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ABSTRACT
The evolution of social media popularity exhibits rich tem-
porality, i.e., popularities change over time at various levels
of temporal granularity. This is influenced by temporal vari-
ations of public attentions or user activities. For example,
popularity patterns of street snap on Flickr are observed
to depict distinctive fashion styles at specific time scales,
such as season-based periodic fluctuations for Trench Coat
or one-off peak in days for Evening Dress. However, this
fact is often overlooked by existing research of popularity
modeling. We present the first study to incorporate mul-
tiple time-scale dynamics into predicting online popularity.
We propose a novel computational framework in the paper,
named Multi-scale Temporalization, for estimating popular-
ity based on multi-scale decomposition and structural re-
construction in a tensor space of user, post, and time by
joint low-rank constraints. By considering the noise caused
by context inconsistency, we design a data rearrangement
step based on context aggregation as preprocessing to en-
hance contextual relevance of neighboring data in the tensor
space. As a result, our approach can leverage multiple lev-
els of temporal characteristics and reduce the noise of data
decomposition to improve modeling effectiveness. We eval-
uate our approach on two large-scale Flickr image datasets
with over 1.8 million photos in total, for the task of popu-
larity prediction. The results show that our approach sig-
nificantly outperforms state-of-the-art popularity prediction
techniques, with a relative improvement of 10.9%–47.5% in
terms of prediction accuracy.
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Social media popularity; multi-scale temporal modeling; ten-
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Figure 1: Social media popularity changes over time
and often exhibits varying temporality across dif-
ferent time scales. Clothing fashion, as a typical
example, gives a vivid expression of the temporal
characteristics for social media popularity. The life
spans of four particular fashions are observed to be
diversified from few days (e.g., evening dress), spe-
cific weeks (e.g., Christmas cloth), several months
(e.g., Jet-set style), to certain seasons (e.g., trench
coat). Each dashed curved line after an image repre-
sents the life cycle of popularity of the corresponding
clothes.

1. INTRODUCTION
Social media has changed the way human interact and has

connected billions of users worldwide with friends and fam-
ily through online content posting. Meanwhile, a plethora
of information is generated for competing their attention,
e.g., 1.3 million pieces of content are shared on Facebook
every single minute [1]. Only few posts have the opportu-
nity to become popular while most are ignored over time [2,
3]. Thus, modeling the popularity evolution and predicting
the individual popularity (the popularity of a specific post
or item) are very active fields of social media research and
can lead to a number of applications, such as content recom-
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mendation [4, 5], advertisement placement [6], information
retrieval [7, 8] and online media caching services [9].

The existing studies of exploiting temporal information
for popularity modeling can be grouped into two main cat-
egories. The first category builds popularity models to dis-
cover general patterns for temporal trends in popularity
data [10, 11, 12, 13, 14, 15]. The statistics are typically
computed over the entire popularity data, such that specific
characteristic needed for individual popularity prediction is
often lost. The second category is to estimate the individual
popularity of online content by temporal factors or variables
with intrinsic time information [3, 6, 16, 17, 18]. Character-
istics of time-dependent factors are explicitly incorporated
into prediction, and most of the recent researches in this
field fall into this category.

Popularities are mirror of society, reflecting shifts in peo-
ple’s preferences in the context of social alteration. Taking
clothing fashion as an illustration, images or videos about
trendy dresses naturally receive much more attention than
out-of-date clothes on social media [19, 20]. Also, a fashion
can have a short or long life cycle. For example, as shown
in Figure 1, certain types of clothing fashion tend to last for
a period that is as short as only few days to weeks, while
others will decline slowly or even turn into what is known
as a timeless classics. These observations reveal an essen-
tial characteristic of popularities, i.e., popularities not only
change over time but also operate across a range of different
time scales. Recently, several researchers also found simi-
lar phenomena on different social platforms influenced by
various temporal factors [21, 3], such as user habits, timely
events, headline news, and popular products. The underly-
ing momentum is related to temporal variations in the life
spams of human activities and preferences. However, to the
best of our knowledge, little work has been done to leverage
multi-scale temporal dynamics for popularity prediction.

