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ABSTRACT

Affective computing researchers have recently been focus-
ing on continuous emotion dimensions like arousal and va-
lence. This dual coordinate affect space can explain many
of the discrete emotions like sadness, anger, joy, etc. In the
area of continuous emotion recognition, Principal Compo-
nent Analysis (PCA) models are generally used to enhance
the performance of various image and audio features by pro-
jecting them to a new space where the new features are less
correlated. We instead, propose that quantizing and pro-
jecting the features to a latent topic space performs better
than PCA. Specifically we extract these topic features using
Latent Dirichlet Allocation (LDA) models. We show that
topic models project the original features to a latent feature
space that is more coherent and useful for continuous emo-
tion recognition than PCA. Unlike PCA where no semantics
can be attributed to the new features, topic features can
have a visual and semantic interpretation which can be used
in personalized HCI applications and Assistive technologies.
Our hypothesis in this work has been validated using the
AVEC 2012 continuous emotion challenge dataset.
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1. INTRODUCTION

Medical diagnosis of patients, federal investigations, human-

computer interactions and many other applications need an
understanding of human emotions. This research work ad-
dresses the application of social interaction assistance for
people who are blind. When an individual who is blind in-
teracts with a person, it is necessary to perceive his or her
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counterpart’s emotions so that there is a positive influence
and feedback during the conversation. This application re-
quires a two layered approach where in the lower layer the
blind user is provided with actual facial movements that
are correlated to the person’s facial emotions and the up-
per layer provides the continuous or discrete emotions to
the user. This needs pattern recognition algorithms that
can extract discernible features from image and audio data,
learn their relationship with emotions, predict the appropri-
ate emotional state and deliver the prediction to the visually
impaired. Happy, sad, disgust, surprise, contempt and anger
are most widely accepted states and will be called discrete
emotions throughout this document. In recent years new
dimensions of emotions are gaining popularity viz. arousal
(energy) and valence (positivity). Unlike discrete emotions,
each of these dimensions can be assigned a real number
within a given range and thus are called continuous dimen-
sions and arousal and valence can be used to define most of
the discrete emotions.

To address these problems, algorithms that can extract
meaningful features and can learn an association between
features and emotions are needed. In recent years, proba-
bilistic topic models have made significant contribution to
both feature learning as well as supervised learning. Fea-
tures extracted from video and audio frames are projected to
a new latent topic space and these topics are used to predict
emotions. This latent topic space is richer than the original
feature space as it considers correlations and co-occurrences
within features. In this work we show that these topic fea-
tures are semantically richer and perform better than the
most popularly used lower dimension projection techniques
such as Principal Component Analysis (PCA).

2. RELATED WORK

Feature extraction and analysis is a primary area of re-
search in emotion recognition. Facial landmarks extracted
using active shape models (ASM) and active appearance
models (AAM) are used as geometric features to predict
emotions in [3]. Mean appearance models, linear binary
patterns (LBP) [5], local phase quantizations (LPQs), his-
togram of gradients (HOG), scale invariant feature trans-
form (SIFT) and Gabor features are few examples of appear-
ance features used for emotion recognition. Once features
are extracted, their dimensionality is reduced using either
Principal Component Analysis [4] or Independent Compo-
nent Analysis [8].

In general, the image and audio feature space is projected
to a lower dimensional space which is then mapped to the
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Figure 1: Experimental Methodology used in this work

emotion space. Existing dimension reduction techniques try
to reduce the correlation between features but lose seman-
tic information in the process. In text mining, probabilis-
tic topic models are used to project the word features to a
latent topic simplex and the new features are used in un-
supervised and supervised settings. Blei et al [1] have pro-
posed the Latent Dirichlet Allocation (LDA) model which
is a more generalized topic model with explicit modeling of
all the variables using multinomial-dirichlet conjugate dis-
tributions. In recent years topic models have been gaining
popularity in image and video analysis and few works like
[6], [7] and [2] have used LDA on audio and images for affect
analysis. In this work we propose the use of topic models
to project geometric, appearance and audio features from
videos onto the topic space, analyze their interpretation and
performance on continuous emotion recognition and com-
pare its performance with PCA.

3. PROPOSED METHODOLOGY

The experimental methodology used in this work is shown
in Figure 1, where a set of video frames are used to train the
models. Video frames are converted to video documents by
quantizing various image and audio features. These train-
ing documents are supplied to Latent Dirichlet Allocation
Model to learn the latent topic space. The new topic fea-
tures generated using LDA are used to train the regression
algorithms with arousal and valence emotions as the depen-
dent variables. The features of an unseen test frame are
projected to the new topic space and the new features are
used to predict emotions. PCA can only be used to predict
emotions whereas it can be seen that LDA outputs extra
topic projections that can be visualized or provided to users
through Haptic interfaces. Topic models propose that ev-
ery document contains latent concepts called topics. Prob-
abilistic topic models are mixture models that model each
document as a multinomial mixture of topics and each topic
as a multinomial distribution over words. In the context
of facial video processing, we can consider either an entire
video or an individual video frame as a document. There

