multiple label information of the

dataset.

5.3 Comparison with State-of-the-art Methods
on CUB-200-2011 Dataset

We also evaluate the performance of our method on another �ne-

grained object dataset CUB-200-2011 [30], and Table 3 presents the
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Table 3: Performance comparison of state-of-the-art meth-
ods on CUB-200-2011.

Method mAP

Global Features via Triplet [31] 42.05

Global Features via Triplet Fine-Tune after Softmax [24] 46.57

Global Features via Multi-Task Learning [39] 55.04

Our Feature Embedding via Multi-Task Learning 61.98

Table 4: Performance comparison of several state-of-the-art
methods at CMC ranks 1 on CUHK03 labeled dataset.

Method rank-1

FPNN [18] 20.7

LOMO+XQDA [19] 52.2

Ahmed et al. [1] 54.7

Ensembles [23] 62.1

Fused Model [28] 72.4

Xiao et al. [32] 76.7

Feature Embedding (Ours) 82.1

results. We design this experiment to prove the generalized supe-

riority of our proposed �ne-grained feature embedding compared

with the baseline of global CNN fully-connected features. Follow-

ing the same evaluation criterion as Stanford cars-196, we compare

our methods with three state-of-the-art baselines, which are all

using global fully-connected layer features but di�erent learning

strategies. We use the same learning strategy as [39] while replace

the fully-connected features with our novel feature embedding. Our

method achieves a 61.98% mAP, still outperforming the existing

result 55.04% [39] by a signi�cant margin (a relative 12.6% improve-

ment). It strongly proves a consistent performance gain with our

feature embedding.

5.4 Comparison with State-of-the-art Methods
on CUHK03 Dataset

The CUHK03 dataset is a large-scale challenging person re-ID

dataset. Table 4 summarizes the experimental results on the CUHK03

labeled setting. We mainly focus on the comparison with [32] be-

cause it is similar to our method. Xiao et al. [32] show that for

large-scale datasets, such as CUHK03, a carefully designed classi-

�cation model achieves almost state-of-the-art performance. For

fair comparison, we utilize the same basic CNN network and just

leverage softmax loss (i.e., set the loss weight of triplet loss to zero)

to learn features, following the same settings as [32]. The only

di�erence is that we replace the fully-connected features with our

novel feature embedding. Here too, we see the amazing superiority

of our model over the existing state-of-the-art approaches, a relative

gain of up to 7% (82.1% vs. 76.7%) on CMC rank-1 accuracy.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a simple but e�ective feature embedding

for �ne-grained object retrieval by simultaneously encoding global

fully-connected layer features and discriminative local semantic fea-

tures, in which the local features are extracted by exploiting strong

neural activations on the last convolutional layer. We demonstrate

that our feature embedding can signi�cantly enlarge the gap be-

tween inter-class variance and intra-class variance, which is the

key factor to improve retrieval precision. In addition, we show our

approach can also be applied in person re-identi�cation. Experi-

mental results on several challenging benchmarks show that our

method yields state-of-the-art performances. In the future, we will

explore the mechanism of e�ectively picking speci�c �lters for

the corresponding �ne-grained category, making the procedure of

extracting local semantic features more reasonable and robust.
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