In this paper, therefore, we propose to understand popu-
larity dynamics from a multiple time-scale perspective, named
Multi-scale Temporalization (MT), which is a structured mod-
eling for popularity dynamics into multiple levels of time
scale. As shown in Figure 2, it is distinctive from the con-
ventional paradigm that considers all the popularity data as
a whole popularity tensor [3, 22, 23]. We attempt to explore
them by considering multi-scale effects together over time,
simultaneously in multiple time scales. As preprocessing, we
design a data rearrangement step to enhance contextual rel-
evance of neighboring data for reducing the noise caused by
context inconsistency. Then we propose a multi-scale tensor
decomposition with considering temporal information and
context information in three-dimensional data space of pop-
ularity (formed by the user, post, and time dimensions). Fi-
nally, we perform reconstruction through minimizing a joint
low-rank constraint for predicting online popularity. There-
fore, our approach can leverage multiple levels of temporal
characteristics and reduce data noise to improve the predic-
tion effectiveness.

In the experiments, we demonstrate the effectiveness of
the proposed framework through experiments with two large-
scale Flickr datasets for the task of popularity prediction.
One of the datasets is from VSO [24] and the other is crawled
from Flickr, with over 1.8 million photos in total. The re-
sults show that our approach significantly outperforms state-
of-the-art popularity prediction techniques, with a relative
improvement of averagely 10.9%–47.5% in prediction accu-

racy. Moreover, the proposed framework is novel and can be
readily extended to other content domains and application
scenarios with the analysis of various evolutionary dynamics.

The main contributions of this study are: (i) we address
popularity prediction within the multiple time-scale perspec-
tive; (ii) we propose a framework MT to predict online popu-
larity based on decomposition via joint low-rank constraints;
(iii) we also propose a data rearrangement strategy based
on the aggregation of context information for reducing the
noise caused by context inconsistency; (iv) we evaluate our
approach on large scale datasets and achieve a significant
outperformance over the state-of-the-art methods.

The rest of the paper is organized as follows. Related ap-
proaches of temporal modeling for popularity are discussed
in Section 2. We propose the multi-scale temporalization
model in Section 3. In Section 4, we report experimental
evaluations of the proposed approach and comparisons with
state-of-the-art algorithms. Finally, the conclusions and fu-
ture work are presented in Section 5.

2. RELATED WORK
The temporal information modeling for popularity dy-

namics on social media has received much research attention
recently. Existing works can be concluded into two main
paradigms.

The first paradigm focuses on exploring the patterns of
evolving trend for popularity variations [10, 11, 14, 13].
Throughout the early years, Szabo and Huberman attempted
to analyze online popularity trend growth with pattern char-
acteristics [12]. Mathioudakis and Koudas detected popu-
larity trends by bursty key words in Twitter [13]. Yang and
Leskovec found the cluster centroids of patterns associated
with overall items and how the content’s popularity grows
and fades over time [14]. Roy et al. proposed a novel transfer
learning framework to grasp sudden popularity trend bursts
with temporal knowledge from social streams [11]. Kong et
al. explored the problems of real-time prediction of bursting
hashtags. Although these works exploited general compre-
hension on the variance mechanisms of popularity evolution,
most of them are designed for general popularity or a group
of items online [10]. These models have limited effectiveness
on predicting the individual popularity in social media.

The other paradigm is modeling the individual popularity
by temporal factors or variables with intrinsic time informa-
tion [3, 16, 17, 18], while researchers notice that temporal
information is useful cues to predict individual popularity on
social media in recent years [3, 6, 18]. Wu et al. proposed to
predict popularity in social media by unfolding its contex-
tual dynamics and incorporated temporal context into the
prediction [3]. Zhao et al. combined human reaction time
and post infectiousness to build the theory of self-exciting
point processes [18]. Shen et al. proposed a reinforced Pois-
son process to model explicitly the dynamic popularity of
individual items based on the arrival time of attention [16].
He et al. used comments as a time-aware bipartite graph
for estimating the popularity of item [17]. Although these
models succeed in using temporal information, the essential
multi-scale characteristic of popularity dynamics is lacking
of investigation.

Therefore, how to incorporate multiple time-scales infor-
mation into the study of popularity prediction in social me-
dia is still an open research issue. This motivated us to
design the proposed framework of temporal modeling.
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Figure 2: An overview of our proposed Multi-scale Temporalization (MT). In the first step, we proposed
a data rearrangement step to re-organize data locations in tensor space with considering the corresponding
contextual factors. Then we model temporal dynamics of popularity by multi-scale decomposition structures.
Finally, we predict popularity with join low-rank constraints based on multi-level reconstruction.