882

O Durichlet Prior

v
6, Multinomial
H.._H
‘ Audio
SIFT v N, MFCC Features
Features i /
b <— B
Multinomial

LBP

Features Latent Dirichlet Allocation

(d)

Figure 2: The LDA graphical model and the four fea-
tures used in this work

is a lot of activity within each facial video or facial image
document which can be possibly explained using latent top-
ics. We hypothesize that the affective state of a person can
be explained by identifying these latent topics. Similar to
the definition of a textual topic which is a group of related
words, video topics are defined as collections of co-occurring
image/video features. This co-occurrence can be either spa-
tial (in the case of an individual frame) or temporal (in the
case of a video) and can be exploited to recognize different
emotional states.

3.1 Topic Extraction from Base Features

Figure 2(d) shows the Latent Dirichlet Allocation graphi-
cal model, where the outer plate represents a document and
the inner plate corresponds to a word. 6 is a multinomial
distribution of topics in a document ¢ and ¢ is a multi-
nomial distribution of words in a topic k. Given a set of K
topics, each word vy, in a document ¢ is generated by assign-
ing a topic z¢, from the distribution 6; and then generating
a word from the topic distribution ¢.,, . In LDA model the
only observed variable is v and all other variables are la-
tent variables. Now, given a set of documents, distributions
0: and ¢ are inferred using Gibbs Sampling or Variational
EM. In this work, we have used the variational Bayes ap-
proach to estimate the topics and the two parameters o and
3 have been selected using cross validation.

In order to use the LDA model the features have to be
quantized to words and the details follow. As shown in Fig-
ure 2, four different base features viz. facial landmark move-
ments (LM), SIFT features, Linear binary patterns from im-
age frames and MFCC spectral features from audio frames
have been considered. We have used the API provided
by Xuehan et al. [9] to track 49 landmarks from facial
videos. The landmarks from all videos are rotated, scaled
and aligned with respect to the neutral frame (used the one
shown in Figure 2) and the changes in the movements are
quantized to R — 6 space with four orientations for 6 and 20
bins for the R. The 49 tracked landmarks are interpolated
to 71 points as shown in Figure 2 (b) and SIFT features have
been extracted at a scale of S = 2 and the features at the



> Frm R wel o> <> >
(a)
. vy e
o Sy == =
Action Unit 2: Outer Brow raiser Action Unit 23: Eye Lids Closed
«®" % e, .0‘ Qe c 0, s o0,
. ¢ ..
'..:3: . "‘_o ﬂ‘--. : . :.,'. '.-:. LS :..
®) ° . [ L. o
] . . c' . .
o Q00 CTR]
. . K o,
AR $1 Rid Sin
Eye Regions Eye Brow Regions Mouth Region

.I- l- ﬂ

e

Mouth & Eye Brows

(¢)

"

Eye Bridge Around nose

Figure 3: Plots of topics extracted from (a) Landmark
(b) SIFT and (c) LBP features

optimal orientations have been considered. KMeans with co-
sine, KL-divergence and euclidean distances have been used
to quantize SIFT features at each landmark. Figure2 (c)
shows LBP features extracted from 100 image blocks and
KMeans has been used to vector quantize these features.
The final set of features are the spectral coefficients (1242)
from audio at each frame. Each feature vector is quantized
using Kmeans and the nearest centroid is assigned. The to-
tal vocabulary sizes of quantized words used for LDA are
196, 3550, 5900 and 62100 for LM, SIFT, LBP and Audio
features respectively.

4. VISUAL INTERPRETATION

We hypothesize that latent topic features have a semantic
interpretation and thus can be used to convey lower level
information about changes in facial texture to a visually
impaired person. We have used videos provided for the
AVEC2012 challenge [5] to extract topics and perform our
analysis. We have used LDA model with the optimal pa-
rameters (see Section 5 for details) to extract topics from
different features. The topics extracted using geometric fea-
tures, correspond to patterns of movements on the human
face and the appearance features based topics provide infor-
mation about changes in textures of the face. Facial plots
of various topics can be seen in Figure 3, where the top-
ics extracted from landmark, SIFT and LBP features are
displayed in (a), (b) and (c) respectively. The angle and
length of arrows in Figure 3(a) correspond to the direction
and amount of landmark movements. It can be observed
that sets of topics in fact have a correspondence with Facial
Action units. The sizes of blobs plotted in Figure 3(b) cor-
respond to the amount of influence (probability) the SIFT
features at that landmark have on that topic. We find that
each topic is modeling spatially correlated landmarks (that
belong to a region) as they have similar textures e.g. the top-
ics plotted model eyes, eyebrows and mouth regions respec-
tively. The topics from LBP are plotted in 10 x 10 blocks as
each word corresponds to a block. Figure 3(c) shows three
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Figure 4: Evolution of LBP based topics with Arousal
dimensions.

such topics active in the mouth-eyebrow, nose/eye bridge
and around nose-cheek regions. We observe that each of the
features produce different topics whose influence is felt in
different ways and regions.