3. MULTI-SCALE TEMPORALIZATION
MODELING

3.1 Framework Overview
In this section, we introduce the proposed multi-scale tem-

poralization modeling for popularity dynamics. First, we
formally define the problem of popularity prediction. With-
out loss of generality, we take photo posts on social media
as our initial research focus.

Problem Formulation (Popularity Prediction): Given
a group of users U and a collection of photo posts V , the
popularity of photos can be recorded as the collection S.
Since the generation of popularity on social media is a col-
laborative process [3], an individual popularity (the popu-
larity of a specific post or item) s corresponds to a sharing
behavior that can be described by a three-dimensional tuple
〈u, v, t〉 denoting that a user u shared a new photo v at time
t. A mathematical representation of the popularity data is
defined as a three-dimensional data matrix, called popular-
ity tensor R, with the user dimension, photo dimension, and
time dimension. The popularity prediction problem can thus
be formulated as predicting unobserved popularity entries
(with sharing behaviors that are unknown or not happened
yet) in the tensor R based on other observed data (entries
with known popularities).

In Figure 2, we illustrate the proposed framework of multi-
scale temporalization for popularity dynamics. Unlike tra-
ditional methods, our temporalization is a novel technique
to unfold the temporal dynamics of popularity over time
at multiple time scales, which includes three main analy-
sis steps: (1) data rearrangement based on contextual rel-
evance, (2) decomposition in multiple time scales, and (3)
reconstruction from multi-scale temporal segments. Firstly,
since the popularity data with similar contexts (e.g., users
with similar profiles or photos with similar contents) tend
to gain similar levels of popularity on social media [4], we

group the popularity data with high contextual relevance to
be in close proximity, cf. Section 3.2. Next, we perform
multi-scale tensor decomposition to derive an approximate
representation of the popularity data at different time scales.
For each time scale (e.g., a scale of day, week, or month),
the corresponding scale tensor is divided into a sequence of
temporal segments with multiple time-scale representations,
cf. Section 3.3. Finally, we perform a joint optimization
strategy to combine a set of the temporal segments from all
the time scales to best approximate the rearranged popular-
ity tensor, where joint low-rank constraints are applied, cf.
Section 3.4. As a consequence, estimates of the unobserved
values in the popularity tensor can be effectively obtained.

3.2 Data Rearrangement based on Contextual
Relevance

The popularity of a post is context-aware signal, which is
highly correlated with certain post contexts, e.g., who shared
the post, what the post is about, etc. As suggested by the
previous findings [22, 25, 26], the posts with relevant con-
texts tend to gain similar popularity [4, 27, 28]. In the paper,
our purpose is to partition a popularity tensor as a disjoint
collection of smaller tensors, and predict new popularity in
popularity tensor via pattern reconstruction on these ten-
sors. However, uncovering patterns of the popularity data is
difficult because the noise caused by context inconsistency
(such as contextual differences in user factors or content fac-
tors) behind the temporal variation would result in analysis
challenges. That is, if two neighboring data regions are con-
textually correlated, there would exist context-related noise
in the popularity tensor prediction. Hence we hope popular-
ity data in neighboring regions would have high correlation
of the contextual information, such that each smaller ten-
sor can help construct a “compact” representation for the
corresponding popularity data in prediction.

Therefore, we propose a approach of contextual data rear-
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Figure 3: (a)The three main steps of the data rear-
rangement. (b) After the rearrangement is applied,
neighboring data have higher contextual relevance.

rangement for the challenge in popularity temporalization.
Most of previous works apply sorting-based methods to per-
form element-wise rearrangement in a matrix, but the high
correlation of neighboring local data might not be guaran-
teed if multiple dimensions (e.g., user, photo, etc.) are in-
volved in the sorting process. As inspired by [29], we group
the given tensor data in the multi-dimensional feature space
without enforcing to sort the data. The proposed data rear-
rangement can help us to obtain the data units with multi-
dimensional contextual consistency for more effective CU-
tensor decomposition.

To extract the contextual information of individual pop-
ularities, contextual features are built from three main per-
spectives: user influence, visual content, and post metadata.

User Influence. User influence reflects the personal rep-
utation on social media, and the user features we adopted
include: mean number of views, photo count, number of con-
tacts, average number of members in a user’s groups, and
having a Pro Flickr account or not.

Visual Content. To describe photo content, we extract
both low-level and object-level vision features. Low-level
vision features are adopted to measure the color distribu-
tion and image local structures, including color patch de-
scriptors [30], Local Binary Pattern (LBP) descriptors, and
locality-constrained gradient descriptors [2, 31]. For object-
level vision features, we use deep learning features by convo-
lutional neural networks (CNNs) with the DeCAF method
[32] to determine object categories in photos, resulting in
4,096 feature dimensions.

Post Information. Post information can be directly ex-
tracted from the metadata of photo files [25], containing the

sharing time, the number of image tags, the length of the
post title, and the length of post descriptions.

After the above context factors being extracted, the pop-
ularity tensor is rearranged in a three-step manner. Since
the user influence has been shown to be a dominant factor in
photo popularity prediction [3, 25, 26], the popularity data
are first grouped along the user dimension by the k-means
algorithm [33] based on the user influence features. Note
that the exact spatial order of either the groups or the data
inside a group is not important because the purpose of our
grouping here is to place “similar” data as close as possi-
ble but not to rank the data. As the second step, another
grouping is performed along the post dimension based on
the features of both the visual content and the post infor-
mation (excluding the sharing time). Finally, for each data
group (on the post dimension) of a specific user, we sort the
data inside the group by the sharing time (from the post
information) as a refinement step, cf. Figure 3.

3.3 Decomposition in Multiple Time Scales
We try to predict the popularity by the joint approxi-

mation with considering multiple time scales together. To
capture the local dynamics of popularity over time, the pro-
posed multiple time-scale decomposition operates by decom-
posing a popularity tensor (P-tensor) into a number of time-
scale tensors (TS-tensors) each composed of a set of composi-
tional unit tensors (CU-tensors), as detailed below. Concep-
tually, we attempt to break down the popularity variation
into multiple levels of detail for constructing an accurate
representation of popularity for popularity prediction.

Let T = {Ti}Li=1 denotes a set of adopted time scales.
Given a popularity tensor R associated with a collection
of users U and a collection of photo posts V , the multiple
time-scale decomposition can be expressed as the sum of
L components with each corresponding to an adopted time
scale:

R =

L∑
i=1

Ri, (1)

where Ri is the same size of R and called a TS-tensor of R in
the Ti time scale. Since data with high contextual relevance
are rearranged to be spatially close in R (cf. Section 3.2),
each TS-tensor can be further partitioned into smaller pieces
called CU-tensors as the unit of analysis, in order to take
benefit of the data homogeneity for decomposition. That is,
each CU-tensor in Ri has the dimensions of mj × nj × tj ,
where the time dimension tj is a base-2 or base-e number re-
lated to the time scale of Ri as discussed in the experiments.
Then the user dimension mj and the post dimension nj are
set to be the same order of magnitude as tj . Note that mj

(or nj) needs to be larger than the smallest group size of
users (or posts) as obtained in the data rearrangement.

The exact locations of CU-tensors in Ri can thus be in-
dexed by a location set M = {Mj}Jij=1 where Ji is the total
number of CU-tensors in Ri. Thus Ri can be formulated
as a summation of the CU-tensors by defining a reshaping
transformation below.

Definition 1. (CU-tensor Transformation) Given an
TS-tensor Ri, the CU-tensor transformation is defined as
an operation Oi for converting one of Ri’s CU-tensors, Ri

j ,
j = 1, ..., Ji, into a zero tensor of the same size as Ri with
only values of Ri

j in the corresponding location Mj , such

that Ri =
∑Ji
j=1Oi(Mj ,Ri

j).
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Therefore, the multiple time-scale decomposition of an
original P-tensor can be simplified into a series of smaller-
scale decompositions performed on the CU-tensors. In this
paper, we applied the Singular Value Decomposition (SVD) [34,
35] as our decomposition tool. The expression of R can be
thus changed to:

R =

L∑
i=1

Ji∑
j=1

Oi(Mj ,Si
j ×Ui

j ×Vi
j ×Ti

j), (2)

where Si
j ×Ui

j ×Vi
j ×Ti

j is the factorization of Ri
j .

3.4 Reconstruction from Multi-scale Tempo-
ral Segments

In the previous section, we introduced the multi-scale de-
composition process of temporalization for a P-tensor. The
P-tensor can be further formed by a series of CU-tensor de-
compositions at multiple time scales. Since an individual
popularity is related with a complex interplay among the
contextual factors, where there often exists a high level of
noise in the popularity data, making it a non-trivial task
to conduct the popularity prediction [11, 16]. Therefore, it
is always a challenge about how to reduce the noise during
recovering the P-tensor from multi-scale temporal segments.