Along with a semantic connotation associated with top-
ics, our experiments have also shown that these topics can
be displayed in real time on a human face. The best topics
corresponding to a region or a landmark can be delivered
through haptic or visual interfaces which provide overall
changes in face textures and movements. Another inter-
esting observation is that topics are correlated with arousal
and valence emotions. Figure 4 shows a sample plot of a
video where the changes in arousal have been plotted along
with the probability of Topic 30 extracted from block wise
LBP features. There is a direct correlation between the topic
probability and the emotion and the topic plots at different
points of time are overlaid on the plot.

5. PERFORMANCE EVALUATION

To test the performance of projected features on contin-
uous emotion recognition, we used 31 training videos (7
subjects) from AVEC2102 dataset and used the 32 devel-
opment videos (8 subjects) for testing. We evaluated the
mean cross correlations between the actual and predicted
response labels averaged across all development videos. The
parameters corresponding to the LDA model are the o, 8
and the number of topics K. We used a grid search ap-
proach to select the best parameters using cross validation
on training videos. Video frames have been sampled at 30
ams and audio frames that do not have audio have been
filtered. We have used 50 K-Means clusters for quantizing
Audio and SIFT features. The optimal number topics for
LM was 50 whereas 30 topics were selected for Audio, LBP
and SIFT features. We used topic distributions extracted
from four features viz. landmarks (LM), SIFT, LBP and
Audio features which we address as Base features, as new
LDA features. Once the dimensionality of the base features
is reduced using PCA and LDA we have used Support Vec-
tor Regressors with to RBF kernels to predict arousal and
valence separately. The results of arousal and valence pre-
diction using different features are shown in Table 1. The
mean cross correlations between predicted and actual emo-
tions over all development videos using each of the features
are shown on the left side. Since the size (number of frames)
of each development video is different, we also calculated
the weighted cross correlation weighted by the video size
so that longer videos get more weightage. This is useful
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Arousal Valence
Mean Weighted Mean Mean Weighted Mean
Base PCA | LDA | Base | PCA | LDA Base | PCA | LDA | Base | PCA | LDA
LM 0.037 | 0.023 | 0.177 | 0.009 | 0.003 | 0.196 || 0.011 | 0.011 | 0.127 | 0.010 | 0.010 | 0.190
LBP | 0.190 | 0.090 | 0.191 | 0.150 | 0.138 | 0.195 || 0.207 | 0.240 | 0.264 | 0.280 | 0.310 | 0.308
SIFT | 0.190 | 0.242 | 0.207 | 0.170 | 0.230 | 0.190 0.07 | 0.022 | 0.128 | 0.050 | 0.030 | 0.078
Audio | 0.0609 | 0.069 | 0.277 | 0.032 | 0.023 | 0.294 || 0.001 | 0.001 | 0.113 | 0.013 | 0.130 | 0.195
Table 1: Cross-correlation values on AVEC development videos
1 0.99 parable to PCA and evaluated its performance on arousal
LDA and valence prediction. Also the LDA features are less corre-
i PCA lated than the PCA based projections. During our analysis
g o075 we observed that certain topics that are highly correlated to
3 arousal or valence are given low probability which effects the
2 prediction capability of features. To handle this, in future,
3 05 we want to use supervised LDA models where the emotions
g ' can influence the topics that are extracted. We also plan
o to use continuous topic models where the features need not
g 025 be quantized and a continuous Gaussian distribution will be
’ 045 018 017 used instead of a discrete multinomial distribution.
0.07 005 009
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Figure 5: Mean cross correlations between features ex-
tracted using LDA and PCA (the lower the better)

because longer videos have more changes in emotions and
better performance on longer videos implies the algorithm
is able to model these changes. The Base algorithm uses
the base features without any projection and dimensional-
ity reduction. We have compared the results from two di-
mensionality reduction techniques, PCA and LDA. We can
observe from the results that almost across all features on
board, LDA features have performed better than the Base
and PCA features. SIFT features are an exception to this
and the probable reason could be that the quantization tech-
nique may not be sufficiently capturing all the histograms
due to high dimensionality (128 dimensions).

Table 1 also gives useful insights about the effect of each
feature on arousal and valence. Audio based topic features
have performed better in arousal prediction than valence.
Landmark features in contrast performed equally well in
predicting both arousal and valence. LBP and SIFT fea-
tures counter interact in modeling valence and arousal re-
spectively. In order to show the contrast between PCA and
LDA we also calculated correlations within LDA and PCA
based features. Figure 5 shows the mean cross correlations
within features extracted using PCA and LDA. It can be
seen that LDA features are less correlated to each other in
comparison to PCA except for the SIFT features which may
explain the lower performance of LDA.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have used Latent Dirichilet Allocation
models to project image and audio features to a latent topic
space. These topic features have meaning and can be used to
provide lower level facial information to individuals who are
blind. We also showed that this projection technique is com-
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