For this challenge in the P-tensor reconstruction, we pro-
pose to apply joint low-rank constraints to reduce the noise
level by minimizing the ranks of CU-tensors. More specif-
ically, since the data rearrangement step (as proposed in
Section 3.2) has aggregated the P-tensor entries with high
contextual relevance in the data space, each CU-tensor has
high contextual relevance among the data entries and the
rank of the CU-tensor tends to be low. Therefore, we create
joint low-rank constraints on CU-tensors instead of minimiz-
ing the gradients of the original objective function directly.
Thus the optimization is formulated as:

min
R1,...,RL

L∑
i=1

Ji∑
j=1

rank(Ri
j)

subject to R =
L∑
i=1

Ri.

(3)

Especially, if the rank of a decomposed Rj
i is zero (calcu-

lated by SVD computation), we will ignore it for P-tensor
reconstruction, which means the joint low-rank constraints
will select the CU-tensors with a non-zero rank only in every
optimization steps.

Since the minimization for the summation of rank con-
straints is a non-convex problem, we are unable to get an
effective solution by optimizing it directly. Hence we convert
the problem to a convex optimization problem by nuclear
norm relaxation, which is inspired by the similar techniques
applied in low-rank matrix completion [36]. Specifically, we
construct the nuclear norm || · ||nuc to calculate the sum of

singular values of overall elements of a CU-tensor Rj
i, which

is a minimization constraint of convex envelope of its rank.
Meanwhile we have the nuclear norm || · ||(i) for each TS-
tensor Ri:

|| · ||(i) =

Ji∑
j=1

||Oj(·)||nuc. (4)

Then we incorporate the regularization term ||Zi||(i) to
obtain an equivalent relaxation formulation of our problem
with two optimization objectives: a) the indicator constraint

1l{·} for recovering R based on multiple time-scale infor-
mation components (CU-tensors), and b) the summation of

regularization terms
∑L
i=1 λi||Zi||(i) as a nuclear norm ob-

jective for optimization on joint rank constraints. The final
objective function to estimate the partially known P-tensor
R is formulated by:

min
Ri,Zi

1l{R =
L∑
i=1

Ri}+
L∑
i=1

λi||Zi||(i)

subject to Ri = Zi,
(5)

where the regularization parameter λi is to adjust the weight
of proximal regularizations ||Zi||(i). Note that, we compute
parameters as λi =

√
mi +

√
ni in our experiments inspired

by similar parameter estimation of the previous work [37].
Since Alternating Direction Method of Multipliers (ADMM)

is a powerful algorithm for convex optimization problems [38],
we apply it on solving our optimization. The solution of the
function is based on the joint optimization of two objec-
tives and the iterative computation of Ri and Zi. At each
iteration of the reconstruction of P-tensor R, we need to es-
timate TS-tensors Ri at first with the following alternative
updating steps:

Ri ← (Zi + 1
L

(R−
L∑
i=1

Zi)), (6)

Zi ← SV Dλi(Ri). (7)

SV Dλi(·) is the abbreviation of SVD method with the men-
tioned regularization parameters λi for updating Zi. SV Dλi

is a proximal constraint function of the regularization sum-
mation term, we define SV Dλi(Ri) = Umax(Σ− λi, 0)TT.

After updating all TS-tensors in each iteration, we iden-
tify them by estimating the individual correlation between
the updated versions and the corresponding training data
in P-tensor. By this step, we select the components with a
positive correlation for the next iteration of P-tensor esti-
mation. The algorithm of our method is the combination of
alternative updating processes in each iteration, as summa-
rized in Algorithm 1.

Algorithm 1 The Algorithm of Multi-scale Temporaliza-
tion
Require: estimated tensor: R; maximal interaction: n;
1: Initial R0 and Z0 randomly on three-dimensional space

with temporal information;
2: repeat
3: repeat
4: Optimization update steps:

Ri ← (Zi + 1
L

(R−
L∑
i=1

Zi))

Zi ← SV Dλi(Ri)

5: Update Ri and Zi followed by Alternating Direc-
tion Method of Multipliers

6: until each TS-tensor Ri has been estimated
7: Select Ri by correlation computation
8: Compute results of objective function:

R =
L∑
i=1

Ji∑
j=1

Oi(Mj ,Si
j ×Ui

j ×Vi
j ×Ti

j)

9: until procedure convergence or the number of interac-
tions is over n
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3.5 Popularity Formulation
The popularity of a shared post is related to the interac-

tion behaviors of user preference in social media. For ex-
ample, tweets popularity can be represented by “retweeted
count” on Twitter, and video popularity is “visiting count”
on YouTube. On Flickr, when browsing a personal photo
stream or image search results, users can view details of
a photo content with its metadata through clicking photo
thumbnails. In our prediction, we use “viewing count” to
describe the photo popularity, since it is a significant indi-
cator of public preference of a new photo.

To alleviate the large variation (i.e. the number of views
of different photos varies largely from zero to millions), we
apply the log-normalization approach [2] on the popularity
formulation. As a result, the log-normalized popularity of a
photo can be defined as

s = log2

r

d
+ 1, (8)

where r is the original view count of each published photo,
and d is the number of days since the photo was shared.

4. EXPERIMENTS
In this section, we report three groups of experiments: (1)

we compare our proposed method and state-of-the-art algo-
rithms for popularity prediction on over 1.8 million photos
from Flickr, and our method is shown to be more effective on
popularity prediction, (2) we perform further experiments
to validate our algorithmic choices, e.g., the proposed time
scales are effective to decompose popularity dynamics of so-
cial media photos, (3) we demonstrate the temporal predic-
tion ability of our approach for popularity prediction and
showcase some sample results.

4.1 Datasets
For validating our proposed approach on real-world data,

we collected over 1.8 million photos from over 70K users in
total for two large-scale photo collections: the photo-mix
dataset and the user-album dataset. These settings repre-
sent two different scenarios in social media platform.

Photo-mix Dataset (PmD): We use the Visual Sen-
timent Ontology (VSO) dataset [24] consisting of approx-
imately 1.2M images from over 70K users. Each user has
five published photos at least. This setting often occurs on
image retrieval or photo streams where people can browse
various kinds of photos. We put all the images of these
users together and performed popularity prediction on the
full data.

User-album Dataset (UaD): We collected 600K pho-
tos from the personal albums of 400 different users, and
organized the photos into training data and testing data
randomly. This setting is built for the scenario of finding
interesting photographers by published albums. The pre-
diction for the dataset tends to use more photos for each
user than PmD.

For providing results on both of “big data” and “small
data”, we selected photos to get smaller subsets from PmD
and UaD in number of photos, i.e., 400K from VSO CC
dataset (a set of Flickr images with Creative Common (CC)
licenses of VSO), 800K from VSO full (a set of images as-
sociated with the full VSO) and 300K from UaD (this set
include half images of UaD), respectively.

4.2 Evaluation Metric
To evaluate performances of comparisons, we use the me-

dian Spearman Ranking Correlation with 10 fold cross-validation
in our following experiments. The correlation is used to
identify and test the strength of a relationship between a
predicted popularity set P̂ and the actual popularity set P .
Supposing the size of test sample set is k, the calculation of
spearman ranking correlation rs can be expressed as:

rs =
1

k − 1

k∑
i=1

(
Pi − P̄
σP

)(
P̂i − ¯̂

P

σP̂

)
, (9)

where P̄ and σP are the mean and the variance of the cor-
responding popularity set.

4.3 Baselines
Baseline for Comparing Methods: In order to com-

pare with state-of-the-art models, we implemented the fol-
lowing approaches which can be applied into popularity pre-
diction problem as different baselines.

Baseline 1: Average Views (AV). Since similar photos
tend to obtain similar popularity, the popularity of testing
photos can be estimated by the average views of its top five
similar photos from training data. The popularity sj can

be formulated by 1
k

k∑
n=1

sn,where k is the number of similar

photos, sn is the popularity of each similar photo with vj .
If the number of similar photos is over five, we rank them
by the posting time and select the most recent photos.

Baseline 2: Logistic Regression (LR) [12]. From the
early research, Szabo et al. used Linear Regression (LR) in
predicting popularity of online content, and it is a important
work on popularity prediction tasks as baseline model. The
multiple factors are organized as feature vectors in using this
model.

Baseline 3: Support Vector Regression (SVR) [2].
Khosla et al. used Support Vector Regression (SVR) in pre-
diction and incorporated user cues and photo content as
feature vectors. A linear kernel is used in the SVR.

Baseline 4: Bipartite Graph (BG) [17]. Bipartite
Graph model is widely used in popularity prediction and
ranking. Suppose G = (< U ∪ V >,E) is a bipartite graph,
where the set U and set V represent users and items re-
spectively, and edges E are posting behaviors. We use a
regularization term R(f) as

R(f) =
1

2

n∑
j=1

m∑
i=1

ωij

(
f(ui)√
dui
− f(vj)√

dvj

)
, (10)

where wij is defined by the posting behaviors between users
and items. dui and dvj are the weighted degrees of photo vj
and user ui for normalization, respectively.

Baseline 5: Temporal Matrix Factorization (TMF) [23].
The decomposition of a whole tensor on large data is not
practical because large data is often too sparse to find an
optimal solution. Hence we adopted a temporal modeling
approach to incorporate temporal extension [39] into a prac-
tical Non-negative Matrix Factorization [23] for prediction as
one baseline. We combine the user-item interaction (Bu(t)),
temporal terms (Bi(t)) and regular terms in the optimiza-
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Table 1: Prediction performances on PmD and UaD
datasets (metric: Spearman Ranking Correlation).

Method
400K
PmD

800K
PmD

300K
UaD

600K
UaD

AV 0.0419 0.0785 0.1043 0.2022
LR [12] 0.2805 0.3026 0.5582 0.6359
SVR [2] 0.2627 0.2725 0.4415 0.6273
BG [17] 0.2385 0.2573 0.2851 0.5465

TMF [23] 0.2186 0.2839 0.4352 0.5795
MT (ours) 0.2916 0.3264 0.5972 0.6574

tion objective:

arg min
U,V
‖R−Bu(t)−Bi(t)−UV‖2F + λU‖U‖2 + λV‖V‖2.

(11)
Note that, we use the intrinsic time series as the temporal

feature in the feature vectors for LR, SVR, BG and TMF.
Baseline for the Effectiveness Evaluation of Time

Scales: Currently, we adopt three time scales in our ap-
proach, including a week of year, a month of year, and a
season of year. In order to validate the use of the adopted
time scales and get more insights into our approach on the
prediction effectiveness while different time scales are ap-
plied, we add some specific time scales in the experiments,
including 2, 3, and 5 days, and 4, 5, and 6 months. For
abbreviation, the three adopted time scales are altogether
called GT (general time scales). The specific day and month
scales are called DST (day specific time scales) and MST
(month specific time scales), respectively. Three baselines
are then created below and evaluated on 100K UaD.

Baseline 6: GT-GTi. We evaluate the individual contri-
bution of each time scale in GT by removing a time scale
from GT one at a time.

Baseline 7: GT-DSTi. We extend the GT by adding a
time scale from DST one at a time.

Baseline 8: GT-MSTi. We extend the GT by adding a
time scale from MST one at a time.

4.4 The Comparison of Prediction Methods
In Table 1, we give the prediction performance of our ap-

proach and the comparing methods. In each column of the
table, our approach achieves the best performances. Espe-
cially in 800K PmD and 300K UaD, the relative improve-
ments of our approach over the best baseline model LR is
about 7.9% and 6.9%. Unlike TMF, which is also a tem-
poral model based on matrix decomposition technique, our
method considers multiple time-scale structure of popular-
ity dynamics and even achieves a better relative increase
about 13.4%–37.2%. That suggests the decomposition with
multiple time scales is more adequate for utilizing temporal
information. Besides, the models of LR and SVR gener-
ally outperform the temporal model TMF. It might imply if
the temporal information is not well utilized, the resultant
performance can be even worse than the scenario when tem-
poral information is excluded. Meanwhile, Average Views
is the worst and its best correlation is only about 0.2, it ig-
nores abundant contextual data of popularity and results in
limited prediction.

From the comparison with the different methods, the cor-
relation of experiments on large dataset of PmD or UaD
tends to obtain a better performance. This is consistent
with the intuition that the prediction performance depends

Table 2: Prediction Performances of predicting pop-
ularity based on GT without GTi (metric: Spear-
man Ranking Correlation).
Settings GT-GTweek GT-GTmonthGT-GTseason GT

rs 0.3176 0.3578 0.1759 0.5342

Table 3: Prediction performances of GT by incor-
porating DST or MST (metric: Spearman Ranking
Correlation).
GT+DSTi Performance GT+MSTi Performance

2(D) 0.4485 4(M) 0.5208
3(D) 0.4845 5(M) 0.5142
5(D) 0.4688 6(M) 0.4553

heavily on the numbers of data, and “big data” provides
better prediction ability. Moreover, Table 1 shows that the
performances of prediction on UaD can be as high as up
to 0.6574, which are higher than on PmD. This indicates
that the prediction on less photos per user (photo-mix ap-
plication) is more difficult even on a large dataset (the most
performances are about 0.3 even on 800K photos).

Overall our approach achieves the best performance and
gives more relative rank correlation than the other four com-
paring methods (excluding AV) in a relative improvement of
20.3%–109.5% (with BG), 15.0%–37.2% (with TMF), 4.8%–
35.3% (with SVR) and 3.4%–7.9% (with LR). The average
improvement of our approach over the four methods is thus
from 10.9%–47.5%. It suggests that the temporalization
technique are more effective on the prediction task.

4.5 Evaluation of Time Scales for Popularity
Prediction

The results of using our predefined time-scales are shown
in the right column of Table 2, where the highest ranking
correlation is 0.5342 when using all GT in multi-scale de-
composition. It indicates that using suggested general time
scales is effective in unfolding temporal dynamics of popular-
ity on social media. Furthermore, the other “leave-one-out”
results are to validate the importance of each time scale.
The result with the absence of season time scale achieves
the lowest ranking correlation. That means the season-level
time scale is more crucial than the others for photo popular-
ity prediction. From the observation on the overall result,
all the leave-one-out results are lower than using all the time
scales in GT, implying that all the currently adopted time
scales are important.

Next, we analyze the improvements of performance in
terms of DST and MST, respectively. Compared with the
performance of GT in Table 2, the performances in Table 3
drop down by 1.3%–8.5%. Also, we found that MST pre-
diction using the same data performs more accurately than
using the DST (Table 3). This finding illustrates that the
monthly temporalization of photo popularity dynamics on
Flickr are more effective than day based analysis.

4.6 Sample Results
The purpose of this experiment is to observe the time-

sensitive characteristic of our model by predicting the aver-
age ranking correlation of different photo categories. Sample
photos with the associated image category tags are illus-
trated in Figure 4. It can be found that our model does per-
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Figure 4: Sample photos with annotated image tags. In comparison to state-of-the-art methods, our approach
takes into account both multi-scale temporal and contextual information. Accordingly, we can obtain higher
correlation not only on the photos with clear temporal characteristic (e.g. “amazing sunshine” photos) but
also on other common photos (e.g. “attractive birds” photos).

form better for photos with time-related tags (e.g., “amaz-
ing sunshine”) than those with general tags (e.g., “healthy
skin”). According to the results, our model have good pre-
diction performance on time-related photos, such as those
tagged with “amazing sunshine”, “fat loss” or “elegant fash-
ion” (the performance on several photos is even as high as
up to over than 0.6 in prediction). The content of these
photos are related with temporal natural evolution, user ac-
tivity or public preference [40]. Besides, the popularity of
those with general category tags in the left part of Figure 4
are difficult to predict, such as “empty space”, “fluffy clouds”
etc. We found that three observations may lead to the re-
sults. Firstly, the popularity of photos are varying without
obvious patterns even on content, such as “empty space”
and “healthy skin” in Figure 4. That means the image tags
are limited representations on abstract categories of photos.
The second one is that some photos are blurred. This is also
an unavoidable challenge not only to our model but also to
others. Furthermore, several categories of photos like “lazy
cat” or “lovely painting” have no obvious temporal patterns
or even without explicit semantics for comprehension. This
is a limitation of our model but might be improved in future
works by incorporating into the text description content.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a general framework

named Multi-scale Temporalization for modeling dynamic
popularity in social media from multiple time scale view.
Specially, we propose a structured decomposition model at
different time-scales instead of computation on whole popu-
larity tensor directly with only intrinsic time information.
The experimental results showed that our approach out-
perform the state-of-the-art methods, with a relative im-
provement of averagely 10.9%–47.5% of our approach, which
demonstrates the effectiveness on predicting power.

There are several possible directions for future investiga-
tion on temporal popularity prediction. One is to exploit
new clustering strategies for capturing contextual relevance
in data rearrangement with temporal factors. Another open
question would be discovering prospective strategies for pop-
ularity in evolving systems. Furthermore, to unfold evolving
popularity online content for detecting or predicting the user

activity or influence is also essential for exploring social sig-
nal in social media.
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